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Abstract: We report a significant improvement in the diagnosis of cervical cancer through a combined
application of principal component analysis (PCA) and support vector machine (SVM) on the average
fluorescence decay profile of Fluorescence Lifetime Images (FLI) of epithelial hyperplasia (EH)
and CIN-I cervical tissue samples, obtained ex-vivo. The fast and slow components of double
exponential fitted fluorescence lifetimes were found to be higher for EH compared to the lifetimes of
CIN-I samples. Application of PCA to the average time-resolved fluorescence decay profiles showed
that the 2nd PC, in combination with 1st PC, enhanced the discrimination between EH and CIN-I
tissues. Fluorescence lifetime and PC scores were then classified separately by using SVM support
vector machine to identify the two. On applying SVM to a combination of fluorescence lifetime and
PC scores, diagnostic capability improved significantly.
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1. Introduction

Since the early 1980s, steady-state fluorescence spectroscopy has been extensively studied by
several groups for detection of cancer [1–9]. Fluorescence spectra have been utilizused by several
groups to detect cervical cancer [6,9,10]. Ramanujan et al. have efficiently combined reflectance with
fluorescence spectroscopy for in-vivo cervical pre-cancer detection [9,11], which has resulted in a
fiber based probe for clinical studies. However, one of the limitations of fluorescence spectroscopy
from biological tissue is the highly overlapping character of contributing fluorophores making it
difficult to understand disease development through the changes in fluorophores. In addition,
it is difficult to interpret or quantify the difference in spectra due to quenching by other molecules,
aggregation, or energy transfer, because fluorescence intensity depends on fluorophore concentration
and illumination intensity. On the other hand, fluorescence lifetime (τ) is independent of fluorophore
concentration and illumination intensity but depends only on the intrinsic characteristics. It is also
sensitive to the local environment such as viscosity, pH, refractive index as well as interactions
with other molecules [12–14]. During the progress of cancer, the environment of the contributing
fluorophores changes and this can be captured by its lifetime as it is more sensitive to environment
as compared to steady-state fluorescence [15,16]. Hence, the temporal information adds an
extra dimension which can be used to distinguish different fluorophores with overlapping spectra
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but exhibiting different lifetimes. The photo-physical properties of the intrinsic bio-molecules
and bio-structures have been considered as a possible parameter that may be related to the
morphofunctional state of a biological tissue. Due to this advantage, time-resolved fluorescence
technique has been used to study the structure and dynamics [17–21] of biological molecules and has
been applied in tissue diagnosis [21,22], specifically for cervical cancer detection. [22,23].

Tissue undergoes changes during the development of cancer. Morphological changes mostly
contribute to changes in the scattering properties, while biochemical changes occur at a cellular level
from bio-molecules which are reflected in the absorption properties of the tissue [24,25]. In addition,
tissue undergoes changes in concentration of fluorophores e.g., decrease in concentration of flavin
adenine dinucleotide (FAD) and increase in concentration of nicotinamide adenine dinucleotide
(NADH) which are well documented [26,27]. Optical techniques may be more sensitive to the changes
occurring in the preliminary stages of cancer than the existing conventional techniques [25,28].

Further, application of PCA on fluorescence lifetime images improves the capabilities of the
lifetime, since the principal components capture both absorption and scattering effects [29]. PCA
is a well known technique used for dimensionality reduction of data [30]. It has been used by
several groups for cancer diagnosis by feature extraction [26,29,31–33]. Recently, different organs
have been differentiated using this technique, in which changes in anatomical behavior is reflected
in its time corelated fluorescence signal [34–36]. Statistical algorithms play an important role in
enhancing the discrimination. The physiological changes in each organ lead to different fluorescence
decay times. These are enhanced through different principal components, which provide structural
information of organs. In another study, our group has validated with the phantom studies, how the
PCs capture the absorption and scattering information and thus clearly demarcate the precancerous
regions from the cancerous sites [29].

For better classification of cervical data, comparative evaluation of several classifier techniques
using same set of data is necessary. Among all the available classifiers, SVM is robust and performs
better than other classification techniques. SVM is a machine learning algorithm used for classification
of data, function approximation, etc., due to its generalization ability, it has been successfully applied
in many cases [37–43]. SVM works by minimizing the upper bound of error through maximizing
the margin between separating hyperplane and data set. It has the advantage of choosing the model
automatically such that both the optimal number and location of basis functions are determined
during training. SVM is also suitable for small samples and some inherently non-linear problems.
There are several kernel functions available for SVM, both for linear and non-linear classification,
and its performance largely depends on the selection of the kernel function [44,45]. Rarely is one index
test sufficient for diagnosis of a particular condition, and so diagnostics involving multiple tests are
often used. We have hence, utilizused the advantage of SVM on fluorescence lifetime and PC scores
for classification.

Here, we report the discrimination of EH and CIN-I through their fluorescence lifetime.
The average fluorescence decay profiles were fitted to a double exponential. A principal component
analysis was applied to the time-resolved fluorescence decay and PC scores were calculated for each
sample. Fluorescence lifetime and PC scores were used for classification of EH and CIN-I samples
by the application of a machine learning algorithm (SVM). We explain how the combination of SVM
results of fluorescence lifetime and PCA were used to improve the diagnostic efficacy.

2. Results

2.1. Fluorescence Lifetime

Here, we have used 375 nm wavelength pulsed laser for excitation, with the resulting fluorescence
dominantly from NADH and FAD [28]. Fluorescence intensity images at a certain time delay are
shown in Figure 1a,d for EH and CIN-II, respectively. The corresponding FLI are shown in Figure 1b,e
for fast component (τ1) and Figure 1c,f for slow component (τ2). Both the fast and slow components of
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FLI for EH are higher than those of CIN-I tissues. However, fluorescence lifetime at few pixels are
higher due to bad fitting at those pixels. Fluorescence decay was found to be faster for CIN-I compared
to EH samples, as indicated in Figure 2a. Scatter plot of fast versus slow components of fluorescence
lifetimes of fitted average fluorescence decay of all the samples for EH and CIN-I tissues is shown in
Figure 2b. The fast and slow components of average fluorescence lifetime also show higher values for
most of the EH as compared to CIN-I tissues as illustrated in Figure 2b.

(a) (b) (c)

(d) (e) (f)
Figure 1. (a,d) The fluorescence intensity image at a certain time delay; (b,c,e,f) corresponding
fluorescence lifetime images of fast and slow components for EH and CIN-II, respectively.

(a) (b)
Figure 2. (a) Average fluorescence decay profiles and (b) Scatter plot of fast versus slow components
of fluorescence lifetimes for EH and CIN-I sample.

2.2. Principal Component Analysis

PCA has been performed on average time-resolved fluorescence decay profiles following the
method mentioned in Section 4.3.2. First three eigenvalues are considered here as they capture
more than 99.5% of the total variance of the fluorescence decay. This can be seen in the eigenvalue
and variance plots shown in Figure 3a. PC scores represent the projection of data on the principal
components and hence carry useful information, which can be used for classification purposes. Scatter
plots between 1st and 2nd PC scores, 2nd and 3rd PC scores and 1st and 3rd PC scores are shown in
Figure 3b–d, respectively. It can be seen from Figure 3b that the EH and CIN-I tissue samples can be
distinguished clearly from the scatter plot between 1st and 2nd PC scores, but the distinction becomes
clearer from the scatter plot between 2nd and 3rd PC scores as seen in Figure 3c. From Figure 3d,
it can be seen that the scatter plot between 1st and 3rd PC scores for both EH and CIN-I samples
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are highly overlapping and hence, the 3rd PC does not carry useful information, which can be used
for classification.

(a) (b)

(c) (d)
Figure 3. (a) Eigenvalue and variance plots of first six eigenvalues, (b) Scatter plot of 1st PC versus
2nd PC, (c) 2nd PC versus 3rd PC and (d) 1st PC versus 3rd PC scores for EH and CIN-I cervical tissue.

2.3. Support Vector Machine

The SVM is used for classification of the processed data. The important features of SVM are
mapping linear inseparable data into high-dimensional space by non-linear kernel function and linearly
distinguishing the data in high-dimensional space. SVM is especially suitable for small samples and
some inherently non-linear problems. The data points that lies close to the decision surface receives
the maximum weightage and the points far away from the margin receives zero weightage. These
data points close to the decision boundary are called support vectors. The margin of the classifier is
determined by the distance from the decision surface to the support vectors. In SVM, the holdout
method of cross- validation was employed to randomly divide the data set into two parts: a training
set consisting of 16 EH and 16 CIN-I samples and validation set includes 9 EH and 4 CIN-I and 2 CIN-II
samples. Here, the input data matrices for SVM classifier were dimension reduced by application of
PCA. The first two PCs are considered as they occupy more than 99% of total information. To obtain
the optimal parameter of the classifier, a grid search technique with tenfold cross-validation was
employed. Given a constant sample size, one approach to improve the classification accuracy may be
to incorporate non-linear techniques such as non-linear kernels in SVM analysis. Different types of
linear and non-linear kernel functions were tried, out of which “radial basis function (RBF)” Kernel
was found to classify better than others. Figure 4a,c show the plot of training data results between
fast and slow components of lifetime and 1st and 2nd PC scores respectively, which are separated by
well defined EH and CIN-I regions. Corresponding validation data results are shown in Figure 4b,d.
In both the cases, the two CIN-I samples are lying outside the CIN-I regions, while all the normal
samples are clearly distinguished.

Here we have used two analysis techniques for detection of cervical cancer. To improve the
diagnosis, we combined the results obtained from both the techniques. To improve the sensitivity of the
test it is considered positive if one result is positive. The final sensitivity (Sn) and specificity (Sp) of the
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combined tests (A and B) used in this work is, SnAB = SnA + SnB− SnA× SnB ans SpAB = SpA× SpB.
The calculated combined specificity and sensitivity are 87% and 100% respectively.

(a) (b)

(c) (d)
Figure 4. The RBF-SVM based classification of EH and CIN-I cervical tissues for fast component versus
slow component (a) training and (b) validation; 1st PC versus 2nd PC (c) training and (d) validation
data sets.

3. Discussion

3.1. Fluorescence Lifetime

Both the fast and slow components of FLI shown in Figure 1b,e and c,f respectively are found
to be higher for EH than those of CIN-I tissue. It may be noted that the low SNR at the edges of
the images create error in fitting, giving rise to higher values of lifetime. The average fluorescence
decay profile, on the other hand, shows a better SNR and hence its double exponential fitting is
more reliable. On comparing the lifetimes obtained from the images and the average fluorescence
decay profiles, they are found to match well where the SNR are high. On comparing the fluorescence
lifetime for all tissues from both the categories, both the fast and slow components of lifetime are
found to be higher for EH than CIN-I, which can be confirmed from Figure 2b. In our earlier results
we showed that the fluorescence lifetime for normal tissue is lesser than that of CIN-I tissue [29] but,
it is pertinent to note that in this study, we report results of EH rather than normal tissues. EH is
declared as normal by the histopathologist, but, its epithelial thickness is almost double of a typical
normal tissue. The fluorescence signal would then emerge from deeper regions undergoing higher
number of scattering events before escaping from the tissue, which would result in an increase in
fluorescence lifetime.

3.2. Principal Component Analysis

Fluorescence lifetime shows a good discrimination between the EH and CIN-I tissues, but the
double exponential fitting is prone to error in case of noisy data and hence cannot be trusted in case
of low SNR [46]. This can be confirmed from Figure 1b,c,e,f where lifetime for few pixels show high
values due to bad fitting because of low SNR. PCA helps to overcome this limitation. It has been shown
that fluorescence lifetime is more sensitive to changes in scattering and is unaffected by absorption.
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Application of PCA to time-resolved fluorescence images has the advantage of capturing both the
changes in absorption and scattering of fluorophore environment [16,29]. First three eigenvalues are
considered here as they capture more than 99.5% of the total variance of the fluorescence decay as
seen in Figure 3a. The eigenvectors corresponding to these three eigenvalues are used to represent
the complete data, and reconstruction using these display profiles very close to the original data.
From Figure 3d it can be seen that the scatter plot between 1st and 3rd PC scores are highly overlapping,
while scatter plots between 1st versus 2nd (Figure 3b) and 2nd versus 3rd (Figure 3c) PC scores shows
clear distinction between EH and CIN-I samples. From the above results, one can assume that the 2nd
PC plays an important role in discriminating EH and CIN-I tissues as it captures the subtle changes
in fluorophore environment i.e., the changes in absorption and scattering, which complies with our
earlier results [29].

3.3. Support Vector Machine

For PC score classification, first two PCs are considered as they carry more than 99% of the
original information (as seen in Figure 3a) while 3rd PC does not carry any significant information.
The overall model results for PC scores using different kernels for training data is shown in Table 1.
The performance of a model is generally evaluated in terms of accuracy, precision, sensitivity,
and specificity. From Table 1 it can be seen that polynomial and RBF kernel function performances are
similar with accuracy, precision, sensitivity and specificity of 84%, 100%, 100% and 100% respectively.
The higher specificity and sensitivity for non-linear SVM clearly indicates that the boundary separating
CIN-I and EH samples are not linear. For the calculation of specificity and sensitivity the samples
lying on the boundary between the two regions have not been considered. If we only consider the
samples lying on either side of the boundary then RBF kernel performs better than others. The RBF
kernel based SVM classification results of lifetime and PC scores for training and validation data
between EH and CIN-I are shown in Figure 4. In the validation results in Figure 4b,d two CIN-I
samples are lying outside the CIN-I regions for both the cases, while all the normal samples are clearly
distinguished. The low specificity can be attributed to lesser number of training samples used. As the
number of samples increases, the separating hyperplane will become more robust and will improve
the classification accuracy.

Table 1. SVM model results using linear, polynomial and Gaussian radial basis kernel functions for
training data set.

Linear Polynomial Kernel (Order-3) RBF Kernel

Accuracy 81 84 84
Precission 92 100 100
Sensitivity 92 100 100
Specificity 93 100 100

Table 2 shows the sensitivity and specificity for lifetime, PCA and their combined results for both
training and validation data, respectively. As we have not considered the data lying on boundary for
sensitivity and specificity calculation, it becomes 100% for training data set. For training data both
the lifetime and PC scores have similar specificity and sensitivity but in case of validation data PCA
performs better than fluorescence lifetime. The combined results obtained from application of SVM
shows a better sensitivity as intended.
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Table 2. Comparison of sensitivity and specificity for the results obtained from lifetime, PCA and their
combined results.

Sensitivity Training Specificity Training Sensitivity Validation Specificity Validation

Lifetime 100 100 60 100
PCA 100 100 67 100

Combined result 100 100 87 100

4. Materials and Methods

4.1. Sample Collection

Fresh human cervical tissue samples used in this ex-vivo experiment were obtained from GSVM
medical college, Kanpur, Uttar Pradesh, India. The freshly resected tissue samples were stored in ice
for transportation to the lab. Before performing the experiment, the samples were thawed to room
temperature and then rinsed with saline water to remove superficial blood. The experiment was
performed within 4 h of biopsy. Based on visual examination, samples were labeled as normal and
abnormal. After completing the experiment, the samples were sent back to the medical college for
histopathology from which the samples were confirmed as EH and CIN-I. EH is declared as normal
but its epithelial thickness is almost double compared to normal tissue. Total number of 10 EH samples
with 25 sites, 11 CIN-I samples with 20 sites and 1 CIN-II sample with 2 sites have been examined in
this study. Out of which 16 sites from each group has been used as training data and 9 sites from EH
and 4 sites from CIN-I and 2 sites from CIN-II has been used as validation data.

4.2. Data Collection

LaVision ICCD and PicoQuant picosecond pulsed diode laser (375 nm wavelength with pulse
width of 48 ps, repetition rate 40 MHz & average power 0.5 mW) driven by PDL 800-B driver was used
to capture fluorescence lifetime images. The pulsed signal from a single mode fiber was collimated
using a achromatic lens (Thorlab f = 75 mm). Fluorescence signal from the tissue was collected using a
450 nm wavelength long pass filter and imaged onto the ICCD through a camera lens (Nikon AF Nikkor
50 mm f/1.8 D). Fluorescence lifetime imaging system comprises a high rate imager (HRI), ICCD and a
high rate delay generator (HDG). HRI controls the functioning of image intensifier and HDG provides
the desired delay of 100 ps with respect to excitation pulse. The pulses were synchronized to capture
FLI from the sample at delay steps of 100 ps with respect to excitation pulse. Control of components
and data collection were done by a “Davis” user interface software.

Figure 5 displays the block diagram of experimental setup of fluorescence lifetime imaging system.
A 375 nm pulsed diode laser was used to excite the cervical tissue sample and the FLI were captured
with a gate width of 200 ps at steps of 100 ps time delay from the excitation pulse. For good SNR at
each pixel the CCD acquisition time was set at 3000 ms. Fluorescence decays were recorded by shifting
the time gate in steps of 100 ps over 12.7 nanoseconds.
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Figure 5. Block diagram of fluorescence lifetime imaging system for capturing time- resolved
fluorescence images.

4.3. Data Analysis

4.3.1. Fluorescence Lifetime

Fluorescence lifetime imaging: Fluorescence intensity decays at every pixel were fitted to a double
exponential (Equation (1)) using a non-linear least square minimization scheme. The fast and slow
components of lifetimes for all pixels were then displayed separately as FLI. The code for the fitting is
written by using “fit” function available in MATLAB.

Average fluorescence lifetime decays: Average fluorescence decay profile was fitted to a double
exponential χ2 (= 0.9999). The double exponential function used to fit data is shown in Equation (1).
The fitting here has been performed using the curve fitting tool available in MATLAB.

I(t) = α1e−
t

τ1 + α2e−
t

τ2 (1)

where α1 and α2 are the amplitudes at t = 0; τ1 and τ2 are the fluorescence lifetimes.

4.3.2. Principal Component Analysis (PCA)

PCA is applied to the average fluorescence decay for the dimensional reduction without loss of
any feature. PCA reduces the dimension of the data by finding the orthogonal linear combination
(the principal components) of the original variables having largest variance. PCA captures the effect of
absorption and scattering through the eigenvectors [29]. To extract principal components of the time-
resolved fluorescence signal, a correlation matrix C is constructed.

Cij =
1
N

N

∑
i=1

δIT
i (k)δIj(k) =

AT A
N

(2)

where, δIj(k) = Ajk is the mean subtracted intensity divided by the standard deviation, computed
over the samples at each time. Index i varies from 1 to 75, representing fluorescence decay profile
and k is the number of samples. The eigenvectors and the eigenvalues of the correlation matrix
are extracted using singular value decomposition. The eigenvectors are rearranged in descending
order of their eigenvalues. First principal component is the eigenvector corresponding to highest
eigenvalue of the matrix, similarly the 2nd PC, 3rd PC, 4th PC are called according to descending order
of eigenvalues. PC scores represent the projection of data on the principal components and hence carry
useful information, which can be used for classification purposes. The code for this study is written
in MATLAB.
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4.3.3. Support Vector Machine (SVM)

SVM is a machine learning technique that utilizuses the structural risk minimization (SRM) scheme
of statistical machine learning and forms an optical separating hyperplane (OSH) which maximizes
the width of the margin between different classes. The OSH minimizes the risk of misclassifying not
only the data points in the training set but also yet-to-be-seen data points of the test set for a fixed but
unknown probability distribution of the data thereby following the SRM principle. The training data
points lying far from the decision boundary receives zero weight while the data points close to the
decision boundary have non-zero weight. Support vectors are the training data samples along the
hyperplanes near the class boundary and the margin is the distance between support vectors and the
class boundary. A classification task involves with training and testing data which consists of some
data instances. At each instance, the training set contains one “target value” (class labels) and several
“attributes” (features). The two-class decision function defined by an SVM classifier is given by

D(x) = sign[ ∑
∨xi∈S

αiλiK(xi, xj) + α0] (3)

where K(xi, xj) is the kernel function of a new data point xj (to be classified) and a set of training
data points xi , S is the set of support vectors (a subset of training set), and λi = ±1 is the label
of training data points xi and αi ≥ 0 are the Lagrange multipliers for OSH. There are three most
commonly used kernel functions, which are the linear kernel K(xi, xj) = xT

i xj, the polynomial kernel
K(xi, xj) = (xT

i xj + 1)d and the Gaussian or RBF kernel K(xi, xj) = exp(− ‖ xi − xj ‖2). Figure 6 displays
the flow chart of the study.

Figure 6. Flow chart of the algorithm used for analysis, PCA: Principal Component Analysis, SVM:
Support Vector Machine.

5. Conclusions

Fluorescence lifetime distinguishes EH and CIN-I tissues and the distinction improves by the
application of PCA. The difference is attributed to the variation in scattering between EH and
CIN-I tissues. Application of PCA enhances the discrimination as the principal components capture
both absorption and scattering effects [29]. Further application of SVM on fluorescence lifetime and
PC scores quantifies the distinction with even better accuracy. Finally, the combined results of both
fluorescence lifetime and PCA significantly improves the sensitivity and hence the diagnostic capability.
The preliminary study suggests that the fluorescence lifetime and PCA combined with RBF kernel
function in SVM has the potential to demarcate abnormal from EH samples and performance of this
method will become more robust with a larger data set.
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