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Abstract: Aging is accompanied by widespread changes in brain tissue. Here, we hypothesized
that head tissue opacity to near-infrared light provides information about the health status of the
brain’s cortical mantle. In diffusive media such as the head, opacity is quantified through the Effective
Attenuation Coefficient (EAC), which is proportional to the geometric mean of the absorption
and reduced scattering coefficients. EAC is estimated by the slope of the relationship between
source–detector distance and the logarithm of the amount of light reaching the detector (optical
density). We obtained EAC maps across the head in 47 adults (age range 18–75 years), using a
high-density dual-wavelength optical system. We correlated regional and global EAC measures with
demographic, neuropsychological, structural and functional brain data. Results indicated that EAC
values averaged across wavelengths were strongly associated with age-related changes in cortical
thickness, as well as functional and neuropsychological measures. This is likely because the EAC
largely depends on the thickness of the sub-arachnoid cerebrospinal fluid layer, which increases with
cortical atrophy. In addition, differences in EAC values between wavelengths were correlated with
tissue oxygenation and cardiorespiratory fitness, indicating that information about cortical health can
be derived non-invasively by quantifying the EAC.

Keywords: diffuse optical imaging (DOI); effective attenuation coefficient (EAC); aging; cortical
thinning; FreeSurfer

1. Introduction

It is commonly accepted that, even in the absence of mild-cognitive impairment or Alzheimer’s
Disease, aging is often associated with some degree of cortical atrophy, as manifested by cortical
thinning [1–4], and that this atrophy can be accompanied by decrements in brain and cognitive
function [5–8]. Measures of cortical thinning are typically obtained with structural magnetic resonance
imaging (sMRI), which provides detailed images of the cortical layers that can be analyzed using
semi-automated software (e.g., FreeSurfer© [9]). However, sMRI is an expensive tool to be used for
screening normally aging adults, precluding its routine applicability in small clinics or for ambulatory use.
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Diffuse optical imaging (DOI) was introduced a few decades ago as an alternative brain imaging
modality, for its potential portability and relatively low cost. Initially, DOI was proposed as a tool for
studying functional changes associated with variations in oxy- and deoxy-hemoglobin concentration
(functional near-infrared spectroscopy, fNIRS) [10,11] and/or in neural activity (fast optical signal and
event-related optical signal, EROS [12]). Although promising, these measures have remained less
popular than measures based on functional magnetic-resonance imaging (fMRI) or electrophysiology
(electroencephalography, EEG and event related brain potentials, ERPs). In part, this is because of the
relatively low signal-to-noise ratio (SNR) of the approach.

We recently introduced another DOI-based measure, pulse-DOT [13], which, through a diffuse
optical tomographic (DOT) approach, provides information about cerebrovascular status by estimating
parameters of the pulse wave propagating through the brain’s arteries. Arterial stiffening (i.e.,
arteriosclerosis) has a profound influence on the health of cortical tissue. In fact, pulse-DOT estimates
have been shown to be associated with aging, cardiorespiratory fitness, cerebrovascular reactivity and
cognitive performance in adults [13–15], as well as with brain hemorrhaging in preterm infants [16].

Both fNIRS and pulse-DOT, which estimate the relative changes in the hemodynamic signal that
occur with brain activation (fNIRS) and the cardiac cycle (pulse-DOT), can be obtained by measuring
light attenuation with simple and cheap continuous-wave (CW) instruments. However, measures
taken with CW instruments cannot provide separate quantitative estimates of the absolute optical
properties of tissue (scattering and absorption). Absolute measures of these properties typically require
time–domain (TD) or frequency–domain (FD) instruments, to estimate photon pathlengths within the
tissue and to uncouple absorption from scattering [17,18].

TD- and FD-based measures are technically complex and expensive, making absolute DOI a niche
technology. However, absolute measures could in principle be very useful for assessing brain health,
because NIR light is sensitive to the structural properties (head layers) and oxygenation levels of brain
tissue. Recently, we have shown that CW recordings can in fact be used to derive an important baseline
optical quantity, the effective attenuation coefficient (EAC) [19], which is proportional to the geometric
mean of the absorption and reduced scattering coefficients [20]. Although EAC estimates do not uncouple
absorption from scattering, they provide a summary measure of these two important optical parameters.
The EAC can be estimated by measuring light decay as a function of source–detector distance [20]. At a
sufficient distance from a source (~10 mm), light behaves as a purely diffusive field, decaying in an
exponential manner and at an approximately constant rate. This means that the logarithm of light
intensity, technically defined as Optical Density (OD), decays linearly with distance. The associated
slope of light decay with distance is the EAC. Thus, the EAC provides information about how “opaque”
to NIR light a diffusive medium is, with the EAC being generated by the interaction between structure
inhomogeneity at the microscopic level (leading to optical diffusion, or light scattering) and tissue
chromophore concentration (leading to light absorption). Note that the EAC may vary as a function of
light wavelength, which reflects both the diffusion and absorption properties of tissue.

Using both simulations and physical phantom models, our group demonstrated that the
CW-approach for estimating the EAC is accurate, if high-density optical arrays with many overlapping
optical channels are employed. Importantly, we also showed that the EAC can be measured over most
of the scalp (when using a large field-of-view optical recording montage), and that low-resolution
maps of the EAC can be obtained for different areas of the head. These maps can reveal the presence
(and, to some extent, the location and shape) of large inhomogeneities within the explored volume,
as well as basic optical properties of various regions of the head [20].

In this paper we hypothesized that the EAC measured with this approach could provide
information about several different parameters related to brain health. First, we hypothesized that
the EAC could provide information about cortical atrophy. OD measures can be used to estimate the
(weighted) average EAC of superficial (i.e., within the first 20–30 mm from the scalp) layers of the
head and brain. Of particular importance is the fact that the EAC is relatively similar for most head
tissues investigated by DOI, with the exception of (a) the cerebrospinal fluid (CSF) contained in the
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sub-arachnoid space (which is largely clear, with very low absorption and scattering, and therefore low
EAC); and (b) large blood vessels (veins and arteries) running on the surface of the brain (which have
very high absorption because of their high hemoglobin concentration). Note, however, that whereas
the CSF forms a continuous layer covering the entire brain, the large blood vessels are highly localized.
Thus, the thickness of the CSF layer has a large effect on the average EAC measured across the whole
head, while the effects of large blood vessels are only visible at specific locations. As a consequence,
we would expect the average EAC to be particularly large when the CSF layer is thin, and particularly
small when the CSF layer is thick. In humans, the thickness of the CSF layer is a strong indicator
of cortical (and, more generally, brain) atrophy: as brain tissue shrinks with aging or disease, it is
replaced by CSF. Therefore, the more atrophic the brain, the thicker the CSF layer, and, consequently,
the lower the brain’s average EAC. Thus, the EAC should be strongly correlated with measures of
cortical atrophy (e.g., cortical thinning measured with sMRI). That being the case, we could in principle
infer the level of brain atrophy from the EAC recorded across the head (at least in relative terms).

To test this hypothesis, we used a high-density optical montage to derive maps of EAC across
the whole scalp in a sample of healthy participants (N = 48) varying in age between 18 and 75 years.
The sample was selected to have an equal number of participants and an equal number of males and
females for each decade of age (four in each group), allowing us to study how the EAC varies as a
function of age and sex. We also obtained, in the same sample, T1w MR images for each participant,
from which several structural brain parameters were derived using FreeSurfer© [9], including cortical
thickness, cortical volume, and white matter signal abnormalities (WMSA).

Cortical atrophy in aging is known to be associated with cognitive decline [21–23]. As such,
a corollary of the hypothesis that the EAC could provide an estimate of cortical atrophy, is that
variations in EAC should also be correlated with variations in cognitive function. Cognitive function
was therefore evaluated in the same sample with a battery of neuropsychological tests, focusing on
working memory, executive function, and fluid intelligence (functions known to be affected by age
and/or structural integrity) [2,24,25].

A second feature of the EAC, which may be useful for characterizing brain health, is its wavelength
dependency (i.e., spectral features). In fact, within the NIR range, small changes in light wavelength
generally cause small changes in light scattering, but large changes in absorption due to the strong
sensitivity of NIR light to the hemoglobin species. This feature can be exploited to estimate tissue
oxygen saturation from multi-wavelength EAC estimates [26]. Brain tissue oxygenation is expected to
correlate with other age-related parameters linked to health, such as cardiorespiratory fitness (CRF;
estimated using the Jurca et al.’s approach) [27], heart rate variability (HRV), and cerebrovascular status
(estimated using pulse-DOT) [14]. Therefore, in the same sample, we also evaluated the association
between the EAC and these parameters.

2. Materials and Methods

2.1. Participants

Forty-eight healthy adults (25 females) between the ages of 18 and 78 years were recruited into
the study. Participants were stratified in order to obtain a uniform age and sex distribution (i.e.,
approximately 4 men and 4 women for each decade of age). All but one of the participants were
Caucasians, which is a limitation of the study. Although not tracked, hair colors and densities were
heterogeneous. Data from all participants are included, regardless of differences in skin tone or hair
color and density. All participants were right-handed (as assessed by the Edinburgh Handedness
Inventory) [28], reported no history of neurological or psychiatric disorders, and had no signs of
dementia (as assessed by the modified Mini-Mental Status examination) [29] or depression (as assessed
by the Beck’s Depression Inventory) [30]. The study was approved by the Institutional Review Board
of the University of Illinois, and participants signed informed consent. Please note that the participants



Photonics 2019, 6, 79 4 of 25

in this study are from the same sample included in [14,15], but that none of the analyses involving the
EAC presented in this paper have been published before.

2.1.1. Estimation of Cardiorespiratory Fitness

CRF estimates were obtained for each participant using the regression model proposed by Jurca
and colleagues and others [27,31,32]. This model is based on weighted data that include gender, age,
body mass index (BMI), resting heart rate, and a physical activity score. The CRF score is expressed in
metabolic equivalents (METs), which are defined as the amount of oxygen consumed while sitting at
rest [33].

2.1.2. Neuropsychological Testing

The following neuropsychological tests were administered to all participants: Forward and
Backward digit span, to measure working memory [24]; the Trail Making Tests A and B [34],
to measure processing speed and working memory; the Controlled Oral Word Association sub-test
of the Multilingual Aphasia Examination (a measure of verbal fluency using the letters CFL [35];
the Operation-Span task [36] to assess working memory capacity under load; Raven’s progressive
matrices [37] and the Kaufmann Brief Intelligence Test Second Edition (K-BIT2) [38] to assess, respectively,
cognitive flexibility and IQ; the vocabulary sub-test of the Shipley-Institute of Living Scale [39].

Note that several of these neuropsychological measures are highly correlated to each other, and
therefore, in part, redundant. For this reason, and to reduce the number of comparisons, we created
composite scores from individual tests to assess participants’ performance in specific cognitive domains,
using an approach similar to Chan and colleagues [40]. Specifically, the neuropsychological tests
were sorted into two different domains, which we labeled “performance” and “verbal”, respectively.
The “performance” domain included the following scales: Raven’s matrices, forward and backward
digit span, O-Span, trail A, trail B, and trail B-A. The verbal domain included Shipley’s vocabulary and
verbal fluency. For each scale, the individual scores obtained by each participant were standardized,
and, when needed, changed so that positive values always indicated a “better-than-average” score and
negative values indicated a “worse-than-average” score. Then, for each participant the standardized
values for the tests in each domain were averaged together (effectively giving each of them equal
weight). These yielded two scores for each individual, a “performance” score and a “verbal” score.
These scores should be interpreted as “summary” scores describing the major cognitive abilities of
different individuals.

2.2. Collection and Processing of sMRI Data

Structural MRI data were collected for each participant using a 3T Siemens Trio full body scanner.
A high resolution, 3D MPRAGE protocol was used, with a flip angle = 9◦, TE = 2.32 ms, TR = 1900 ms,
and inversion time = 900 ms. Slices were obtained in the sagittal plane (192 slices, 0.9 mm slice
thickness, voxel size 0.9 × 0.9 × 0.9 mm) having matrix dimensions of 192 × 256 × 256 (in-plane
interpolated at acquisition to 192 × 512 × 512) and field of view of 172.8 × 230 × 230 mm.

FreeSurfer© 5.3 [9,41–45] was used to extract cortical information for each participant. All output
data from FreeSurfer© were visually inspected by two trained reviewers, and errors were
corrected according to standard methods recommended by the Martinos Center for Biomedical
Imaging (for additional information, see https://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/
TroubleshootingData). Average cortical volume and thickness were computed for each individual.
To account for differences in head size, cortical metrics were normalized by the estimated intracranial
volume provided by FreeSurfer© 5.3 using the method first described by Jack and colleagues [46].
Figure 1a shows an example of regional cortical segmentation performed by Freesurfer© 5.3, with
color-coding identifying different regions. Average cortical thickness and volume estimates were
provided by averaging the 50 superficial cortical regions that were sufficiently close to the scalp to be
relevant for optical recordings [14].

https://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/TroubleshootingData
https://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/TroubleshootingData
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FreeSurfer© can also be used to quantify WMSA (i.e., small areas of demyelination that appear as
hyperintensities in T2w MR images, and as hypointensities in T1w MR images [47,48]). WMSA are
considered to be a sign of cerebral small vessel disease, a degenerative condition typically associated
with cognitive decline, and may be a precursor of vascular and other forms of dementia [49]. In the
current study, the estimates of WMSA based on T1w images were normalized by the subjects’
intracranial volumes before further analysis.

2.3. Optical Data Collection

Optical data were acquired with a multi-channel frequency–domain oximeter (ISS ImagentTM,
Champaign, IL, USA) equipped with 128 laser diodes (64 emitting light at 690 nm and 64 at 830 nm)
and 24 photo-multiplier tubes (PMTs). NIR light was carried from the laser diodes to the scalp using
single optic source fibers (0.4 mm core) and from the scalp back to the PMTs using detector fiber
bundles (3 mm diameter). The fibers were held in place using custom-built soft helmets, the sizes of
which differed as a function of head circumference. Time-division multiplexing was employed so that
each detector picked up light from 16 different sources at different times within a multiplexing cycle.
The sampling rate was 39.0625 Hz. Although the instrument also recorded phase-delay data, only
intensity data were used in the current study, de facto using it as CW technology.

Source and detector locations (defined as the points of contact of the fibers with the head) were
digitized with a Polhemus FastTrak 3D digitizer (Colchester, VT, USA; accuracy: 0.8 mm) using a
recording stylus and three head-mounted receivers, which allowed for small movements of the head in
between measurements [50]. During recording, participants performed a resting-state paradigm [51].
Two 6-min blocks were recorded for each of four consecutive periods in which different optical
recording montages were used, for a total recording session of approximately 3 h (including the time
required for setting up new optical montages). The helmet was never removed across the whole optical
recording session.

A total of 384 channels (192 at 830 nm and 192 at 690 nm) were acquired for each montage, with
source–detector distances varying between 15 mm and 80 mm for a total of 1536 channels (768 per
wavelength) covering most of the scalp surface. Variability in source–detector distances is critical for
measuring the EAC. Figure 1b shows source and detector locations, rendered onto the structural MR
image of a representative participant.
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Figure 1. (a) Example of the regional cortical segmentation obtained with Freesurfer© 5.3 on the sMRI
of the same participant. Different regions are color-coded; (b) High-density, large field-of-view, optical
montage used for recordings, rendered onto the sMRI of a representative participant; (c) Left-hand
side of Equation 1 (a value related to the log transform of light intensity) displayed for each channel
as a function of source–detector distance for a representative subject. Only channels with acceptable
(20–50 mm) source–detector distances for the 830 nm wavelength are shown; (d) Distribution of the
residuals of the linear fit between inter-optode distance and the left-hand side of Equation (1).
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2.4. EAC Computation

EAC values were computed employing the algorithm reported by Chiarelli et al. [20], where this
procedure was described in detail. Here we only report information essential for understanding the
current study. The algorithm estimates the EAC based on the slope of the log SNR of the recorded
signal as a function of source–detector distance. In fact, using the simplifying assumption that the head
can be approximated by a semi-infinite, homogenous medium with zero boundary conditions [19], the
continuous-wave SNR recorded at a distance r from a source SNR(r) is linked to the EAC (µeff) through
the following formula:

ln(SNR(r)2r2) = k− rµeff (1)

where k is a factor that depends on µeff but does not depend on distance and is affected by source
power, detector efficiency, and fiber coupling, and µeff is the EAC defined as:

µeff =
√

3µa(µa + µs′) ≈
√

3µaµs′ (2)

if we assume that µa � µ′s (as it normally is in head tissue in the NIR range). Equation (1) is
valid assuming:

Ilight ∝ SNR2 (3)

where Ilight is the amount of light reaching the detector. Equation (3) holds if noise is mainly due to
quantum/shot noise (which is true if the amount of light detected is not extremely low and the SNR is
computed using frequencies much higher than the physiological signal spectral range, >10 Hz) [20].

The SNR of the signal is defined as:

SNR2 =
1

var( i(t)
iavg

)
(4)

where var is the variance operator, i(t) is the electrical signal recorded by the photodetector in the
spectral range of interest and iavg is the average electrical signal.

The SNR was estimated over time within the recording period. The optical CW intensity data
(i.e., the average measures of the amount of light produced by a specific source and reaching a specific
detector during a multiplexing interval) were normalized (by dividing them by the mean intensity
across a block), movement corrected [52], and high-pass filtered above 10 Hz (Butterworth digital filter)
to eliminate the effects of cerebrovascular phenomena (such as vasodilation or vasoconstriction) on
OD variance. The approach computes the EAC for each channel (source–detector pair) using subsets
of channels near (neighbors) to the channel being estimated (within the neighborhood radius distance)
in a multi-distance configuration. The neighborhood radius is a free parameter of the algorithm
and affects both image resolution and EAC accuracy in a trade-off fashion. For the present study,
a neighborhood radius of 30 mm was employed for each wavelength, which ensured, for each subject,
an average of 19 channels (SD = 2) to be employed for each channel’s EAC computation. Based
on Monte Carlo simulations and phantom studies, the number of channels employed here should
provide an error in EAC estimate of less than a few percent points [20], being able to dampen the
noise introduced by heterogeneous optodes power, sensitivity and/or coupling with the scalp. In order
to obtain reliable EAC estimates, for most analyses (unless otherwise specified) only channels with
inter-optode distances between 20 and 50 mm were employed (where a linear log SNR decay with
distance was clear for all the subjects, satisfying Equation (1)). Short source–detector distances were
excluded in order to respect the assumption of linearity in log light intensity drop with distance (this
assumption does not hold for source–detector distances below 20 mm and for a large range of optical
properties, even in homogeneous media). Long source–detector distances were excluded because
of the loss of linearity in log SNR decrease with distance (SNR becomes flat). The effect of loss in
linearity at long source–detector distances is a strong and clear phenomenon that is clearly visible in the
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data [20]. Therefore, the same source–detector distance range was used for all individuals. On average,
we used 742 channels (SD = 64) (371 channels per wavelength, SD = 32) per subject for a percentage of
employed channels with respect to the total channels acquired (1536) of 48%.

Figure 1c shows the log SNR of each channel as a function of source–detector distance for one
representative subject, together with the distribution of the residuals of the linear fit (Figure 1d).
Only channels within the 20–50 mm distance range and using light at 830 nm are displayed.
The clear Gaussian distribution of the residuals corroborates the linearity assumption for this range of
source–detector distances.

In order to create average maps of the EAC and to compare maps across participants, each
channel’s midpoint was warped into a circular 2-dimensional template commonly employed for
depicting topographic information from electroencephalographic data [53] and EAC maps were
estimated in this 2-dimensional template space through interpolation. This procedure accounted for
inter-subject variability in head size and allowed for visualization of the average EAC maps. Note that
this approach, which relies on a flattening projection of a 3-dimensional space, slightly distorts ventral
compared to dorsal locations.

2.5. Examination of the EAC as a Function of Source–Detector Distance

When computing the average EAC estimates across the entire head, a large neighborhood radius
(>>head radius) was used in order to include all acceptable channels (on average 371 channels per
subject, SD = 32, for each wavelength). As mentioned in the introduction, if overall age differences
in EAC were found, it is important to determine which brain layer is especially responsible, which
requires depth estimations. The average EAC estimates described above are based on a broad range
of source–detector distances, and therefore are unable to provide this level of detailed information.
Therefore, we also computed separate EAC estimates for several ranges of source–detector distances
(4 groups, 10 mm intervals; 15–25 mm, 25–35 mm, 35–45 mm, 45–55 mm). These data provide
an indirect, approximate indication of the depth (which is monotonically related to the average
source–detector distance used for the analysis, with depth values typically somewhat smaller than half
of the source–detector distance [54]) at which the major changes in EAC occurred across subjects.

2.6. Computation of the Tissue Oxygenation Index

We were also interested in the ability of EAC estimates to provide information about an individual’s
brain tissue oxygenation, a parameter of significant clinical importance. The average Tissue Oxygenation
Index (TOI), which is equivalent to tissue oxygen saturation, was computed using the EACs at the
two wavelengths with an algorithm reported by Suzuki and colleagues [26]. Tissue oxygenation level
can be assessed with the TOI when spectral information regarding the EACs is available and spectral
dependence of the reduced scattering coefficient is assumed. In general, the TOI is a function of the
ratio of the EACs measured at the two wavelengths.

2.7. Computation of the Cerebral Arterial Pulse Relaxation Function Obtained with Pulse-DOT

The pulse relaxation function (PReFx) [13–15] is a measure of the shape of the pulse during the
interval between a peak systole and a peak diastole. It describes the way in which arteries return to
their original size after dilating to accommodate the blood bolus generated by a heart pulsation. To the
extent that this curve is decelerated, the artery can be considered to be elastic; acceleration of this
function is a sign of arterial stiffness [55].

Average pulses, locked to the peak of the electrocardiogram (EKG) R-wave, were computed for
each recording channel. Channels at 830 nm were used for tomographic reconstruction of the pulse
because of their higher SNR compared to those at 690 nm. In order to generate a 3D reconstruction of
the pulse waveform across the head, a model of light propagation (forward model) and an inverse
procedure are required. The Finite Element Method (FEM) applied to the diffusion equation [56,57]
was used to estimate the forward model. The FEM software NIRFAST [51,58] was used to model light
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propagation through heterogeneous head models and to compute Jacobian (sensitivity) matrices of
light intensity reflecting absorption changes. An inverse procedure [59] was used to convert intensity
changes on individual channels to absorption changes in voxel space. PReFx was computed as the
normalized area (based on duration and amplitude), under the pulse during the systole-diastole
interval, after subtracting a triangle describing a “linear” relaxation. PReFx was estimated for each
voxel for which the light sensitivity (measured by the average Jacobian) was greater than 1/1000 (60 dB)
of the maximum value. This allowed us to disregard voxels that were too deep to provide useful
data (i.e., >30 mm from the scalp) as well as voxels that were not covered by the optical montage.
In addition, only voxels within the cortex (as identified by FreeSurfer©) were considered. The average
PreFx was computed by integrating PReFx values from all voxels within the cortex. For additional
information about the computation of PReFx using a DOT approach, please refer to [14].

2.8. Heart Rate and Heart Rate Variability

Participants’ heart rate and HRV were estimated from the optical data. Pulse signals were averaged
across all acceptable channels to obtain a single pulsating signal for the recording period. The duration
of each inter-beat interval was calculated as the time lag between two consecutive diastolic peaks.
This allowed us to compute the mean and standard deviation of the inter-beat intervals for each
participant. The inverse of the mean value was used to compute heart rate (HR, translated into beats
per minute). The second value was used as an estimate of HRV (in ms).

2.9. Post-Processing and Statistical Analyses

Three series of analyses were performed on these data. The first series was aimed at investigating
the topographic properties of the EAC and their reliability across the 48 subjects. Establishing such
characteristics is essential for using the EAC to assess individual differences in parameters related to
brain health. The EAC maps of each subject at each wavelength, warped to the circular bi-dimensional
(i.e., flat) representation described earlier, were averaged across subjects, and means and standard
errors across subjects were estimated for each pixel. Similarities between the EAC maps at the two
wavelengths were estimated through correlation analysis.

The second series of analyses focused on a cross-sectional investigation of the associations between
the average EAC, age, and other indices of brain status. Specifically, correlations were computed
between the overall EAC obtained at each wavelength for each subject (computed using all acceptable
channels) and age, cortical volume and thickness and tissue oxygenation (TOI). Because of the strong
age effect on all these variables, correlations after partialing out the effect of age were also evaluated.
A Principal Component Analysis (PCA) [60] was also performed to assess the main dimensions
underlying the relationship between the EAC values computed using the light of different wavelengths.

The third series of analyses focused on mediation, aimed at elucidating the extent to which
health-related brain parameters (namely, cortical thickness and tissue oxygen saturation) mediate the
relationship between age and the first and second EAC principal components, respectively. The Baron
and Kenny’s approach [61] was used to perform the mediation analyses. This approach involves three
steps. The first two are aimed at demonstrating the presence of a significant relationship between the
independent variable (e.g., age) and the dependent variable (e.g., EAC component 1 and 2), as well
as between the independent variable (e.g., age) and the proposed mediator (e.g., cortical thickness
and tissue oxygen saturation). If these relationships are not significant, it is not possible to talk about
mediation. The final step involves regressing the dependent variable on both the independent variable
and the mediator through multiple regression. After this step, the unique effect of the independent
variable when the mediator is included as a predictor is compared to the simple effect of the independent
variable alone. If including both the mediator and independent variable into the regression equation
eliminates the dependent variable’s association with the independent variable, then the remaining
significant variable is said to fully mediate the effects of the other on the dependent variable; if instead
the dependent variable’s association with the independent variable is significantly reduced but still



Photonics 2019, 6, 79 9 of 25

present, the mediator is said to partially mediate the association; finally if the reduction in correlation
is not significant (or the correlation even increases), no mediation is considered to be found. A Sobel
test was conducted to assess the statistical significance of the mediations [61].

3. Results

The Section 3 is divided into two parts. The first part provides basic statistics and reliability
information about the EAC data. It also includes a series of analyses aimed at demonstrating that
the EAC value (averaged across locations) provides information related to (a) the average thickness
of the CSF-layer (subarachnoid space) in a given individual (when the EAC values computed using
light at 690 and 830 nm wavelengths are averaged together), and (b) the average oxygenation of brain
tissue (when the difference or ratio between the EAC values computed using light at 690 and 830 nm
wavelengths is considered). These two pieces of information are reflected, respectively, by the first and
second eigen-solutions (or principal components) of the space identified by the two EAC measures.

The second part is aimed at demonstrating that the first EAC eigen-solution (EAC1) is in fact
strongly associated with cortical thickness (and therefore also with cognitive performance), whereas
the second EAC eigen-solution (EAC2) is associated with cardiorespiratory fitness, providing indirect
validation for its interpretation as a measure of tissue oxygenation and health.

We did run multiple tests of the null hypotheses, and did not correct for multiple comparisons for
the following reasons: (a) most of these tests were significant at p < 0.001—which would be reflected in
significant results if we had applied a Bonferroni approach (the most conservative method available
for such corrections) across all correlations computed; (b) in several cases, it is difficult to determine
how independent the different tests of the null hypotheses are, since there is a possibility of correlated
error (making the Bonferroni approach needlessly conservative); (c) many of the correlations reported
were predicted a priori; and (d) all null hypotheses’ p values were based on non-directional tests,
despite the fact that our hypotheses were directional as relating to aging effects. This is an inherently
conservative approach.

3.1. Basic Statistics and Interpretation of the EAC

3.1.1. EAC Maps Characteristics

Grand average EAC maps for each wavelength (690 and 830 nm) are reported in Figure 2a.
The average EAC values across subjects ranged from 0.16 mm−1 to 0.22 mm−1 for the 690 nm map
and from 0.14 mm−1 to 0.20 mm−1 for the 830 nm map (a variability of ~40%). The 690-nm map
showed higher EAC values than the 830-nm map, indicating that the head is more transparent at
longer NIR wavelengths.

A reliability test was conducted on the EAC maps obtained at each wavelength by randomly
splitting the subjects into two groups (with age and gender evenly distributed between the groups).
The pixel-wise correlations between the maps for the two groups were extremely high at both
wavelengths (r = 0.994 for the 690 nm and r = 0.995 for the 830 nm). This indicates that group maps of
the EAC are very reliable.

Clear similarities between the EAC maps across the two wavelengths were also evident, with
dorsal and occipital areas showing higher EAC values than lateral and frontal regions (pixel-wise
correlation between the maps obtained at each wavelength: r = 0.92). The standard errors of the
mean (reported as percentages of the average value for each pixel) for the EAC maps are reported in
Figure 2b. For most pixels the error was less than 10%, with pixels with larger EAC values having
typically larger percent errors.
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Figure 2. (a) Circle-warped grand average Effective Attenuation Coefficient (EAC) maps across all
subjects at the two wavelengths (690 nm and 830 nm); (b) Maps of the EAC standard error (SE) of the
mean (expressed as percentage of the average value for each pixel) for the two wavelengths (690 nm
and 830 nm). Estimated central sulcus and lateral and longitudinal fissures of a 2D circle-warped brain
are delineated in black.

3.1.2. Average EAC Characteristics

Figure 3 reports the EAC values measured in individual subjects and averaged across all locations
at 690 nm, as a function of the EAC values at 830 nm. Each dot in the scatterplot is color-coded as a
function of age (from blue to red in ascending age order). There was a significant correlation between
the two wavelengths (r(46) = 0.85, p < 0.0001). EAC values ranged from 0.097 mm−1 to 0.253 mm−1 for
690 nm and from 0.092 mm−1 to 0.243 mm−1 for 830 nm, with average values (Mean ± SD) EAC690 =

0.192 ± 0.040 mm−1 (95% Confidence Interval, CI, 0.180–0.203 mm−1) and EAC830 = 0.170 ± 0.036 mm−1

(CI 0.160–0.180 mm−1). The comparison between the regression line (solid) and the identity line (dashed)
in Figure 3 indicates that the EAC was larger at 690 nm compared to 830 nm (average difference ∆EAC
= 0.022 mm−1, paired t-test t(47) = 7.19, p < 0.0001).Photonics 2019, 6, x 11 of 25 
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An age effect was apparent, with younger adults (blue color range) exhibiting higher EAC values
than older adults (red color range). Figure 4a,b show the effect of age on the EAC for each of the two
wavelengths (age vs. EAC: r690nm(46) = −0.40, p = 0.005; r830(46) = −0.55, p < 0.0001), with a rate of
change (slope) in the EAC of ∆EAC690nm/year = −0.009 and ∆EAC830nm/year = −0.011. Because the
longer wavelength is more sensitive to oxygenated hemoglobin, the greater age-related decrease in
EAC for the 830 nm light could be attributed to decreasing levels of oxygenation with age. In fact, we
also found a decrease in global TOI as a function of age (r(46) = −0.313, p = 0.030), shown in Figure 4c.
We did not find any effect of sex on the age–EAC association.
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wavelength; (c) average Tissue Oxygenation Index (TOI) as a function of age. (* p < 0.05, ** p < 0.01, ***
p < 0.001).

Figure 5a–d reports scatterplots of the EAC as a function of average cortical thickness as estimated
with FreeSurfer©, with plots c and d reporting the same correlations as a and b after partialing out
the effect of age. The EAC was positively correlated with cortical thickness for both wavelengths
(r690nm(46) = 0.54, p < 0.0001; r830nm(46) = 0.56, p = <0.0001).
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Figure 5. (a) Average EAC as a function of cortical thickness for the 690 nm wavelength; (b) same for
the 830 nm wavelength; (c) Average EAC as a function of cortical thickness for the 690 nm wavelength,
when age is partialed out (“no age”); (b) same for the 830 nm wavelength (* p < 0.05, ** p < 0.01,
*** p < 0.001).

Interestingly, the EAC was also correlated, albeit to a lesser extent, with total cortical volume
(cortical volume vs. EAC: r690nm(46) = 0.40, p = 0.005; r830(46) = 0.47, p < 0.0007). It should also be
noted that, although the TOI, cortical thickness and cortical volume were all significantly correlated
with age (age vs. cortical thickness: r(46) = −0.65, p < 0.0001; age vs. cortical volume: r(46) = −0.81,
p < 0.0001. age vs. TOI: r(46) = −0.31, p < 0.032), no significant correlation was found between the
TOI and brain volumetric estimates (TOI vs. cortical thickness: r(46) = 0.043, p = 0.77; TOI vs. cortical
volume: r(46) = 0.15, p = 0.31). As expected, cortical thickness was correlated with cortical volume
(r(46) = 0.78, p < 0.0001).

3.1.3. Average EAC as a Function of Source–Detector Distance

To provide some initial indication of the depth within the head of the phenomena linking
EAC to age and cortical thickness, we computed EAC separately for four source–detector distance
ranges (considering that the average depth sensitivity of each channel is monotonically related to
its source–detector distance) [54]. Note that, because of its effect on the depth of the area explored,
source–detector distance can also be expected to influence the relative sensitivity of the measures
to different types of tissue (scalp, skull, CSF, gray and white matter) [62]. The Fisher-z transform
of the correlations between these EAC estimates with age and cortical thickness are shown in
Figure 6. The standard error of the Fisher transform of the correlations was computed as (N − 3)−1/2

where N is sample size. Statistical analysis revealed significant correlations between EAC and age
(Figure 6a,b) or thickness (Figure 6a,b) at intermediate inter-optode distance ranges, whereas no
correlation was significant for the shortest and longest distance ranges. These data indicate that
age- (and cortical-thickness-) related changes in EAC occur at source–detector distances between 25
and 45 mm, corresponding to a maximum penetration between 10 and 20 mm. With this range of
penetration, it could be expected that the optical data would be relatively more sensitive to CSF and
gray matter phenomena, and less sensitive to skin and skull phenomena [62].
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Figure 6. (a) Average Fisher transforms of correlation between EAC at the 690-nm wavelength and age
(and related standard errors) as a function of inter-optode distance (4 groups: 15–25 mm, 25–35 mm,
35–45 mm, 45–55 mm); (b) Same as (a) for the 830-nm wavelength; (c) Average Fisher transforms of
correlation between EAC at the 690-nm wavelength and cortical thickness (and related standard errors)
as a function of inter-optode distance (4 groups: 15–25 mm, 25–35 mm, 35–45 mm, 45–55 mm); (d) Same
as (c) for the 830-nm wavelength (* p < 0.05, ** p < 0.01, *** p < 0.001, *** p < 0. 0001).

3.1.4. EAC Orthogonalization in Wavelength Space

The interpretation proposed earlier that the absolute value of EAC (averaged across all locations)
might reflect anatomical factors related to brain atrophy, but that EAC may also provide information
about physiological factors (such as tissue oxygenation) may be of theoretical and translational interest.
However, it rests on the assumption that these two factors (i.e., latent variables) are independent
from each other. This could be questionable, since both parameters are extracted from the same data.
A way to determine whether they are in fact independent is to conduct a PCA (Eigen-decomposition)
of the space defined by the EAC values obtained at each wavelength (see Figure 3) to determine
whether independent component of variance, related to these two latent variables, can be extracted
from the data.

Specifically, we used PCA to decompose the variance in EAC between subjects at the two
wavelengths into two orthogonal latent variables (eigen-solutions or principal components, PCs).
The first PC (i.e., the axis of maximum variance) explained 92.76% of the variance, whereas the second
orthogonal component explained the remaining 7.24% (Figure 7a). Although the loadings of the first PC
for each wavelength were of approximately equal magnitude and sign (reflecting an equal contribution
of each wavelength), the second PC had a positive loading for the 690 nm wavelength and a negative
loading for the 830 nm wavelength (also approximately equal in magnitude but opposite in sign,
Figure 7b). Therefore, we can at least approximately describe these two components as the average
and the difference between the EAC measured at 690 and 830 nm, respectively. Both components were
significantly correlated with age (First PC: r(46) = −0.49, p < 0.0001; Second PC: r(46) = 0.31, p < 0.032).
Figure 7c reports a scatterplot depicting the relationship between cortical thickness and the first PC.
Interestingly, the first PC was significantly correlated with cortical thickness (r(46) = 0.57, p < 0.0001)
and cortical volume (r(46) = 0.45, p = 0.0013), with higher correlation values than each wavelength
alone. In contrast, the second PC was not correlated with either cortical thickness (r(46) = −0.03,
p = 0.84) or volume (r(46) = −0.12, p = 0.42). The opposite relationships were found when relating the
PCs to TOI. The first PC did not significantly correlate with TOI (r(46) = −0.055, p = 0.71) whereas the
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second PC did (r(46) = −0.97, p < 0.0001; see Figure 7d). In summary, the first component appears to be
related to anatomical sources of variance, whereas the second appears to be related to physiological
parameters (such as tissue oxygenation), even though both components are correlated with age.
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Figure 7. (a) Between-subject variance explained by the two principal components (PCs) of a PCA
performed in the wavelengths’ space (690 nm and 830 nm); (b) Loadings for the first and second PC; (c)
First PC as a function of average cortical thickness; (d) Second PC as a function of TOI. (*** p < 0.0001).

3.1.5. Mediation Analyses

The first mediation analyses (Figure 8a) aimed to determine whether average cortical thickness
exerts a mediating role on (i.e., statistically accounts for) the association between age and the first PC
component of EAC. This analysis showed that cortical thickness fully mediates the age-related changes
in the first PC component of EAC (age vs. first PC β1 = −0.19, p = 0.20, cortical thickness vs. first PC
β2 = 0.44, p < 0.002, Sobel test t = −2.88, p < 0.006), supporting the hypothesis that the relationship
between the first component of EAC (approximately the average EAC at 690 and 830 nm) and age
mainly reflects the relationship between this parameter and cortical thickness (which is known to
decline with age).

Similar mediation analyses were performed considering cortical volume instead of cortical
thickness as the mediator between age and EAC at each wavelength and age and first PC of EAC
(Figure 8b). These mediations were not significant (age vs. EAC690: β1 690nm = −0.21, p = 0.157, cortical
volume vs. EAC690: β2 690nm = 0.22, p = 0.137, Sobel test t = -1.56, p = 0.126; age vs. EAC830nm:
β1 690nm=−0.47, p = 0.0008, cortical volume vs. EAC830nm: β2 830nm = 0.08, p = 0.593, Sobel test t =−0.57,
p = 0.57; age vs. first PC: β1 = −0.36, p = 0.013, cortical volume vs. first PC: β2 = 0.16, p = 0.28., Sobel
test t = −1.1, p = 0.28).

We also investigated whether tissue oxygenation (TOI) mediates age-related variability in the
second PC of EAC (Figure 8c). This analysis indicated a full mediation effect (age vs. second PC:
β1 = 0.03, p = 0.84, TOI vs. second PC: β2 = 0.44, p = 0.002, Sobel test t = −2.05, p = 0.046). It should be
noted, however, that the second PC is derived from a linear decomposition of EACs in the wavelength
space, whereas TOI is a non-linear function of EACs. Therefore, TOI and EAC are not really independent
measurements, and this result should not be considered definitive.
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Figure 8. (a) Mediation analysis investigating the mediation effect of cortical thickness on the association
between age and the first EAC component; (b) Mediation analysis investigating the mediation effect of
cortical volume on the association between age and the first EAC component; (c) Mediation analysis
investigating the mediation effect of TOI on the association between age and the second EAC component.
*p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

3.2. Relationships between EAC Eigen-Solutions and Brain Anatomy, Cardiorespiratory Fitness, and
Cognitive Performance

Correlations between the first and second EAC eigen-solutions (EAC1 and EAC2), age, and other
demographics, physiological, brain, and cognitive variables are presented in Table 1. This table also
includes correlations of these variables with EAC1 and EAC2 with age partialed out. In addition to
confirming the relationships with age and cortical thickness (already discussed earlier for each of the
wavelengths), EAC1 was significantly correlated with several other variables of interest, including
white matter integrity (as indexed by white matter signal abnormalities, WMSA) and arterial elasticity
(measured with the PReFx pulse-DOT parameter). Both of these correlations remained significant
when age was partialed out. In addition, EAC1 was correlated with various psychological measures.
Most of these cognitive measures we labeled “performance” reflect aspects of fluid intelligence, which
is known to decline with age [63,64]. In our study, this was reflected by the strong correlation between
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EAC1 and the Performance score. However, the strong collinearity between age, EAC1, and these
functional/psychological measures makes it quite difficult to determine whether these associations are
specific to EAC1 or merely reflect separate age effects on all these variables.

Table 1. Correlations between the first and second EAC eigen-solutions (EAC1 and EAC2), age, and
other demographics, vascular, anatomical, and cognitive variables. The table also includes correlations
of these variables with EAC1 and EAC2 with age partialed out. Perf.-Verb. Score is the difference
between the performance and verbal score; N = 47; Bold = p < 0.05; Italics = p <0.10.

Variable EAC1 EAC2 Age EAC1.Age EAC2.Age

Age −0.496 0.275
CRF 0.332 −0.247 −0.741 −0.062 −0.067

Sex (1 = M, 2 = F) 0.230 0.183 0.034 0.284 0.180
Education (Yrs) −0.155 0.027 0.492 0.119 −0.129

Heart Rate (bpm) −0.042 0.068 −0.144 −0.132 0.113
Heart Rate Var. (ms) 0.172 −0.334 −0.635 −0.213 −0.215

PReFx (overall) 0.423 −0.049 −0.409 0.278 0.072
PReFx (L Hem) 0.438 −0.010 −0.392 0.305 0.110
PReFx (R Hem) 0.388 −0.085 −0.407 0.235 0.030

Cortical Thickness (mm) 0.575 −0.034 −0.658 0.380 0.204
WMSA (log voxels) −0.534 0.014 0.552 −0.359 −0.172
Performance Score 0.457 −0.150 −0.471 0.291 −0.024

Verbal Score −0.194 0.006 0.430 0.025 −0.129
Perf.-Verb. Score 0.433 −0.099 −0.617 0.185 0.093

mMMS −0.161 −0.058 0.168 −0.091 −0.110
KBIT −0.186 0.112 0.172 −0.118 0.069

Raven’s Matrices 0.293 −0.102 −0.387 0.126 0.005
Shipley Vocabulary −0.186 0.245 0.457 0.052 0.139
Forward Digit Span −0.078 0.011 0.351 0.117 −0.095

Backward Digit Span −0.192 −0.016 0.270 −0.069 −0.098
Verbal Fluency −0.069 −0.297 0.127 −0.007 −0.348

O-Span 0.417 −0.089 −0.454 0.248 0.042
Trail A (sec.) −0.260 0.226 0.271 −0.150 0.164
Trial B (sec.) −0.364 0.165 0.290 −0.265 0.092

Trail B-A (sec.) −0.293 0.085 0.206 −0.225 0.031

EAC2 had, in general, lower correlations than EAC1 with most of the variables. However,
a significant correlation was found between EAC2 and HRV, an index related to cardiovascular
function, and with verbal fluency. Both of these correlations were negative, reflecting the fact that
higher EAC2 values were associated with lower levels of tissue oxygenation.

Figure 9 reports maps of the correlations between local EAC1 estimates (i.e., values of EAC1
computed for each pixel on the surface of the head) and several individual-difference variables of
interest, including age, cardiorespiratory fitness (CRF), PReFx, WMSA, and two neuropsychological
scales designed to indicate reasoning (matrixes) and working memory (O-Span) function. Several of
these maps indicated that the strongest correlations could be observed when EAC1 was estimated
from optical probes located over the frontal and parietal regions. This pattern was particularly evident
for the O-Span measures.
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Figure 9. Circle-warped maps of the correlations between local measures of the first EAC component
and some relevant variables in the study (Age, cardiorespiratory fitness (CRF), pulse relaxation function
(PReFx), white matter signal abnormalities (WMSA), Matrices, O-Span). Estimated central sulcus and
lateral and longitudinal fissures of a 2D circle-warped brain are delineated in black.

4. Discussion

Accurate characterization of the optical properties of head and brain tissue is of great interest.
This information is crucial for precise light path length estimation, which is needed for the accurate
calculation of oxy- and deoxy hemoglobin concentration in fNIRS. Most importantly, NIR light
propagation is affected by the anatomical and oxygenation properties of the structures being investigated
and therefore could be sensitive to physiological and pathological conditions. Currently, no systematic
mapping of the optical properties of head and brain tissue in a significant sample is present in the
literature. This paucity of data is caused by technical difficulties in retrieving the photons’ time of
flight information needed to separate absorption and reduced scattering coefficients throughout the
diffusive structures of head.

We recently developed a procedure that maps the EAC over the head and cortical mantle
using continuous-wave systems, and therefore does not require photons’ time-of-flight estimates [20].
The EAC (which is a combination of the absorption and reduced scattering coefficients) could be a
useful tool for understanding how light propagates through the head, since it is the main parameter
affecting light propagation in deep structures (for depths exceeding a few mm). Since measurement of
the EAC is based on a multi-distance approach, application of the algorithm requires that a high-density
optical array be used for recording the data. To generate extensive maps of EAC across the scalp
(as in the current study), large recording arrays are necessary. However, if only local measures are of
interest, a relatively small recording array, composed of as little as 16 channels, might be sufficient.
Importantly, measurement of the EAC does not require additional manipulations, so that the EAC can
be computed from the same uncalibrated data obtained in a standard fNIRS study employing CW
technology (provided that an appropriate multi-distance montage is used).

In this paper we report a systematic mapping of the EAC in 48 healthy adults uniformly spread
across a broad age range (18–78 years), with each decade equally encompassing both genders.
We evaluated both the whole-head spatial characteristics of the EAC and its average cross-sectional
correlations with age and brain anatomical (cortical thickness and volume, based on sMRI segmentations,
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and WMSA) and oxygenation parameters, as well as its correlations with measures of arterial stiffness,
heart rate variability, cardiorespiratory fitness, and cognitive function. Our recording was based
on large number of channels (1536), half using 690 nm light and the other half using 830 nm light.
The spatial coverage of the two wavelengths was essentially identical, since the optic fibers carrying
light of the two wavelengths were paired.

The EAC estimates retrieved with this method were consistent with previous estimates of the
absolute absorption and reduced scattering properties of the human head obtained in vivo [65,66].
In particular, the results presented here were comparable with the most recent study on this topic
using TD technology by Giacalone et al. [66]. In fact, although Giacalone and colleagues acquired
TD data on only 12 pre-defined locations of the head according to the 10-10 international system
(position F3-F5, C3-C1, P3-P5 for the left hemisphere and C4-C2, F4-F6, P4-P6 for the right hemisphere),
the number of participants and age range were similar to our study. Their subjects’ average global
values for absorption and reduced scattering coefficient were: µa = 0.0144 ± 0.0043 mm−1 (CI 95%,
0.0140–0.0148 mm−1) at 690 nm, µ′s = 0.830 ± 0.180 mm−1 (CI 95%, 0.810–0.850 mm−1) at 690 nm,
µa = 0.0137 ± 0.0032 mm−1 (CI 95%, 0.0134–0.0140 mm−1) at 830 nm, µ′s = 0.720 ± 0.160 mm−1 (CI 95%,
0.700–0.730 mm−1) at 830 nm. These results corresponded to average EACs equal to: EAC690nm

= 0.189 ± 0.045 mm−1 (CI 95%, 0.184–0.194 mm−1) and EAC830nm = 0.171 ± 0.036 mm−1 (CI 95%,
0.167–0.175 mm−1). These results are well within the confidence intervals (i.e., with differences of less
than 2%) of the findings of the current study: EAC690 = 0.192 ± 0.040 mm−1 (Confidence Interval,
CI 95%, 0.180–0.203 mm−1) and EAC830 = 0.170 ± 0.036 mm−1 (CI 95%, 0.160–0.180 mm−1).

Our data also indicate that the EAC varied regionally depending on where on the head the data
were recorded from. For both wavelengths dorsal and occipital areas of the head showed higher EAC
estimates than lateral or frontal regions (Figure 2a). In fact, these topographic differences are not small,
with EAC varying by a factor of ~40% depending on the location of the head where it is measured. When
comparing these results with the recent work by Giacalone and colleagues, they also found regional
variability in absolute optical properties, with central regions (C3, C1; locations close to dorsal areas)
having higher absorption and reduced scattering coefficients compared to frontal or parietal regions.
These absorption and reduced scattering coefficients corresponded to highest EAC values in central
regions: EAC690 = 0.195 ± 0.018 mm−1 (CI 95%, 0.190–0.200 mm−1) EAC830 = 0.178 ± 0.018 mm−1

(CI 95%, 0.173–0.183 mm−1). In comparison, they obtained a minimum EAC in parietal regions:
EAC690 = 0.173 ± 0.026 mm−1 (CI 95%, 0.166–0.180 mm−1), EAC830 = 0.160 ± 0.026 mm−1 (CI 95%,
0.153–0.167 mm−1). These results suggested a maximum regional variability between 20–25% at a 95%
confidence interval, which is a smaller variability compared to the one we obtained. This discrepancy
may depend on the different spatial sensitivities of multi-distance CW recordings with respect to TD
systems, or to the lower spatial sampling used by Giacalone and colleagues (a total of 12 points across
the scalp), which could decrease the strength of the estimated regional effect on EAC.

These spatial differences may have an important influence in determining the penetration of
fNIRS measurement in different parts of the head, with greater penetration in lateral and frontal
regions than in dorsal and occipital areas. Previous studies had proposed that distance between the
brain surface and the scalp may be an important factor in the sensitivity of fNIRS measurement to
cortical phenomena (e.g., [62,67]), and that therefore sensitivity may vary over the head and perhaps
across individuals. However, unlike the current study, these studies were based on simulated models
rather than on recorded data. Further, the data reported here indicate that regions with the highest
EAC values largely correspond to areas where large veins are present in the tissue. These results are
consistent with our previously published paper [20] where we hypothesized this difference to be due
to the presence of large veins in these regions [68].

Several features of the data strongly indicate that EAC values provide information related to
anatomical properties of the head, and in particular of the brain and surrounding tissue. First, the
average EAC maps across wavelengths reported in this study were very consistent with each other.
This supports the idea that local variations in EAC value reflect anatomical features, rather than random



Photonics 2019, 6, 79 19 of 25

variations. Further, the EAC’s SEs (Figure 2b) were relatively small and were generally larger (when
measured as a percent of the mean value across individuals) in areas where the spatial gradients of
the average EAC maps were large. While these data supported the overall consistency of the average
EAC maps, they also hinted at the existence of some variability in the exact locations of the EAC
maxima across individuals. A plausible interpretation is that this may reflect individual differences in
the location of large blood vessels (and in particular veins) in the head, which, because of the large
concentration of hemoglobin, produce local peaks in light absorption (and therefore in EAC). Overall,
these data suggest that information about the specific head anatomy of each individual may be very
useful when modeling how light propagates in the brain (see [67] for a similar claim), but also that
such information should include a way of estimating the effect of large blood vessels (such as veins
and arteries) in each individual. T1w sMRI images typically do not include veins and arteries, which
instead require arteriograms and venograms. Alternatively, the EAC-estimation approach presented
here may provide a tool for generating maps of optical properties from each individual’s data (albeit
at lower resolution than sMRI), without the need for additional recording and without the need for
building realistic head models.

In addition to the local features identified through mapping (mostly related to the location of blood
vessels), the current study also indicates that whole-head average EAC estimates for each individual
and wavelength may provide data about the average thickness of the CSF-filled sub-arachnoid space
surrounding the brain, and as consequence, about brain (and especially cortical) atrophy. Note that
the average data indicated a correlation between the EAC values observed at the two wavelengths.
This correlation can be considered to be a minimum estimate of the reliability of the average EAC
values (as the two estimates were obtained on independent sets of data taken from each individual).
That said, it is likely to under-estimate reliability because some of the inter-wavelength variability
is probably due to true variance (e.g., variance due to differences in oxygenation across individuals)
rather than error variance. This reliability is very high, exceeding r = 0.85.

Notwithstanding the high correlation between the EAC values at the two wavelengths, EAC was
consistently larger at 690 nm than at 830 nm. This indicates that light at longer wavelengths has a
deeper penetration in the head than light at shorter wavelengths, corresponding to the idea that the
average photon path-length factor is different at these two wavelengths (see Uludag et al. [69] for an
evaluation of the impact of this difference on applications of the Beer-Lambert law for the computation
of oxy- and deoxy-hemoglobin concentrations).

Interestingly, the average EAC was not correlated with sex, nor did we find any effect of sex on the
age–EAC association. However, EAC was strongly and negatively correlated with age (Figure 4a,b) and
positively correlated with cortical thickness (Figure 5a–d), and to a lesser degree with cortical volume.
A negative association between age and absolute optical properties was also found by Giacalone and
colleagues [66] using TD technology. By performing a split-half analysis as a function of age, they found
a decrease in EAC (derived from the reported absorption and reduced scattering coefficient) in older
(>55 years of age) subjects: EAC690 = 0.184 ± 0.0187 (CI 95%, 0.179–0.189 mm−1), EAC830 = 0.166 ± 0.013
(CI 95%, 0.163–0.170 mm−1) compared to younger (<55 years of age) subjects: EAC690 = 0.203 ± 0.024
(CI 95%, 0.193–0.213 mm−1), EAC830 = 0.182 ± 0.016 (CI 95%, 0.176–0.189 mm−1). These results are
comparable with the age-related effect on EAC reported in this paper. In fact, if we perform a split-half
analysis as a function of age instead of a correlation analysis, we obtain comparable results, with
average EAC values of EAC690 = 0.175 ± 0.044 mm−1 (CI 95%, 0.163–0.188 mm−1), EAC830 = 0.150 ±
0.034 mm−1 (CI 95%, 0.140–0.159 mm−1) in the older group and EAC690 = 0.21 ± 0.030 mm−1 (CI 95%,
0.201–0.219 mm−1), EAC830 = 0.185 ± 0.030 mm−1 (CI 95%, 0.176–0.194 mm−1) in the younger group.

To better understand the relationship of EAC with age and cortical thickness, we further computed
separate EAC estimates based on channels with different source–detector distances. Results suggested
that the correlations between EAC, age, and cortical thickness were driven by phenomena occurring
below the most superficial head layers. In fact, the EACs computed using channels with a short
source–detector distance (15–25 mm), and mostly investigating the skin and skull but with little
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penetration into the brain [62], did not show any statistically significant correlation with either age or
cortical thickness. These correlations, however, were evident when longer source–detector distances,
with greater sensitivity to the brain were considered [62]. This suggests that EAC variations across
ages most likely reflect variations in brain anatomy or physiology rather than variations in skin or
skull. The low correlation found at the longest inter-optode distances (45–55 mm) could be due to a
decrease in SNR at such distances. Alternatively, it could reflect a real phenomenon: aging influences
intermediate layers (such as the relative thickness of the CSF and cortical layers—consistently with the
correlation between EAC and cortical thickness) rather than deeper layers (note, however, that a shift
of the cortical layers toward deeper regions due to shrinking of the underlying white matter could also
account for some of these effects).

Note that the aim of this analysis was only to determine whether the age effect on EAC was
due to phenomena occurring in the most superficial or in deeper layers of the head by exploiting the
monotonic relation between source–detector distance and depth sensitivity in back-reflection diffuse
optical imaging. No inference on the depth of the effect was provided. The EAC estimation algorithm,
since it requires multiple sources and detectors, is poorly suited for high-resolution 3D imaging (diffuse
optical tomography, DOT). Such a goal would require specific development of image reconstruction
algorithms, and, presumably, an iterative approach. In fact, in standard DOT, each channel is used
as a standalone measurement, and the image is reconstructed by exploiting the different sensitivities
of each channel to phenomena at different depths, which themselves would be influenced by EAC.
The methodology is complex and would definitely require validation. Therefore, we preferred to only
provide here a topographic mapping of EAC.

A series of mediation analyses indicated that the age–EAC association becomes non-significant
when the impact of age-related changes on cortical thickness is partialed out. This is consistent with
the idea that the age-related effect on EAC is, for the most part, related to brain atrophy, either directly
(perhaps because a thinner cortex is less of an obstacle to light transmission than a thicker cortex)
or, more likely, indirectly (reflecting the fact that lost cortical or sub-cortical tissue is replaced by the
more transparent CSF). In any case, this finding supports the idea that, through estimation of the EAC,
diffuse optical imaging data can provide information about the level of brain atrophy in an individual,
in addition to providing more accurate path lengths for spectroscopic applications and for the 3D
reconstruction of fNIRS data.

There are also hints in the data that the average EAC provides not only anatomical but also
physiological information. In fact, application of the TOI method proposed by Suzuki et al. [26]
suggests that differences between the average EAC values obtained at 690 nm and at 830 nm may
provide an estimate of the oxygen saturation of brain tissue. The estimates obtained with this approach
are similar to previously reported estimates obtained with TD methods [65]. The fact that these
EAC-based estimates of tissue oxygenation are significantly and negatively correlated with age, heart
rate variability and cardiorespiratory fitness corroborates this interpretation.

A possible problem with this interpretation, however, is that the absolute EAC value might
be somewhat correlated with the TOI estimate, since they are both extracted from the same data.
To understand whether in fact they correspond to separate (orthogonal) sources of variance we
performed a PCA (Eigen-decomposition) of the EAC values obtained at 690 and 830 nm for each subject.
The results of this PCA indicated that the variance in EAC values observed at the two wavelengths for
each subject can be considered as reflecting two linearly independent (orthogonal) latent variables.
The first latent variable (accounting for most of the variance) is related to structural changes that affect
both wavelengths similarly (i.e., with very similar component loadings). The strong correlations of this
latent variable with age and cortical thickness indicate that it is really reflecting anatomical features
(brain shrinking and/or enlargement of the CSF space, which often occur with age). In contrast, the
second latent variable is strongly dependent on wavelength (Figure 7b), with opposite sign loadings
for the two wavelengths. This second component is very strongly correlated with TOI (|r| > 0.97).
The wavelength dependence of this second PC is obviously driven by the differential sensitivity of
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the two wavelengths to oxy- and deoxy-hemoglobin (given by the fact that they are at the opposite
sides of the hemoglobin’s isobestic point). Thus, this second PC could be useful for providing an
absolute estimate of the tissue oxygenation level in the brain, both averaged across the entire brain and
separately for each region. Further, these data demonstrate that the anatomical (brain shrinking) and
physiological (tissue oxygenation) information provided by EAC are independent of each other.

The hypothesis that the first EAC eigen-solution (or component—EAC1) is related to cortical
thickness, and therefore to cortical atrophy, is further supported by its correlation with a large number
of anatomical, physiological, and cognitive variables. Some of these correlations remained significant
even when the effect of age was partialed out, although the strong collinearity between age and EAC1
generally reduces the size of the correlations. In general, the patterns of correlations between EAC1
and all these variables are very similar to that of cortical thickness (r = 0.943), and this similarity in
pattern is visible even when age is partialed out from all the correlations (r = 0.739), indicating that it
cannot be attributed to the common influence of age on all the variables investigated.

The hypothesis that the second EAC eigen-solution or component (EAC2) is related to tissue
oxygenation is less strongly supported. However, the pattern of correlations with the other variables is
very similar to that of CRF and heart rate variability (respectively, r =−0.804 and r =−0.810). Further, the
similarities of these patterns are largely maintained when age is partialed out from all the correlations
(with r = −0.662 for the correspondence between the EAC2 and CRF patterns, and r = −0.632 for the
correspondence between the EAC2 and heart rate variability patterns). These results provide indirect
validation for the claim that EAC2 is related to the trophic and vascular state of tissue.

Finally, analyses of the correlations between local measures of EAC1 and demographic,
physiological, and cognitive variables reveal interesting patterns. Several of these maps indicate that
the strongest correlations could be observed when the EAC1 is estimated from optical probes located
over the frontal and parietal regions. This pattern is especially evident for the O-Span measure, an index
of working memory function. This is consistent with the idea that frontal and parietal cortex play
an important role in working memory function, and that losses in cortical thickness in these regions
may be associated with declines in working memory abilities [70]. Note also that cardiorespiratory
fitness presents a similar pattern of correlations, which is also consistent with neuroanatomical studies
indicating that the effects of CRF are particularly evident in frontoparietal cortex [22]. By-and-large,
these data suggest that the average EAC1 can be effectively measured not only across the whole head,
but separately for different regions, and that these measures provide information about the level of
atrophy in different regions of the brain.

In future research it would be interesting to further investigate the spectral dependence of EAC
through spectroscopic studies involving additional NIR wavelengths. Although here we computed
EAC values in healthy adults, an important application of EAC mapping would be to investigate people
with pathological conditions that affect both oxygenation and anatomy (e.g., superficial hemorrhages,
strokes, etc.), or where subtle, regional and perhaps temporary physiological [71] or pathological
alterations of oxygenation (such as concussion [72]) are suspected. In fact, in this paper we only
considered the generation of static EAC maps (i.e., the average maps across the recording period) to
maximize SNR. In future work we will investigate the time-dependence of EAC, where EAC images
will be obtained at high sampling rates (up to few Hz). This may provide quantitative functional
imaging data, describing, for instance, the percent change in oxygenation in response to stimuli or
during a particular task. Coupled with pulse-DOT measures of arterial status [15], the EAC and TOI
indices could also be used to monitor brain oxygenation in preterm infants within the incubator [16]
together with the monitoring of other standard physiological parameters.

5. Conclusions

In conclusion, this paper presents the first systematic mapping of absolute optical properties
(EAC) over the whole head employing CW technology in a large healthy sample of adults over
a broad age range, showing that these data are consistent with results obtained using smaller TD
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systems. The mapping procedures reported here may be useful to improving the accuracy of oxy-
and deoxy-hemoglobin estimation and 3D reconstructions of fNIRS data. Most importantly, given
the dependence of the EAC on regional anatomical (cortical thickness) and physiological (tissue
oxygenation) factors, calculating the EAC may also enable the retrieval of such information from fNIRS
recordings directly, albeit at low spatial resolution. In particular, average EAC levels across areas of the
scalp may provide indications of brain atrophy, a parameter of great clinical importance, as well as,
perhaps, indices of tissue oxygenation, another parameter that might have potential clinical value.
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