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Abstract: Skin consists of epidermis and dermis layers that have distinct optical properties.
The quantification of skin optical properties is commonly achieved by modeling photon propagation
in tissue using Monte Carlo (MC) simulations and iteratively fitting experimentally measured diffuse
reflectance spectra. In order to speed up the inverse fitting process, time-consuming MC simulations
have been replaced by artificial neural networks to quickly calculate reflectance spectra given tissue
geometric and optical parameters. In this study the skin was modeled to consist of three layers and
different scattering properties of the layers were considered. A new inverse fitting procedure was
proposed to improve the extraction of chromophore-related information in the skin, including the
hemoglobin concentration, oxygen saturation and melanin absorption. The performance of the new
inverse fitting procedure was evaluated on 40 sets of simulated spectra. The results showed that the
fitting procedure without knowing the epidermis thickness extracted chromophore information with
accuracy similar to or better than fitting with known epidermis thickness, which is advantageous for
practical applications due to simpler and more cost-effective instruments. In addition, the melanin
volume fraction multiplied by the thickness of the melanin-containing epidermis layer was estimated
more accurately than the melanin volume fraction itself. This product has the potential to provide
a quantitative indicator of melanin absorption in the skin. In-vivo cuff occlusion experiments were
conducted and skin optical properties extracted from the experiments were comparable to the results
of previously reported in vivo studies. The results of the current study demonstrated the applicability
of the proposed method to quantify the optical properties related to major chromophores in the skin,
as well as scattering coefficients of the dermis. Therefore, it has the potential to be a useful tool for
quantifying skin optical properties in vivo.

Keywords: Diffuse reflectance spectroscopy; artificial neural network; Monte Carlo simulations; skin
optical properties

1. Introduction

Diffuse reflectance spectroscopy (DRS) has been applied to detecting optical properties that are
related to both normal physiological conditions and pathological changes of superficial tissue, such as
the skin and mucosa in various openings of the human body [1–5]. To quantify the optical properties of
tissue, forward and inverse methods are needed to resolve the relationship between measured spectra
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and optical properties in the framework of the radiative transport equation. The most commonly used
modeling methods are diffusion approximation [6] and Monte Carlo (MC) simulations [7]. The former,
under simple and symmetric geometries, provides analytical solutions which are fast and easy to
implement. However, it suffers from larger errors in situations where photons are not sufficiently
scattered. For applications of measuring superficial tissue, diffusion approximation is not a good choice,
since the separation between the light source and detectors is typically shorter than distances required
for diffusion approximation to be accurate. MC simulations, on the other hand, have been regarded as
the gold standard in modeling photon propagation through tissue. However, since MC simulations use
repeated random sampling to describe the random-walk behavior of photons in tissue, tracking large
numbers of photons are needed to obtain stable and usable results, which is very time-consuming.
Although using graphics processing units (GPU) to accelerate MC simulations has been proposed [8]
and widely adopted, it is still time-consuming to iteratively fit experimental data for extracting tissue
optical properties [9].

For modeling the skin which consists of a thin layer of epidermis on top of the dermis, two or
more layered tissue models are more appropriate than semi-infinite homogeneous models [10–21].
To reduce the time for running repeated MC simulations when extracting tissue optical properties,
many studies have proposed to construct empirical relations [10–14], look-up tables [15,16], or artificial
neural networks [18–20,22] to quickly calculate the reflectance at tissue surface given tissue geometric
and optical properties. These forward methods are all established using databases pre-calculated
with MC simulations. Among the previously proposed forward methods, using artificial neural
networks to train the forward model (F-ANN) is particularly attractive because it possesses high
flexibility, accuracy and computational efficiency at the same time. There is no restriction on tissue
optical properties, such as the scattering coefficients of the epidermis and dermis being the same in
some of the empirical models [13–16]. A three-layered F-ANN skin model was reported to provide
accurate reflectance values with about 1000 times reduction in computational time as compared to MC
simulations [20]. It was then applied to extracting optical properties of the skin through iterative curve
fitting of in-vivo spatially-resolved diffuse reflectance spectra. However, the thickness of the epidermis
was measured using in-vivo harmonic generation microscopy (HGM) and assumed to be known in the
curve fitting process. The use of imaging techniques, such as HGM or optical coherence tomography
(OCT) to measure the epidermis thickness is inconvenient or even impractical for applying DRS to
quantifying skin optical properties in clinics.

To continue developing DRS as a practical and widespread tool for in-vivo quantification
of skin optical properties, this study aims to quantify the optical properties of the skin in vivo
without knowing the thickness of the epidermis based on a multi-layered skin model. The accurate
and highly efficient and flexible F-ANN forward model was combined with several inverse fitting
procedures to improve the curve fitting of in vivo DRS data. The performance of estimating tissue
layer thickness, scattering coefficients and chromophore information in multi-layered skin model from
spatially-resolved diffuse reflectance spectra was evaluated using simulated data. Finally, in vivo
cuff occlusion experiments were conducted and the estimation of in vivo skin optical properties was
demonstrated. Results were compared to other in-vivo DRS studies to support the credibility of the
proposed method.

2. Materials and Methods

2.1. Spatially-Resolved Diffuse Reflectance Spectroscopy (SRDRS) System

A schematic diagram of the SRDRS system is shown in Figure 1. The output beam of a broad-band
light source (Bluloop, Ocean Optics) was focused into the proximal end of a multi-mode optical fiber by
a lens and a microscope objective. The distal end of the source fiber was gently placed on the surface
of the skin with a pressure of about 6 kPa. Diffusely reflected light from phantoms or the tissue was
collected by distal ends of three optical fibers located at source-detector separations (SDS) of 0.22, 0.45,
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and 0.73 mm, respectively. All of the fibers had a core diameter of 200 µm and a numerical aperture of
0.26. The light emerging from proximal ends of the detector fibers was focused into the entrance slit
of an imaging spectrograph (Holospec, Andor, USA), dispersed by the spectrograph and recorded
by a CMOS camera (GS3-U3-23S6M-C, PointGrey). The exposure time to capture one set of spectra
was 0.15 s.
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Figure 1. Schematic diagram of the experimental system.

2.2. Tissue Model

The skin consists of two types of tissue, including an upper epithelial tissue layer called epidermis
on top of the connective tissue called dermis. The epidermis is composed of four to five cellular layers
(i.e., stratum corneum, stratum lucidum, stratum granulosum, stratum spinosum, and stratum basale)
with a total thickness of 20–380 µm depending on the location of the skin. The major chromophore in
the epidermis is melanin which resides mostly in lower layers of the epidermis, such as the stratum
granulosum, stratum spinosum and stratum basale. In this study the epidermis was modeled as
two homogeneous layers, including an upper layer without melanin and a lower layer with melanin.
The dermis was modeled as a homogenous semi-infinitely thick layer, since the penetration depth of
photons collected by the experimental system described in Section 2.1 was expected to be within the
dermis only.

The absorption coefficient of the upper amelanotic epidermis layer was set to be the same as that
measured from epithelial cells [23],

µa1(λ) = µepi(λ). (1)

The absorption coefficient of the second layer was assumed to be contributed by both melanin and
epithelial cells and was expressed as

µa2(λ) = fmel × µmel(λ) + (1− fmel) × µepi(λ), (2)

where fmel is the volume fraction of melanin and µmel(λ) was the wavelength-dependent absorption
coefficient of melanin [24]. The absorption coefficient of the third layer was mainly contributed by
collagen, hemoglobin and water, and was expressed as

µa3(λ) = fblood × µhb(λ) + fw × µw(λ) + (1− fw − fhb) × µcol(λ), (3)

where fblood is the volume fraction of blood, fw was the volume fraction of water which was assumed
to be a fixed value of 70% [25], and µhb(λ), µw(λ), µcol(λ) were absorption coefficients of whole blood,
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water [26] and pure collagen [27], respectively. The absorption coefficient spectrum of pure collagen is
showed in Figure 2. The absorption coefficient of the whole blood was calculated as,

µhb(λ) = 2.303×Chemo ×

(
α×

εoxy(λ)

64532
+ (1− α) ×

εdeoxy(λ)

64500

)
, (4)

where Chemo is the hemoglobin concentration of whole blood with a typical assumed value of 150 g/L,
εoxy(λ) and εdeoxy(λ) are molar extinction coefficients of oxy-hemoglobin and deoxy-hemoglobin
respectively [28], and α is the tissue oxygen saturation (StO2). The blood volume fraction is used
throughout this paper for easy comparison with previous studies, but can be converted to the
hemoglobin concentration in tissue simply by 150 × fblood (g/L).

Figure 2. The absorption coefficient spectrum of pure collagen [26].

The scattering coefficients, µsx(λ), of layer x were assumed to follow a two-term inverse power-law
function of the wavelength as [29],

µsx(λ) = µ′sx(λ)/(1− gx) (x = 2, 3), (5)

µ′sx(λ) = 1000×Ax1 × λ
−kx1 + Ax2 × λ

−kx2 (x = 2, 3), (6)

where Ax1, Ax2, kx1, kx2 were parameters to be determined and gx was the anisotropy factor. To simplify
the model the scattering coefficient of the upper epidermal layer was set to be 1.3 ×µs2(λ) according to
a previous study [30]. The Henyey-Greenstein scattering phase function was used for all layers with
gx set to be 0.835, 0.75, and 0.715 for the three layers, respectively [29]. All tissue layers had the same
refractive index of 1.42.

2.3. Pre-Simulated Reflectance Database and forward ANN Models

The forward model of reflectance spectra measured by the SRDRS system was implemented using
publically accessible multi-layered Monte Carlo (MCML) accelerated by a graphics processing unit
(GPU, GeForce GTX 1080, 1080Ti, 1070Ti, 660Ti) [31]. The incident light from the source fiber was
modeled as a Gaussian beam with a size of 0.22 mm at e−2 of its maximum intensity and one billion
photons were launched. To train and test ANN models, a total of 57,695 sets of reflectance were created
using MCML and seven parameters (th1, th2, µa1, µa2, µa3, µs2, µs3) with randomly assigned values
within ranges, shown in Table 1 [25,29,32], where th1 and th2 represent the thickness of the upper and
lower epidermal layer, respectively.
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Table 1. Ranges of parameters used to generate the reflectance database.

thx (µm) µax (cm−1) µsx (cm−1) gx

Upper epidermis (x = 1) 10–60 0.1–5.0 fixed at 1.3 × µs2 0.835
Lower epidermis (x = 2) 10–60 1–350 10–700 0.75

Dermis (x = 3) Inf 0.01–16 10–500 0.715

2.4. Inverse Fitting Procedures

The non-linear iterative curve-fitting function ‘fmincon’ with the interior-point algorithm provided
by MATLAB® (MathWorks, Inc., Natick, MA, USA) was used to extract optical properties from
simulated or measured target reflectance spectra. The objective function to be optimized was the
root-mean-squared percent error between the F-ANN modeled spectra and the target spectra:

rmse =

√√√√√ ∑
SDS

∑
λ (

R(λ,SDS)−Rtarget(λ,SDS)
Rtarget(λ,SDS) )

2

(Number o f SDS) × (Number o f λ)
× 100%, (7)

where Rtarget and R were the targets and F-ANN modeled reflectance spectra, respectively. The inverse
fitting procedure consisted of the following steps:

1. Compare the target spectra to 1000 sets of spectra pre-calculated with MC simulations
using randomly assigned parameters, and calculate the rmse between the target and the
pre-calculated spectra.

2. Choose three pre-calculated spectra with the lowest rmse, and the corresponding parameter sets
were chosen as the initial parameter sets. Repeat step 3 for each of the three initial parameter sets.

3. Do iterative curve fitting of the target spectra according to one of the following procedures

Procedure X: Only fit the target spectra in wavelength ranges 410–440 nm and 530–580 nm where
hemoglobin absorption is prominent.
Procedure Y: Do procedure X, constrain the boundary of fblood and α to be within ±10% of the
results after procedure X, and fit the target spectra in full wavelength range (401–590 nm).
Procedure Z: Only fit the target spectra in the full wavelength range (401–590 nm).

4. Find the lowest reflectance value of each spectrum in the wavelength range of 401–480 nm,
and adjust fblood to make the lowest values of modeled spectra best match those of the target spectra.

5. Adjust α to minimize the rmse between the modeled and the target spectra in the wavelength
range of 520–583 nm.

6. Choose the optimal result as the one with the lowest rmse among the three fitting trials to avoid
local minimum.

To test the influences of not knowing the epidermis thickness on the performance of extracting
optical properties, we compared two fitting scenarios:

Scenario A: Thicknesses of the two epidermal layers, th1 and th2, are unknown,
Scenario B: The sum of th1 and th2 is known.

In summary, there were six combinations of inverse fitting procedures to be tested. Forty sets
of test spectra were generated using MC simulations to compare the performance of the inverse
fitting procedures. Ranges of optical properties were chosen to generate test spectra that resemble
realistic in-vivo spectra measured by the SRDRS system. Since the test data were generated from
simulations, the parameters used to generate the data were known and served as the ground truth for
the performance evaluation.
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2.5. In Vivo Cuff Occlusion Experiments and Calibration of Spectra

To demonstrate the applicability of the F-ANN forward model and inverse fitting procedure on
in-vivo skin optical property estimation, we took in-vivo measurements using the SRDRS system and
conducted cuff occlusion experiments according to previous studies [33–37]. The current study was
approved by the Institutional Review Board at National Taiwan University, and the informed consent
was obtained from each healthy volunteer. After measuring the blood pressure of a volunteer, we used
a mercurial sphygmomanometer to occlude the blood flow in the volunteer’s upper arm and measured
reflectance spectra on the volunteer’s ventral side of the forearm before, during and after applying
the pressure indicated below for arterial and venous occlusion, respectively. Venous occlusion was
achieved by applying pressure that approximately equaled to the average of the systolic and diastolic
blood pressures of the volunteer. Arterial occlusion was achieved by applying pressure about 50 mmHg
higher than the systolic blood pressure of the volunteer to ensure total occlusion of the blood flow [38].

Reflectance spectra measured by the SRDRS system were converted by a previously published
calibration procedure [39] to absolute reflectance values that can be directly compared to MC simulated
reflectance values. We used five homogeneous aqueous phantoms to calibrate in-vivo diffuse reflectance
spectra and remove effects of the non-uniform spectral response of the system and background,
due to the ambient light. The phantoms were made of known concentrations of polystyrene beads
(Polysciences, Inc., Polybead Microspheres) and hemoglobin (Sigma-Aldrich, ferrous stabilized
human hemoglobin). The nominal diameter of the beads was 0.51 ± 0.008 µm and concentrations
were 9.10 × 1010, 5.60 × 1010, 3.64 × 1010, 2.28 × 1010, and 1.21 × 1010 particles/mL, respectively.
The hemoglobin concentration of the first four phantoms was 0.056 mg/mL and that of the last phantom
was 0.1126 mg/mL. Compositions of the phantoms were chosen to give reflectance spectra similar to
those measured from the skin in vivo. Theoretical scattering coefficients of the phantoms were obtained
by Mie theory and absorption coefficients of hemoglobin solutions were measured by UV-visible
absorption spectrometry. Finally, a calibration equation was obtained by performing linear regression
between the measured and the MC-modeled reflectance values of the five phantoms.

3. Results

3.1. ANN Training Results

According to a previous study [20], a larger sample size and lower coefficient of variation
(CV) of MC simulations help decrease errors in training and testing data. Therefore, in the current
study the CV of MC simulations was controlled to be smaller than 2% using about 109 photons per
simulation, which took approximately 20 s. The training of one ANN model needed only about
20 min. When training the F-ANN models, we tried different numbers of neurons in each layer of
2 hidden-layered ANN models. The optimal number of neurons in each layer was 150, which was
judged by the smallest error in the testing data. Learning curves of the training procedure, shown in
Figure 3, indicated excellent convergence of the validation and testing data sets.
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3.2. Inverse Fitting of Simulated SRDRS Data with Various Fitting Procedures

Table 2 summarizes errors in tissue geometric and optical parameters extracted from the 40 sets of
simulated spectra using the six combinations of inverse fitting procedures. When extracting fmel × th2,
µs2
′ and th1 + th2 from simulated target spectra, we found cases where values of extracted parameters

were different among the three fitting trials with different initial parameter sets and the optimal result
could not be decided because the differences in their rmse values were within the variance of MC
simulations. Such multiple-solution situations occurred in 5% of the simulated target spectra when we
attempted to extract fmel × th2, and 25–50% of the targets when extracting µs2

′ and th1 + th2. When we
encountered multiple solutions, we calculated the error in the estimated parameter of each of the
multiple solutions and took the average of the absolute value of these errors to represent the error of
the case.

Table 2. Average absolute value and standard deviation (in parentheses) of errors in extracted tissue
geometric and optical parameters using the six combinations of inverse fitting procedures.

Inverse Procedure fblood StO2 fmel × th2 µs2
′ µs3

′ th1 + th2

YA 5.3% (5.4%) 10.1%
(16.3%)

20.4%
(28.5%)

43.1%
(33.4%) 1.9% (2.1%) 34.8%

(52.4%)

ZA 6.3% (4.5%) 10.1%
(16.5%)

25.3%
(29.7%)

46.2%
(29.0%) 1.6% (1.2%) 35.6%

(47.9%)

YB 6.1% (5.9%) 10.1%
(16.1%)

23.4%
(28.8%)

28.5%
(24.5%) 2.4% (2.2%) −

ZB 7.1% (5.6%) 9.9% (16.0%) 28.4%
(38.7%)

18.3%
(18.1%) 1.9% (1.1%) −

Firstly, we compared the accuracy of estimating the parameters using scenario A (without knowing
the epidermis thickness) and scenario B (epidermis thickness was known). It can be seen that the errors
in fmel × th2 estimated by the inverse fitting procedure YA were significantly lower than those by YB,
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with a p-value of 0.0216. The errors in blood-related parameters of the skin, including fblood and StO2

were both comparable between the two fitting scenarios. The results indicate that it is not necessary to
know the epidermis thickness in order to estimate the parameters related to skin chromophores using
the proposed tissue model and inverse fitting method. Since scenario A is much easier to implement
than scenario B without the need of any additional instrument to measure the epidermis thickness,
we then compared the performance between procedures YA and ZA. Procedure YA showed lower
errors in estimated fblood (p = 0.06) and fmel × th2 (p = 0.004) than procedure ZA. Errors in estimated
StO2 using the two procedures were similar. The inverse fitting results of the skin chromophore
parameters using procedure YA are plotted in Figure 4. If one wishes to get optimal quantification of
hemoglobin concentration and melanin absorption, the inverse fitting procedure YA is recommended.
In the first part of procedure Y, only spectra in hemoglobin absorption bands of 410–440 nm and
530–580 nm are considered. Therefore, the sensitivity to hemoglobin absorption is expected to be
increased compared to procedure Z where the full spectra are fitted without spectral specificity [21].
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from 40 sets of simulated target spectra using fitting condition YA. The red lines indicate when the
extracted and true values are identical.

3.3. In-Vivo Cuff Occlusion Experiment Results

In-vivo reflectance spectra were measured from six healthy subjects undergoing both arterial
occlusion and venous occlusion. All spectra were fitted using the YA inverse procedure according to
the superior performance of procedure YA on simulated spectra. One example of in-vivo spectra and
the best fitting spectra obtained by the inverse fitting procedure is shown in Figure 5. Before applying
any pressure to the upper arm of one of the subjects during the arterial or the venous occlusion
experiment, we acquired 20 baseline in-vivo spectra and extracted tissue parameters using the inverse
procedure YA. The coefficient of variance (CV) of fblood over the 20 baseline measurements was 11%
and 7% and the standard deviation of StO2 was 6% and 4% in the arterial and the venous occlusion
experiment, respectively. The CVs of fmel, th1, th2, epidermis thickness (th1 + th2) and fmel × th2 were
all below 5%, indicating a high level of stability of both baseline measurements and the inverse fitting
procedure. Moreover, the extracted th1 + th2 were 60.3 ± 1.3 µm and 60.5 ± 0.9 µm in the arterial and
venous occlusion experiments, respectively. These numbers are close to the epidermis thickness of
62.9 µm measured by a custom-built optical coherence tomography system. Since the thickness of the
epidermis layer and the melanin density were highly stable in baseline measurements and not expected
to change during the occlusions, we calculated the average values of fmel, th1 and th2 extracted from
the baseline measurements and used them in the YA inverse procedure to estimate fblood and StO2

values during and after the occlusion periods.
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Figure 5. Example of fitted spectra and target in-vivo spectra measured from detection fibers located at
SDS equal to (a) 0.22 mm, (b) 0.45 mm, and (c) 0.73 mm.

Example results of extracted fblood and StO2 in the arterial occlusion and the venous occlusion
experiment are shown in Figures 6 and 7, respectively. Although there are some fluctuations in the
curves of fblood and StO2 which are likely caused by motion artifacts, fblood and StO2 during the
occlusions apparently deviated from the baseline and the deviations were much larger than standard
deviations during the baselines. The decreases in StO2 during both occlusions are similar to results
reported in previous studies [33,37–40], and are expected because tissue consumes oxygen and no
oxygenated blood is supplied under the occlusions. We observed that fblood decreased slightly during
both arterial and venous occlusions, which are not in agreement with trends often reported [33,35–37,40].
This discrepancy might be partly, due to the short SDS used in the current SRDRS system that is more
sensitive to the micro-circulation in the superficial dermis. After the cuff pressure was released both
fblood and StO2 returned to baseline values. The results seem to follow reasonably well the expected
physiological responses of blood vessel occlusion.
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Figure 7. Extracted fblood and StO2 during the venous occlusion experiment.

The geometric and optical parameters estimated from in-vivo SRDRS measurements on the inner
forearm of the six healthy Asian volunteers with Fitzpatrick skin type are summarized in Table 3 and
Figure 8. Values of fblood, StO2, and epidermis thickness (th1 + th2) were all within known ranges of
healthy skin. A comparison to selected previous in-vivo studies [18–20,41,42] is summarized in Table 4.
Our results seem to be reasonably close to the results of previous studies [18–20,41,42].

Table 3. Extracted geometric and optical parameters of the in-vivo inner forearm of five
healthy volunteers.

Ender Age fblood StO2 fmel × th2 (µm) th1 (µm) th2 (µm)

subject 1 Male 23 0.129% 99% 0.804 27.1 48.1
subject 2 Male 23 0.217% 62% 1.630 17.9 46.5
subject 3 Male 23 0.284% 54% 1.059 35.8 45.3
subject 4 Female 23 0.244% 37% 0.223 39.0 18.9
subject 5 Male 23 0.140% 99% 3.846 10.4 36.9
subject 6 Male 45 0.155% 40% 1.360 12.5 47.8
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Figure 8. Extracted (a) µs2
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Table 4. The comparison of optical parameters estimated from this study to those from in-vivo studies
reported in the literature.

Reference fblood StO2 fmel µs2
′ µs3

′

[18] 0.78–2.06% 34–64% 4.8–24% - -
[19] 0.23–0.35% 51.6–60.3% 11–16% - -
[20] 0.14–0.27% 84–100% 7.6–17.2% 12.5–200 cm−1 5.7–57 cm−1

[43] - - - 10–40 cm−1 10–40 cm−1

[44] 1.742 47% - - -
This study 0.09–0.28% 37–99% 1.3–10% 5–180 cm−1 26–36 cm−1

3.4. Comparison of Inverse Fitting Using One Term or Two Terms in the Inverse Power Law Function of µs
′(λ)

The reduced scattering coefficients µs
′(λ) are typically modeled to be an inverse power law

function of wavelength. In this study a two-term inverse power law function, as shown in Equation (6),
was proposed to model µs

′(λ). We used the baseline spectra from in-vivo cuff-occlusion experiments to
evaluate fitting results between using one term and two terms of the inverse power law function for
modelingµs

′(λ). The same 40 sets baseline spectra used to generate the results shown in Figures 5–7 were
used here. The rmse between measured and modeled spectra are 10.28% ± 0.82% and 10.37% ± 0.74%,
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respectively, for the one-term and two-term inverse power law functions of µs
′(λ). The differences in

extracted th1, th2, fmel, fmel × th2 and th1 + th2 between the two µs
′(λ) models were all smaller than 6%,

and differences in extracted fblood and StO2 were below 15%. The results showed that all parameters
extracted using two terms of the inverse power law function were similar to those extracted using one
term of the inverse power law function.

4. Discussion and Conclusions

The errors in the thickness and scattering coefficient of the epidermal layers are relatively high.
This can be understood by the facts that the epidermal layer is very thin (less than 100 µm in thickness)
and its scattering is highly forward (g is 0.75 or above). As a result, photons pass through the epidermis
without many scattering events and the sensitivity of the SRDRS system to epidermal optical properties
and thickness is relatively low. Without special design of the optical probe, such as an oblique
orientation [43] or a focusing mechanism [44], the errors in estimated thickness and µs of the epidermis
are significantly larger than those in estimated µa and µs of the dermis.

The results of inverse fitting on simulated spectra (Table 2) showed that errors in extracted
chromophore information (fblood, StO2, and fmel × th2) by fitting procedure YA (without knowing
the epidermis thickness) were no worse than those by fitting procedure YB (knowing the epidermis
thickness). Knowing the total thickness of the epidermis did help the extraction of µs’ of the epidermis
layers. However, the results showed that knowing the total thickness of the epidermis did not help
the extraction of the chromophore information. In DRS it is generally known that the scattering
coefficient mainly influences the overall reflectance intensity, while the shape of a reflectance spectrum
is mainly determined by the absorption coefficient spectrum. It is speculated that in fitting procedure
YA (not knowing the epidermis thickness) the effect of any error in the epidermis thickness could be
countered by errors in µs’ of the epidermis, and that their collective effects are on the overall reflectance
intensity, but not on the spectral shape. Therefore, not knowing the epidermis thickness would not
adversely affect the estimation of the chromophore information.

It is interesting that despite the relatively low sensitivity to the superficial epidermis as discussed
above, the quantification of the melanin content can be achieved with an average error of less than
21% using procedure YA. The trick lies in the fact that the melanin content is expressed as melanin
volume fraction multiplied by the thickness of the lower epidermis which is the only layer assumed
to contain melanin. The melanin volume fraction is proportional to the melanin concentration and
approximately proportional to µa of the lower epidermis layer. The product of µa and the thickness of
the layer would be similar to optical density which is commonly used to quantify the attenuation of
light passing through a clear sample. To support the idea of using fmel × th2 as a surrogate to assess
the melanin absorption in the skin, we plotted fmel × th2 against in-vivo reflectance values measured
from SDS = 0.22 mm and λ = 500 nm, where the total absorption, due to the blood, is relatively small.
As shown in Figure 9, fmel × th2 is negatively correlated to the reflectance values with a high coefficient
of correlation r = 0.91 A similar concept has been proposed in a previous study [19] where the optical
thickness instead of the physical thickness of the epidermis was estimated. The result suggests that
the quantity fmel × th2 estimated by the proposed inverse method and SRDRS system is suitable to
estimate the amount of light absorbed by melanin. Its performance to quantify the skin color in vivo
needs to be evaluated by further studies.
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Figure 9. Log of reflectance of SDS 0.22 mm on 500 nm vs. fmel × th2.

This study aimed to use spatially-resolved diffuse reflectance spectroscopy to quantify geometric
and optical properties of the skin in vivo. An inverse fitting method based on F-ANN trained with
MC simulations was proposed and its performance was evaluated on simulated spectra. The results
of comparing the inverse fitting without knowing the epidermis thickness and that with known
epidermis thickness showed the former achieved similar or better accuracy in extracted chromophore
information (fblood, StO2, and fmel × th2). This provides a huge improvement over a previous study [20],
since SRDRS can be used alone without the need to know the epidermis thickness. The absorption due
to melanin in the skin was quantified by the product of melanin volume fraction and the thickness
of the epidermis layer containing melanin (fmel × th2) instead of using the melanin volume fraction
directly, because the former is better suited to represent the total amount of melanin per unit area of
skin. The results of in-vivo measurements on six healthy volunteers showed high stability in extracted
optical properties whose values were similar to those reported in previous studies. In addition,
arterial and venous occlusion experiments on one healthy volunteer showed trends in changes of StO2

consistent with physiological expectations. These results support the applicability of the proposed
inverse model and SRDRS system to quantify in vivo optical properties related to major chromophores
in the skin. Further in vivo studies on more subjects are needed to improve, fully characterize the
proposed SRDRS system and inverse methodology, and ultimately to establish a practical tool for
quantifying hemoglobin and melanin absorption in the skin in vivo.
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