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Abstract: In this study, a novel composite Surface-Enhanced Raman Scattering (SERS) substrate is
proposed for ultrasensitive detection. Consisting of gold sinusoidal nanograting and silver colloidal
nanoparticles (AgNPs-AuSG), this type of SERS substrate is easy for fabrication by maskless laser in-
terference lithography, and capable of providing large-scale ultra-high field enhancement, attributed
to localized surface plasmons (LSPs) and surface plasmon polaritons (SPPs). The enhancement factor
(EF) of this composite substrate is as high as up to 10 orders of magnitude in the simulation experi-
ment. Experimental results show that this large-area, productive SERS substrate of AgNPs-AuSG has
realized sensitive TNT and RDX detection with the limit of detection (LOD) of 10−10 M, which may
be a potential candidate for trace explosives detection.

Keywords: surface plasmon polaritons; sinusoidal nanograting; ultrahigh field enhancement;
enhancement factor

1. Introduction

Surface-enhanced Raman spectroscopy (SERS), as a ‘chemical fingerprint’ of the
target materials, is a sensitive and reliable detection method extensively employed in
biosensors [1,2], food security [3,4], and environment safety [5,6]. Considerable efforts
have been made to develop the SERS substrate, including fabricating and using a range of
structures and materials [7,8]. In terms of conventional two-dimensional SERS substrates,
the enhanced Raman signal usually relies on the “hot spots” generated by the LSP resonance
between nanoparticles [9,10]. Qian et al. [11] proposed a hybrid nanostructure composed
of nanoporous gold films and gold nanoparticles. Ardini et al. [12] designed a large
area-efficient SERS substrate, a nanoporous gold decorated with silver nanoparticles.
These substrates have giant enhancement due to strong near-field coupling. It has been
demonstrated that the coupling of mutual polariton modes can be excited by the particle-
film complex structure [13–15]. Above the metal film, the metal nanoparticles (NPs) are
periodically arranged with several nanometers apart from each other, which can act as
a two-dimensional grating to excite the SPP wave, leading to the coupling of LSPs and
SPPs [16]. So far, researchers have found that the SERS EF of the metal film and NPs
coupling structure is sensitive to many factors, including the thickness of the dielectric
layer, the size of the nanoparticle, and the distance between them [17,18]. However, it is
not easy to control the interparticle at small periodicities, which is very important, because
in this case strong coupling between adjacent NPs can be achieved [19–22]. In this paper, a
composite SERS substrate is designed, as shown in Figure 1. The substrate is composed of
two parts: one is the gold sinusoidal grating (AuSG) as a fixed substrate; the other is silver
colloidal nanoparticles (AgNPs), which act as a flowing substrate.
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Figure 1. Schematic diagram of the composite SERS substrate.

The composite SERS substrate has the following advantages:

(1) High field enhancement. There are a lot of hot spots in the dimer and gaps between
the nanoparticles and the grating surface.

(2) Fabrication friendliness. The sinusoidal nanograting can be easily fabricated over
a large area using the currently established dual-laser interferometric lithography
method, avoiding the expensive and time-consuming electron beam-based nano-
fabrication method. AuSG with pattern periodicity has the advantage over the random
configuration of surface structures due to its reproducibility and pattern scalability.

(3) Continuous detection. Combining colloidal AgNPs with continuous flow microflu-
idics helps trap the analyte at the detection area [23], which is important for SERS
detection. The flowing AgNPs also help resolve the problem of memory effects and
make the composite SERS substrate reusable.

This paper delves into the EM field enhancement in the AgNPs-AuSG substrate, which
could contribute to the actual detection of trace explosives.

2. Model and Theoretical Analysis
2.1. Theoretical Analysis

Theoretical and experimental studies have shown that when the gap between adjacent
NPs reaches the order of tens of nanometers, the LSPs generated by NPs can be coupled
to each other to elevate the EM fields, and the Raman intensity can be 2–4 orders of
magnitude stronger than that of a single nanoparticle [24]. The concept of plasmon coupling
(hybridization) was first proposed and explained from the perspective of molecular orbital
hybridization by Nordlander [25].

Besides, the coupling of SPPs and LSPs can also be explained by the theory of plasmon
hybridization. When NPs are close to the metal grating, the surface plasmon modes will
interact with each other and produce a hybrid mode [21]. The coupling is related to the
resonance frequencies of LSPs and SPPs. When their resonance frequencies are close, the
coupling strength of LSPs and SPPs increases significantly, usually accompanied by Rabi
splitting, that is, the energy separation between normal modes [26]. In order to avoid Rabi
splitting, according to Mie’s theory, small AgNPs with a radius of about 30 nm are chosen,
and the resonance wavelength of LSPs is far away from that of AuSG SPPs at 785 nm in
the experiment [27]. The weak coupling of LSPs and SPPs will not affect their resonance
frequencies, which brings convenience to Raman detection. Therefore, under the joint
enhancement of SPP and LSP, we can obtain a highly enhanced electric field.

SPPs, propagating at the metal/dielectric interface, are essentially two-dimensional
electromagnetic waves, which cannot be excited directly by light beams [28,29]. For the
sinusoidal grating depicted in Figure 1, the SPPs can be excited when their wavevector
matches with the incident photons and grating as follows [30]:

β = k0

√
εm(ω)× εd
εm(ω) + εd

= k0nd sin θi ±m
2π

Λ
(1)
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where β is the SPP wave vector, k0 = ω
c is the incident wave vector, and 2π/Λ = kg is the

grating wavevector. Here, Λ is the periodicity of the grating, ω and c are the frequency and
speed of the incident light, εm(ω) and εd are metal and dielectric permittivity, θi is the angle
of the incident light with respect to the normal on the grating, m is an integer and represents
the grating diffractive order, nd is the refractive index of the medium surrounding the
device, namely water.

2.2. FDTD

Since the use of near-infrared (NIR) excitation can greatly reduce the interferences
from fluorescence and effectively avoid the decomposition of samples induced by strong
excitation energies at the shorter wavelengths, 785 nm laser has become one of the most
common excitation sources for portable Raman instruments. In the actual TNT and RDX
detection experiments, an excitation laser with a wavelength of 785 nm (Ocean Optics Laser-
785, 100 µm at 0.22 NA) is used. It is well known that an optimized SERS enhancement is
expected when the periodicity of grating is tuned to match with the excitation source in
SERS experiments. In order to excite SPPs at 785 nm, the periodicity of the AuSG has to be
about 570 nm by Equation (1), with the dispersive dielectric function of Au from Ref. [31].
The optical responses of the composite substrate are computed through FDTD simulations,
as defined in Figure 1. The Λ, amplitude, and thickness of AuSG are set to 570 nm, 20 nm,
and 120 nm, respectively since it has a large SERS. Periodic boundary conditions (PBCs)
are used in the X- and Y-direction, while perfectly matched layers (PMLs) are used in
the Z-direction. The normal incidence of light (plane waves) with transverse magnetic
(TM) polarization, are considered as excitations. The dispersive dielectric function of Ag
and Au is extracted from the experimental data from the Ref. [31,32]. The nondispersive
refractive indices of H2O and glass (SiO2) are considered as 1.3356 and 1.45, respectively.
Relatively fine grid spacings set with 1 nm, and simulation time with 1000 fs is applied for
well-converged results.

3. Results
3.1. Double Enhancement

Some scholars have studied the characteristics of SPPs formed by gold sinusoidal
grating [33]. Excitation of SPPs is detected as a minimum in the reflected light. The
reflection and absorbance spectra of AuSG as a function of incident light and the electric
field distribution at the resonance wavelength are shown in Figure 2.

Photonics 2021, 8, x FOR PEER REVIEW 3 of 10 
 

 

0 0
( ) 2= sin
( )

m d
d i

m d

k k n mε ω ε πβ θ
ε ω ε

×= ±
+ Λ

 (1) 

where β  is the SPP wave vector, 0 =k
c
ω  is the incident wave vector, and 2 = gkπ Λ  

is the grating wavevector. Here, Λ  is the periodicity of the grating, ω  and c are the 

frequency and speed of the incident light, ( )mε ω  and dε  are metal and dielectric per-
mittivity, iθ  is the angle of the incident light with respect to the normal on the grating, 
m  is an integer and represents the grating diffractive order, dn  is the refractive index 
of the medium surrounding the device, namely water. 

2.2. FDTD 
Since the use of near-infrared (NIR) excitation can greatly reduce the interferences 

from fluorescence and effectively avoid the decomposition of samples induced by strong 
excitation energies at the shorter wavelengths, 785 nm laser has become one of the most 
common excitation sources for portable Raman instruments. In the actual TNT and RDX 
detection experiments, an excitation laser with a wavelength of 785 nm (Ocean Optics 
Laser-785, 100 µm at 0.22 NA) is used. It is well known that an optimized SERS enhance-
ment is expected when the periodicity of grating is tuned to match with the excitation 
source in SERS experiments. In order to excite SPPs at 785 nm, the periodicity of the AuSG 
has to be about 570 nm by Equation (1), with the dispersive dielectric function of Au from 
Ref. [31]. The optical responses of the composite substrate are computed through FDTD 
simulations, as defined in Figure 1. The Λ , amplitude, and thickness of AuSG are set to 
570 nm, 20 nm, and 120 nm, respectively since it has a large SERS. Periodic boundary 
conditions (PBCs) are used in the X- and Y-direction, while perfectly matched layers 
(PMLs) are used in the Z-direction. The normal incidence of light (plane waves) with 
transverse magnetic (TM) polarization, are considered as excitations. The dispersive die-
lectric function of Ag and Au is extracted from the experimental data from the Ref. [32] 
and Ref. [31]. The nondispersive refractive indices of H2O and glass (SiO2) are considered 
as 1.3356 and 1.45, respectively. Relatively fine grid spacings set with 1 nm, and simula-
tion time with 1000 fs is applied for well-converged results. 

3. Results 
3.1. Double Enhancement 

Some scholars have studied the characteristics of SPPs formed by gold sinusoidal 
grating [33]. Excitation of SPPs is detected as a minimum in the reflected light. The reflec-
tion and absorbance spectra of AuSG as a function of incident light and the electric field 
distribution at the resonance wavelength are shown in Figure 2. 

 
Figure 2. Reflection and absorbance spectra of AuSG as a function of excitation light wavelength.
The subplot is the electric field distribution of the x–z plane (y = 0) at an SPP resonance wavelength
of 786 nm. The Λ, amplitude, and thickness of AuSG are 570 nm, 20 nm, and 120 nm, respectively.

It can be seen from Figure 2 that the SPPs resonate at the excitation light wavelength
of 786 nm, which corresponds to m = 1 of the grating diffractive order, according to
Formula (1). In the electric field distribution subplot, the SPPs propagate along the surface
of the grating, accompanied by the periodic spatial distribution of the surface electric field.
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SPPs, as an evanescent wave, can enhance the electric field above the grating surface by a
maximum of 16.5 times.

In turn, the surface electric field of AgNPs entering this range can be enhanced [34].
The coupling between LSPs and SPPs depends on many conditions, such as AgNP size
and position. When AgNPs are located at different positions of the evanescent field, the
coupling of LSPs and SPPs is different, resulting in different electric field enhancements.
Due to the periodicity of the evanescent field, the electric field enhancement of AgNPs at
two typical positions of the evanescent field is analyzed, as shown in Figure 3.
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Figure 3. The electric field distribution in the x–z plane (y = 0) at the resonance wavelength of SPPs
at 786 nm, where AgNP is located at z = 200 nm. The area enclosed by the white curve represents an
electric field greater than 10 V/m. The subplots are the Energy flux.

In Figure 3A, due to the weak evanescent field near AgNPs, the electric field of the
AgNP surface is mainly enhanced by LSPs, and the field intensity is small. On the contrary,
in Figure 3B, the evanescent field around AgNPs located at z = 200 nm is almost 10 V/m
seen from Figure 2, which enhances the field of AgNP surface greatly. It is noted that the
double enhancement of LSPs and SPPs, resulting in a field enhancement of as high as 43.8
around the AgNPs, is almost 2 times that in Figure 3A. It can be found that the LSP mode
in Figure 3B is a dipole mode, while the quadrupole mode appears in Figure 3A. It is well
known that the field at higher LSP modes is smaller than the one at the dipole mode.

3.2. Large-Scale Field Enhancement

As an evanescent wave in the dielectric, the SPP fields fall off exponentially along
the direction perpendicular to the grating surface, with the evanescent decay length of the
fields calculated by Formula (2):

δd = 1/
√

β2 − εdk2
0 (2)

It is evident that δd= 322.3 nm in the water at λ0 = 785 nm by Formula (2). In other
words, a wide area of the enhanced field is formed over the surface of the grating, which
can further couple with the LSPs formed by AgNPs or Ag dimers in this region. The Emax
and EF of x–y plane in the water away from the surface of AuSG are shown in Figure 4.

The z value of the monitoring plane (x–y plane) is continuously scanned through
FDTD, and the electric field distribution of the x–y plane at different distances L is obtained.
As can be seen from Figure 4, when L = 69.4 nm, the maximum electric field strength of
the x–y plane can still be about 11.7 v/m. In other words, only due to the enhancement of
SPPs of the AuSG, the theoretical EF reaches 104 in the range of L < 70 nm.

Combined with AgNPs, many hot spots can be formed in this area. Generally speaking,
the stronger the evanescent field is, the greater the electric field enhancement on the AgNP
surface may be. Due to the liquid flow, AgNPs do not always adhere to the AuSG surface,
and the distance between them will vary randomly. The changing trend of the electric field
enhancement of the composite substrate is further studied under the condition of changing
the distance between AgNPs and AuSG.
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Figure 4. Emax and EF on the x–y plane in water as a function of the distance L from AuSG. The
subplot is the electric intensity distribution of x–y plane at L = 69.4 nm, that is, z = 200 nm.

In order to reduce the error caused by the simulation, the calculation method of the
average EF of hot spots is first defined. It is well known that SERS EF can be approximately
calculated as EF ≈ (|Eloc|/|E0|)4. According to the characteristics of the structure, consid-
ering the numerical instability of the metal surface and the scale of adsorbed molecules,
the average EF of a certain area is defined as EF.

EF =

(t
(|Eloc|/|E0|)dv

V

)4

(3)

where E0 = 1V/m, is the incident electric field, Eloc = (Ex, Ey, Ez) is the local electric field,
and V is the volume of a certain area, that is, the range within 2 nm from the hot spot in
the experiments.

In order to evaluate the enhancement capability of the composite substrate, a location
with a large evanescent field on the different x-y plane is selected for analysis and simulation
research. The Emax and EF as a function of the distance between AgNPs and AuSG with
water medium are shown in Figure 5.
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Figure 5. Emax and EF as a function of the distance between AgNPs and AuSG with water medium.
The distance is from 5 nm to 305 nm. The subplot is the schematic of electric field enhancement.

It can be obtained from Figure 5 that when the distance between AgNPs and AuSG is
5 nm, EF can reach as high as 107. Even when the distance is 95 nm, the EF reaches 106.
On the contrary, when there is no AgNP, the EF at this position is only 104, as shown in
Figure 4. This is because, in the larger evanescent field, SPPs can be used as the excitation
source of the in-sphere LSPs, which greatly enhances the electric field intensity on the
surface of AgNPs.

It is noted that in the range of less than 305 nm, the EF of the AgNP surface hot spot
can be greater than 105. This wide range of electric field enhancement characteristics can
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greatly reduce the accuracy of the detection molecules on the substrate surface position in
the SERS detection enhancement application.

3.3. Ultra-High Field Enhancement

When AgNPs and AuSG are close, the nanogap between them forms a hot spot with
extremely high field enhancement, and their electric coupling is similar to that of a dimer.
When the distance between AgNPs and AuSG is 2 nm, the electric field distribution in the
x–z plane and average EF of nanogap, that is, the hot spot, is shown in Figure 6.
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SPPs can be coupled into LSPs to form an equivalent scattering source when en-
countering AgNPs, thereby elevating the electric fields. The average EF of the hot spot
in Figure 6A is about 107, while in Figure 6B, it reaches 1010 due to the strong SPPs. In
Figure 6A, a transverse dipole is formed, and electrons are concentrated on the left and
right sides of the bottom of the AgNPs, forming two hot spots between the AgNPs and
AuSG. In Figure 6B, the AgNPs become a longitudinal dipole affected by the strong evanes-
cent wave, with electrons concentrate on the top and bottom surfaces, so that the EF of
both the hot spot and the top region of the AgNPs are significantly elevated. When the
dimer is close to AuSG, the hot spot is not only in the nanogap of AgNPs, but also in the
nanogap between the dimer and AuSG. The average EF of all hot spots is greater than 108,
as shown in Figure 6C. Theoretically, the composite substrate has an ultra-high electric
field enhancement capability, making it possible and effective to detect trace explosives
such as TNT, DNT, and RDX.

In Figure 6D, although plasmon resonance may also occur between AgNPs and Au
film, and can generate hot spots with high field enhancement. But the resonance largely
depends on factors such as the frequency of the incident light and the distance between
AgNPs and Au film. Therefore, it is not easy to obtain a large electric field enhancement
at a specific frequency, such as 785 nm. On the contrary, no matter how AgNPs flow,
the composite substrate composed of AgNPs and AuSG can achieve a high electric field
enhancement of 785 nm, which is close to the resonance wavelength of SPPs.
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3.4. Experiment

In order to test the trace level explosives detection performance of the composite
substrate and verify the simulation results, SERS detection of low concentration TNT and
RDX solution samples is carried out.

The designed AuSG can be realized experimentally by the following procedures:
Firstly, a positive photoresist (PR; NOA-63) is spin-coated on an SiO2 substrate. Secondly,
the AuSG with a periodicity of about 570 nm is fabricated by laser interference lithography
(LIL; Coherent MBD-266, a wavelength of 266 nm and a power of 30 mW) [35]. The
amplitude and periodicity of AuSG can be flexibly adjusted and controlled by changing the
time and angle of LIL. Then, the Au layer (about 120 nm) is deposited through evaporation
at a rate of 0.1 nm/s. The AgNPs with a diameter of about 60–110 nm are prepared by
the procedure described in Ref. [36]. The Atomic Force Microscope (AFM) image of the
surface morphology of the grating and the Transmission Electron Microscope (TEM) image
of AgNPs colloids are shown in Figure 7.
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Figure 7. (A) Top-view AFM image of AuSG with a periodicity of about 570 nm; (B) surface profile
scan of the AuSG; (C) TEM image of AgNPs.

TNT and RDX solution samples with low concentrations are prepared, and then
added to the composite substrate. In the experiment, Ocean Optics Laser-785 is used as the
excitation laser, and SERS signal is measured with a Raman fiber optic probe (Inphotonics
RPB, 200 µm collection fibers) and a Raman spectrometer (Ocean Optics QE Pro). The spot
size of the excitation laser is about 200 µm at the focus point of the Raman probe. The SERS
spectra of TNT and RDX are collected and the average values of Raman signal intensities
from 600 to 2000 cm−1 are shown in Figure 8.
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Figure 8. Example SERS spectra of (A) TNT; (B) RDX.

It can be found that when the concentration of TNT solution is 10−8 M, there are
some strong Raman characteristic peaks of the TNT molecule SERS spectrum, which are
824 cm−1 (NO2 scissoring vibration), 1212 cm−1 (C-H ring bend and in-plane rocking),
1364 cm−1 (NO2 symmetric stretching), 1536 cm−1 (NO2 asymmetric stretching), and
1619 cm−1 (2,6-NO2, asymmetric ring stretching) [37], in Figure 8A. That is to say, the main
Raman vibrations of TNT at those Raman shifts, are obviously enhanced and can be easily
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detected. However, when the concentration of the TNT solution drops to 10−11 mol/L, the
Raman signal intensity of TNT is so weak that Raman characteristic peaks can hardly be
found. The characteristic RDX bands at 885 cm−1 (C-N-C ring breathing mode), 1218 cm−1

(N-C stretching), and 1310 cm−1 (CH2 twisting, N-N stretching vibration) are also present
in the SERS spectra down to a solution sample as low as 10−10 M, as shown in Figure 8B.
From Figure 8, the experimental results indicate that the limit concentration of TNT and
RDX solutions for SERS detection can reach 10−10 M. These results also confirm that the
explosives materials have very distinct and identifiable SERS bands that can be measured
using the composite SERS substrates.

Under experimental conditions, the analytical enhancement factor (AEF) can be calcu-
lated by:

AEF =
ISERS/CSERS

IRS/CRS
(4)

where ISERS and CSERS are the Raman signal intensity and trace explosives concentration
from composite SERS substrate, while IRS and CRS are the Raman signal intensity and
trace explosives concentration from non-SERS substrate, respectively. It can be seen from
Figure 8 that the symmetrical nitro stretching at 1364 cm−1 is the strongest band of TNT,
and the C-N-C ring breathing at 885 cm−1 is the strongest band of RDX, which can be used
to estimate the AEF [37]. For the non-SERS substrate, the trace explosives concentration is
0.1 M. The AEF of the composite SERS substrate is about 5.3 × 108 at 1364 cm−1 for TNT
with a concentration of 10−8 M, and is 1.2× 108 at 885 cm−1 for RDX with a concentration of
10−8 M. The AEF is not as large as the maximum EF of simulation. One of the reasons may
be the random distribution of explosive molecules and AgNPs in the fluid. Raman signals
of not all molecules are strongly enhanced by the electromagnetic coupling effect between
AgNPs and AuSG. The AEF critically depends on the availability of the number of hotspots,
the analyte molecule adsorption, the orientation of molecules on the AgNP surface, and
the excitation wavelength. We are investigating how to capture analytes through surface-
grafted agents (such as 4-Aminothiophenol) or metal–organic-frameworks (such as ZIF-8),
and localize them on the surface of flowing AgNPs to improve SERS performance.

4. Conclusions

In this paper, a composite SERS substrate consisting of gold sinusoidal nano-grating and
silver colloidal nanoparticles was proposed and studied. The substrate can be fabrication-
friendly for large areas only when double laser interferometric lithography and hot evapo-
ration are used. Due to SPPs and LSPs, the composite substrate had a large-scale ultrahigh
field enhancement, with EF reaching up to 10 orders of magnitude, verified by the numeri-
cal simulations. The experiment results show that the substrate had an LOD of 10−10 mol/L
in the detection of both explosives TNT and RDX. Combined with microfluidic technology,
we are confident that the composite SERS substrate has a great potential for real-time,
continuous detection of trace explosives in the future.
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