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Abstract: The transversely confined propagating light modes of a nanophotonic optical waveguide
or nanofiber can effectively mediate infinite-range forces. We show that for a linear chain of particles
trapped within the waveguide’s evanescent field, transverse illumination with a suitable set of laser
frequencies should allow the implementation of a coupled-oscillator quantum simulator with time-
dependent and widely controllable all-to-all interactions. Using the example of the energy spectrum of
oscillators with simulated Coulomb interactions, we show that different effective coupling geometries
can be emulated with high precision by proper choice of laser illumination conditions. Similarly,
basic quantum gates can be selectively implemented between arbitrarily chosen pairs of oscillators in
the energy as well as in the coherent-state basis. Key properties of the system dynamics and states
can be monitored continuously by analysis of the out-coupled fiber fields.

Keywords: fiber optics; quantum simulation; collective light scattering

1. Introduction

Suitably designed laser fields allow one to trap individual quantum particles at well
defined locations and cool them to their motional ground states [1,2]. Some time ago, it
was demonstrated that trapping and cooling is also possible close to optical nanostructures
and, in particular, in the vicinity of a tapered optical nanofiber [3-5]. More recently, Meng
at al. successfully scattered light from a transverse excitation laser into a nanofiber using
atoms trapped near that fiber [6].

Once trapped, the atoms interact with the evanescent field of light modes propagating
within the fiber [5], exchanging energy and momentum. Thus, the light strongly influ-
ences the atomic motion in the trap which in turn modifies the light propagation [7-10].
As photons within the fiber propagate over practically infinite distances, they collectively
couple to all atoms, which induces all-to-all long-range interactions [11]. In this way
thousands of atoms can be trapped, which leads to strong collective effects [12].

The individual atom-atom coupling via resonant photon emission by one atom fol-
lowed by absorption by a second atom is typically rather small [13,14], but it can already
lead to spatial self-ordering of the atoms [15]. The induced force can be significantly in-
creased if the atoms are transversely illuminated far off any internal atomic resonance to
induce collective coherent scattering into the fiber [16-18]. Here, the interference between
the mode amplitudes created by scattering from different particles leads to gradient or
dipole forces, which appear without changing the internal atomic state from spontaneous
emissions [19]. The properties of these forces can be modified by the help of two laser
frequencies [20].

The interactions between the particles depend on the properties of the incoming
light field. With careful choice of laser frequencies and powers, almost arbitrary shapes
of interaction forces can be synthesized [21]. In this work, we give examples of how
this property could be used for quantum simulation [22-30], as well as for quantum
computation. By designing the incoming light field, we show, for example, how the
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interaction between ions can be simulated, even if they are ordered in 2D or 3D geometries.
In contrast to quantum simulation with ions [31,32], we can even turn off the interactions
between arbitrary pairs of particles. In the second part, we describe the oscillator states
as qubits and use this approach to design quantum gates [33,34] or produce entangled
states [35-371].

2. Materials and Methods
2.1. Tailored Coupling of the Quantized Motion of a Trapped Atom Chain

In this work, we consider N particles, typically atoms, molecules or nanospheres,
harmonically trapped at predefined positions along an optical nanofiber. As depicted
in Figure 1, these atoms interact with the evanescent field of the propagating nanofiber
modes. Additionally, the particles are transversely illuminated by pump fields of tunable
frequencies. Each particle thus coherently scatters light from the pump fields into the fiber,
where it interferes with light scattered by other atoms. The particles thus redistribute the
field along the fiber, which leads to effective interactions and forces between the particles.
The interaction created by each frequency component of the pump light is long-range
and depends on the distances between pairs of particles on the wavelength scale. Hence,
displacing one particle changes the overall fiber field and thus the forces acting on all
other particles.

E

Xj-l Xj Xj+1
o1 1w, Lywy 1,0, Lo I,,w,

Figure 1. Sketch of our system: N particles are confined in homogeneous traps next to a nanofiber.
The particles are illuminated by multi-color transverse pump fields and scatter light into the fiber.
Interference of the scattered fields in the fiber leads to effective forces between the particles.

Similar long-range interactions and forces have been discussed already in a pioneering
work by Chang et al. in [16]. There the focus was on resonant excitation and radiation
pressure induced by internal transitions of an atom coupled to the waveguide. In line with
our previous work [21], we will allow for a very general form of mechanical interaction
between the particles which can be achieved via frequency shaping of the illumination light.

In our model, the transverse pump field is a sum of many plane waves with differ-
ent intensities and frequencies. We assumed that the different spectral components are
sufficiently distinct such that the interference terms are negligible as the individual com-
ponents are spatially coherent but not time-coherent and interactions average out over time.
The effective pair forces between the particles in such a system can be calculated using a
beamsplitter matrix model describing all the scattering processes by the particles [19].

Note that the particles, in principle, also back scatter a fraction of the field propagating
inside the fiber. However, if we assume weak coupling of the particles to the fiber [16,21],
each particle reflects only a tiny fraction of the propagating fiber fields. Of course, this
assumption also requires a small scattering rate from the transverse beam into the fiber,
but this can be balanced by using large powers of the incoming field. This is why we
neglect back scattering effects and assume that the force on the particles arises solely due
to interference effects of the fields scattered into the fiber from the transverse pump. This
assumption generally works well for small particle numbers, but for large system sizes
even a small reflection by each particle can lead to significant collective effects [2].
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Within this approximation, the radiation force F; on a classical particle at position x;
can be written as a sum of effective two-particle forces fpair(¥;, X;) between this particle
and all the other particles at positions x; [21]

N sl cos (k(xj — x;) ) sign(x; — x;

= % foatr) = L T D) g
=1

i l#]

with N the number of particles along the fiber, I; the intensity of the field with frequency
wi = k/c and oy the scattering cross section between the particles and the beam.

Using this force, we defined a two-particle potential up,ir (x;, ;) such that fpair(x;, x;) =
—Bx,.upair(xi, x]-). For a system of N particles, the total potential is thus the sum of all two-
particle interactions
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It is clear that any translation of one particle changes the light field along the fiber and
thus the optical potential seen by all the other particles. The same result can be obtained
following the model of Chang et al. [16] by taking the weak scattering limit for far-detuned
light. Eliminating the internal excited states of the particles then leads to the force given in
Equation (1).

We studied such a system in a previous work [21] where we assumed classical point
particles allowed free movement along the fiber direction. Here, we study locally trapped
and very cold particles, which requires a quantized description of motional degrees of freedom.

In the present model, we thus considered particles trapped in harmonic potentials
centered at positions Xj0, j=1,...,N,Uygo = Zfil mwTAZZ/Z, with m being the mass of
the particles, wt being the frequency of the harmonic oscillator traps and A; = x; — x; 9. We
assumed that the particles were tightly trapped in the transverse direction and linearized
the motion along the longitudinal motion of the particles in Equation (2) around the
center of the harmonic oscillators x; o, x; — x; 9 + A;, with kA; < 1. We thus obtained an
effective Hamiltonian

A-phEy

k =1

(i <11 sin (kdij) + (A — Ai) cos (kdj; )>
_ﬁ{wsm ” )) Z( %A2> (3)

with d;; = |xj,0 — x;0|. We quantize the relative motion of the particles with respect to the
trap centers by setting

(a; +at) = do(a; +al), (4a)

A . hmwT R R ih R R
P, =iy T(a;r —4;) = 2—(50(11;r —d;), (4b)

with the oscillator length 6% = 1/ (2mwr).
Ignoring the constant terms in the Hamiltonian we thus obtain
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with Q = (Tsclké(z)k/(hc) and €; 1= 05 [t/ (ic). Here, Hywa generates force terms in
the time evolution oscillating at the trapping frequency or higher, which typically cancel
out when averaged over one period. Hence, we will neglect them later in Section 3.2.
Effectively they lead to a small displacement of the particles equilibrium and a change
of the effective frequency of the oscillators (squeezing). Hiy describes the interactions

between the particles and Hose the harmonic potential with shifted frequency @; due to the
interaction of the particles.

2.2. Model Assumptions and Limitations

In our model, we assumed that the particles are harmonically trapped and we require
that the transverse pump fields convey strong enough particle—particle interactions to
influence the motion of the trapped particles along the fiber direction. At the same time,
the fields must be weak enough such that we can neglect saturation effects and eliminate
any particle’s internal degrees of freedom. In the following, we study in more detail how
all these limiting conditions restrict the operating parameters.

The intensity of the light field scattered into the fiber by the particles depends on the
incoming photon energy fiw and flux, the emission rate into the fiber 74,4, the effective
mode cross section A of the fiber field and the excited state population p... We approxim-
ated the particles as effective two-level systems and operate at low saturation by choosing
large laser detuning A > I' from atomic resonance, with I as the decay rate. In this limit,
the excited state fraction is pe ~ Iy/ (2Isat(1 + 4N/ %)) < 1, with Ij the intensity of the
incoming pump field and I, the saturation intensity.

The emission rate into the fiber depends on the spatial profile of the fiber field determ-
ining the field strength at the atomic position and on the atomic dipole matrix element.
A single-mode fiber carries only the fundamental HE;;-mode. The explicit expression for
the mode profiles are given in [38]. Here, we assume that the modes and the atomic dipoles
are linearly polarized, perpendicular to the fiber axis. In this case, the particles scatter the
light symmetrically into the fiber. Using Fermi’s golden rule, the emission rate into the fiber
can be found with 7g,iq ~# 0.13 T and with T’ = |d|2w?/ (3meghc?), the free-space emission
rate [39]. Usually yg,;q for atoms along a nanofiber is between 0.1 and 0.2 I [39], but can
be tuned up to 0.99 I for quantum dots [40,41] or superconductory transmon qubits [42].
Recently, the coupling efficiency has been improved for atoms when using a hole-tailored
nanofiber and reached 0.6 T [43].

The intensity scattered into the fiber by the particles can thus be estimated by

hw 1 hw Io/ Isat
I = 77guidpee ~ 577guidm- (6)
For a nanofiber with a radius » = 200 nm, the fiber cross section area A = r27,
the Cesium D2-line w ~ 2.2 x 10! Hz with T = 33 x 10° 1/s and the mass of cesium
m = 220 x 10~% kg, and a detuning A = 100 T', we found that the intensity scattered into
the fiber is I; ~ 6.2 x 1074 I/ Isst W/m?.
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To linearize the interaction potential requires a very deep potential such that the
particles are well trapped kA; < 1. With A; = §y(al +4;) and & = /i/(2mwr),
this means

w h
kdg = — 1 7
0 c \/ 2mwr < @
and we find )
w- h

Using the parameters for the Cesium D2-line this implies wr >> 10° Hz.

Using these requirements, we can compare the trapping potential Hr with the in-
teraction arising from the transverse pump Hpump. Starting from the initial potential
H = Hpump + Hr without any expansion

N

R LR A A o
H = E];; " sm(kdﬂ)—i-];hwwjuj, )

we found Hpump & 0sclx/ (2kc) and Hr o hiwr. The scattering cross section can be approx-
imated by the fiber cross section osc = A. Inserting the intensity from Equation (6) and the
boundary on the trapping frequency from Equation (8),

th ~ 4wt _ 8wt 1 +4A2/1"2 8 (E)ZEM (10)
(725;?{ YguidPee Yguid 1/ Isat Yguid \ € 2m I/ Isat

Using again the parameters for cesium and setting pee ~ 1072 and wr = 10° Hz, we
obtained the condition hiwr / (0sc Iy / (2ke)) > 3.
Assuming tightly trapped particles, the interaction strength in the Hamiltonian (5a) is
thus limited by
. Usclké(%w ')/guidl/Isat

=G <+ ayme (th

Using the parameters for Cesium given above, we found Q; < 10° Hz.

3. Results

The Hamiltonian in Equation (5a) shows that we can design the effective interactions
between the particles by choosing the intensities and frequencies of the incoming fields
as well as the distances between the trapping positions of the particles. In the following
section, we show how this can be used to simulate a system where particles interact via
some specific physical potential of choice. Here, as a generic long-range interaction, we
chose a Coulomb-type 1/ potential. In Sections 3.2 and 3.3, we discuss how this approach
can be used to design quantum gates or how to entangle the motion of many particles.

3.1. Simulating Coulomb Interactions between Trapped Quantum Particles

The Hamiltonian in Equation (5a) can be used to simulate any symmetric two-body
interaction. In the following example, we will use the effective atom—atom interaction via
the waveguide to mimic the Coulomb interaction between ions.

In principle, one could tune the light fields to mimic a full Coulomb potential, but since
1/r is difficult to approximate in a Fourier series, this would require a very large number
of laser fields. However, if we assume that the ions are also harmonically trapped, we only
have to tune the atom-light interaction to mimic the Coulomb interaction at the position of
the trapped ions.

To simulate the Coulomb (or any other) potential, we first linearized it around the
trapping positions, quantized the motional degrees of freedom and then compared the
terms with the Hamiltonian from Equation (5a). Using this concept, one can even map
higher-dimensional systems of interacting particles to our 1D-system.



Photonics 2021, 8, 228 6 of 19

Figure 2 shows an example where we simulated the interaction between three ions
distributed along a line by a system of particles along a nanofiber. The Coulomb potential
Veou Of N interacting ions along a line of charge g; at distances D;; is given by

coul % Z ! qiqj' (12)
i=1j£i 87‘[60 Di]'

Linearizing around their trapping position, quantizing the motional degrees of free-
dom and ignoring the constant terms, we find g = q; = g;.

~ 2

Heou = ~coulOSC + Hcoulmt + Hcoulrwa/ (13a)
4q25/2 +
coulOSC Z h ( Z (13b)
87'[6 h = D3 4
. 4q25/2 ™
oo = ~ e Y ¥ hara, (13¢)
0 i=1j#i
. 1 N2 —2q2(5’
Aoy = O (a+af —a—af)
coulrwa 87teg ]; (E Dizj ] ] i i
25/2q2 ) . o e
+; s (a]? +a? i a}aj) . (13d)
J7t 1]

This Hamiltonian from Equation (13a) describes tightly trapped ions interacting via a
Coulomb potential.

To simulate this system with particles interacting via a waveguide, we compared the
terms of H,, with the Hamiltonian from Equation (5a). We found that the individual terms
agree if we choose distances d;;, wavenumbers k and interaction strengths () such that:

% 7 €k
4 - _y £ kd;; 14
47'(60?160% Dlzj ;WT COS( l])r ( a)
&7 O
2=V “ZLsin(kd:). 14
2mephwl Df}. ; wT sin(kd;j) (14b)

Note that the distances between the particles in our system, d;; are different from the
distances in the simulated Coulomb system, D;;. Additionally, the harmonic trapping fre-
quencies wr and w’, and the respective trap widths &y and J{, can be chosen independently.

For given distances d;; and frequencies k; = ko + [Ay, Equation (14) becomes a set of
linear equations for the interaction strengths (); = (),. Choosing D1, = D as a reference,

we defined an interaction strength Q) such that

g 1O 15)
2mephwl, D3 wr’
Equation (14) then simplifies to
D3
— == - ko + 1Ay )d;;
207 O;QCOS(( 0+ 1A)dyj)
5 Qy
=——=) =————cos((ko+1Ay)d;), 16a
50;Q(k0—|—lAk) (( 0 k) 11) ( )
D3 Q
— ==Y — sin((ko + [Ag)djj). (16b)
D}, T Q
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These equations form a linear system of equations for the interaction strength depend-
ing on the intensities of the incoming fields. Consequently, we have two equations for
every different distance D;; and thus need the same number of fields. One way to solve
this system is to assume that the particles are equally distributed with d;;,1 = 31¢/8 and
then choose the frequency spacing Ay such that the intensities I; are positive.

d12 d23

ST -6

couI13 _-
0.8 1.6
0.77" 141"
= 0.6 212
§0.5* é‘l.o-'
T o047 N 0.8 -
= 1o - {eo w
é0.3 . 5 06 .
— q iy .4 » .
EO.Z . . EO4~ 5. :
0.11 e 021 « T g » = .
007.‘..‘.::‘:;‘;5! 0.0'-‘--‘::;ii.ilq
10 15 20 25 30 10 15 20 25 30
E()D koD

Figure 2. Schematic mapping of three ions along a line, interacting via the Coulomb force separated
at a distance D onto a system of particles along a nanofiber, with distances d15 and dp3. This can be
achieved by finding the right distances, frequencies and interactions strengths to solve Equations (16).
The lower figures show the eigenenergies of these three harmonically trapped ions with Coulomb
repulsion (blue) in comparison to particles trapped along the fiber with simulated interaction (red) as
a function of the distance between the interacting particles. In the simulation, the particles are trapped
along the fiber at fixed distances d1p = dy3 = 3/8 Ag and the pump laser parameters are adjusted
to mimic Coulomb interaction at arbitrary distances between the ions. We used Ay = 0.7 kg and
0o/Q = 0.34+1.07koD, 01 /Q = 1.16+1.34 koD, Q0 /Q = 1.68 4+ 1.58 kgD, Q3 /Q = 0.74 + 1.4 koD,
with %0 = kodp/ 5} For this figure, we chose Q/ w7, such that every ();/wt < 0.004 is restricted as
required by Equation (11), that is, O/ wr = max; (/) /(0.004kyD)3. The figure on the left side
shows the energies corresponding to the first oscillator state and the right figure shows the energies
corresponding to the second oscillator state.

Although the fiber system is a 1D system, one could even map 2D or 3D systems
on it. In this case, we have N - Np oscillators, with N being the number of ions and Np
the number of dimensions. In general, this means we also need N - Np particles in the
simulation. Here, the first N particles correspond to the interactions between the ions in
the first dimension and the second N particles correspond to the interactions in the second
dimension and so on.

Figure 3 shows three ions arranged in an equilateral triangle. In this case, we have
Np = 2 dimensions and N = 3 ions and thus need six particles along the fiber. The Cou-
lomb potential is then given by

1 qgiq;j
Veoul = Z Z ’ (17)
i=1i#j 87-[60 A /Dlzjx + Dizjy

with Dj; and Djj, being the distances between the ions in the x and y directions and
Dz‘zj = Dz‘zjr + Dizjy' Here, we have to linearize in the x as well as in the y direction. We
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assumed that the oscillators in the x and y directions have the same trapping frequency w?.
To reduce the number of equations, we ignored the fast oscillating terms Hqyj,,,, and found

2

Heou = coulosc + Hcoulintr (18a)
C°“1°5° 2 h ( 87T€ h ]g; 4?;(55/2> <( iz]"‘ - ;D?jy) ﬁ:rxﬁix
+ (D;‘}y ;D?jx) ajy aiy) , (18b)
oty = e i r 4q;ggz (03~ 308, )ata, + (D3, - 303, )atay
ng]YDW (a} aj, +a;,0%, — a8 —al, aiy)). (18¢)

Defining an interaction strength QD= D1, and k; = kg + Ay as in Equation (15), we
have to solve the following 15 equations

g;j (ijx ;Df]y) =— le % sin((ko + 1A)d;, ;. ), (19a)
Ig’;’] (08, -30%.) = - 5 Lsin(ko +180)d), (190)
;gg Dyj,Djj, = Zl;%’sin((ko +180)di;,), (19¢)

X]: ; gz Dyj, Dy, = — Xl: % sin((ko + 1Ak )dii,)- (194d)

A special feature of such a mapping is that the interactions between specific pairs of
particles can be individually tuned or even turned off, as in Figure 3, for the particles at the
bottom of the triangle. This allows one to implement any graph of interacting particles.
Obviously, such systems could not be implemented with actual ions.

X
=Y
§'I' \ ? d 1x2x CI2x3x d3x1 1y2 2y3y
A "%
)/ ) Uixox L Uoy3x L U3x1y 1y2y LUoy3y
’ \\ ﬁ - - - - - - - -
X // X NS - < 3 --- < -
~\: -7~ - 4 ”/
_______ \\:-____»c:-__:*-/__—:i .
Y Vcou113 Y AN S~ - -7
0 Tmeeli--

Figure 3. We simulated the Coulomb interaction of three ions arranged in an equilateral triangle by a
1D particle chain along a nanofiber. The first three particles correspond to the interaction in the x
direction, while the next three particles correspond to the interaction in the y direction. In Figure 4,
we also show an example where the interaction between the ion numbers 1 and 3 is turned off.
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Figure 4. Eigenenergies of three harmonically trapped ions with Coulomb repulsion ordered like a
triangle (blue) in comparison to particles trapped along a fiber with light-induced interaction (red),
as shown in Figure 3, as a function of the distance between the interacting ions. This can be achieved
by finding the right distances, frequencies and interaction strengths to solve Equation (19). In the
simulation, the particles are trapped along the fiber at fixed distances di, = dy3 = 1/3 A, d3s = Ag
and dy5 = dsg = 1/4 Ag and the pump laser parameters are adjusted to mimic Coulomb interactions
at arbitrary distances between the ions with Ay = 0.33 k. ko and Q/wr are defined as in Figure 2.
The figures in the upper row show the eigenenergies when all particles are interacting, while in the
lower figures the interaction between ion numbers 1 and 3 at the bottom of the triangle is suppressed.
The figures on the left side show the energies corresponding to the first oscillator state and the right
figures show the energies corresponding to the second oscillator state. Data values can be found in
the Appendix A in Table Al.

To show the validity of this mapping, we calculated the eigenenergies of the wave-
guide system and compared them with the original Coulomb system (cf. Figure 2 for the
ions along a line and Figure 4 for the ions ordered like a triangle). The energy levels of the
oscillators split up due to the interaction between the particles. As long as the tight-binding
condition for the ions was met, we found excellent agreement for all three systems. Note
that the frequencies to solve Equations (16) and (19) are distributed over a large spectrum
between kg and 3.8 kg and ky and 5.3 ko, respectively. However, other methods to solve the
equations might avoid this issue.

3.2. Bipartite Quantum Gates between Distant Particles

In the previous section, we showed how changing the distances between the traps or
the intensity and frequency of the incoming light fields allows one to tailor the interaction
between the particles. Here, we demonstrate how this can be used to design quantum gates.

Writing the Hamiltonian from Equation (5a) in an interaction picture, we find that the

terms o d;, ﬁ? oscillate with @; and the terms [l%, ﬁ:-rz, i ]-fzi, ﬁffz:-r oscillate with 2@;, while

]
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the terms o ﬁ}r&i, ﬁ;ﬁj do not oscillate. The rapidly oscillating terms average to zero and
thus the Hamiltonian of Equation (5a) simplifies to

N N
- Z ZZth sin (k|xj0 — xipl) a a; = Z hg,]a] aj, (20)
j=li=1 ij=1

with O = ascIk(S(z) /(fikc) and g;; := Y O sin(kdl-]-). Now it is obvious that the interaction
between any particle pair i and j can be turned off by finding frequencies, positions and
intensities such that the coupling g;; vanishes. This is very important for gates as they
should only act on special particles and not on all of them.

Figure 5 shows an example of three particles, where only two particles interact. Choos-
ing the distances and frequencies with k; = ko + [A; and Ay < kg, we have to solve
N(N —1)/2 equations, with N being the number of the particles in the system, and thus
need N(N — 1)/2 frequencies and intensities. Note that the distances have to be chosen
such that they are different for interacting and non-interacting pairs.

1.0
0.8 1

0.6 1

AvivLY

Ot

{n)

Figure 5. Time evolution of the excited motional state occupation for three coupled particles. The blue
line corresponds to the first particle, the orange line to the second particle and the green line to
the third particle. We start from a state |100), where only the first particle is excited, and set the
distances to dip = 3/4 Ay, das = 7/8 Ay, ko = 4/3k; and Q) = 0.82 Q);. Choosing these parameters,
the interaction between the third and the other two particles can be turned off, while the first two
particles still interact with each other. Deactivating the interaction between specific particle pairs is
necessary to implement bipartite quantum gates.

3.2.1. Using the Two Lowest Oscillator States on a Qubit Basis

The simplest way to map the harmonic oscillator to a qubit system is to consider
only the ground |0) and first excited state |1). As the Hamiltonian from Equation (20)
is o ala;, the resulting dynamics do not leave the subspace of these two states. For the
basis (|0)]0), [0)[1), |1)]0) and |1)|1)), the states evolve with the time-evolution operator

U(t) = exp(—iHt/h),

0 0
cos(2gt)  —isin(2gt)
—isin(2gt)  cos(2gt)
0 0

(21)

~

S O O
—_ o O O
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which is equivalent to a mapping

10)]0) — [0)]0) (22a)

|0>|1> — cos(2gt)|0)|1) —isin(2gt)|1)|0) (22b)

|1)|0) — —isin(2gt)[0)|1) + cos(2gt)|1)]0) (22¢)

D) = D). (22d)

In this case, the states |0)|0) and |1)|1) are not affected by the interaction, but we see
oscillations between [0)|1) and |1)|0).
After an interaction time such that gt = r/4 + 2nn, n € Z, U(t) changes to

0 0
N 0 —i
Uswap = _ (23)

0

S O O
o o
- o O O

This corresponds to an i-SWAP gate, which swaps the states of the two particles and
introduces a phase if the two particles are in different states.

Similarly, the square root of an i-SWAP gate (SQiSW) can be implemented by choosing
gijt = 7t/8 + 7tn, n € Z. Then, U(t) changes to

1 0 0 0
. o L _i 9
Usqisw = | */i f 0 (24)
2 V2
0 0 0 1

ﬁsQisw is a universal entangling gate and any quantum computation can be imple-
mented using only single qubit rotations and the SQiSW gate [44]. However, note that
single qubit rotations cannot be implemented in the formalism described here as every
interaction changes the state of (at least) two particles. One would thus need a separate
mechanism to rotate the state of each particle individually.

3.2.2. Coherent States as a Computational Basis

As our individual quantum systems are oscillators, we can go beyond the two-state
approximations and also use higher excited motional states as a computational basis. One
particularly useful approach, which has been put forward and intensively studied for
photons, is the use of coherent states as qubits. Typically, the computational basis is a pair
of coherent states | — &), | + a) [45-48],

=Y "‘f| ), (25)

with a complex amplitude a. Although the two states are not perfectly orthogonal, the over-
lap between | + &) and | — &) is negligibly small for a sufficiently large |x|. For example,

[(+a| —a)|? = e 42 ~ 0,018, (26)

for amplitudes as small as @ = 1. On this basis, quantum calculations can be performed
that are relatively loss and fault tolerant [47], and it turns out that all relevant two-qubit
interactions can be based on the so-called beamsplitter coupling between two sites [48].
The interaction is then simply given by U(t) = exp(i6/2 (414, + 414})), with 6 the polariz-
ation angle between the two interacting beams. It turns out that this is just the dominant
term of light scattering interaction (20), which can be well controlled in terms of strength,
time and space.



Photonics 2021, 8, 228 12 of 19

The subset of coherent states {|a)|a’) }, with |a| = |a| evolves as
et/ ) o'y = | cos(gt) + in’ sin(gt))|a’ cos(gt) + iasin(gt)). (27)
such that
| =) —a) = | = e¥a)| — ') (282)
| —a)|4+a) = | —e & a)|e”8 ) (28b)
| +a)| —a) = |e78%)| — e~ 8ta) (28¢)
|+ a)| 4 a) — |e8ta)|e8a) (28d)

A more detailed calculation of this evolution can be found in Appendix B. As discussed
in [47], this evolution corresponds to a beamsplitter interaction for photonic states. There it
is also discussed that one can use this and a single-qubit rotation to implement a CNOT gate.

In contrast to what we found in Equation (22), we see here that the state | — a)| — «)
can be flipped to | + a)| + a) and vice versa. Note also that the coherent qubits evolve
outside the subspace {| +«), | — )} for gt # nm.

3.3. Entanglement Propagation via Controlled Long-Range Interaction

The discussion above focused on entangling any two particles in a larger system using
quantum gates realized by two-particle gates. Here, we shall briefly investigate how a
larger number of particles can be entangled.

If we only have a single pump field of frequency ky and put all particles at equal
distance nrkg, with an arbitrary integer 7, then no particle will interact with any other
particle as sin (kod;j) = 0. If we now displace one particle by { # nrko, this particle starts
to interact with all other particles, but there are still no direct interactions between the
remaining particles.

However, as shown in Figure 6, this is sufficient to create an effective all-to-all interac-
tion. In this figure, there are three particles where the first and the second particles do not
interact directly, but both interact with the third particle.

This is demonstrated using the mutual von-Neumann entropy,

Si = —tr(piInp;), (29)

with p; being the reduced density matrix of the subsystem i.

0.7 3
A +*
0.6
2
o
£ o5
=
L)
I
L o4
=
(1]
E 03
=1
2
7 02
s
201
0.0 X v
0 1 2 3 4
ot

Figure 6. Entanglement propagation for three particles coupled via a single illumination beam as
a function of time with d; = A¢/2 and dp3 = (1/2+ 0.1)A for the initial state |001). The two
curves show the entanglement entropy of the subsystem containing particles 2 and 3 (blue) and the
subsystem containing particles 1 and 2 (yellow). So, the blue line describes the entanglement between
the subsystem containing particle 1 and the subsystem containing particles 2 and 3, and the yellow
line between the subsystem containing particle 3 and the subsystem containing particles 1 and 2. (A)
corresponds to the state 1/+/3(|001) — #|010) + i|100)), (x) to the state 1/+/2(|01) — [10))|0), (+) to
the state %(—|001) +i]010) —i]100)), and () to the state —|001).
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In the left plot of Figure 6, we start with a pure state, |001). However, after a time
such that cos (Zﬁﬂl sin(kg )t) = 1/+/3, indicated by the triangle, all three particles are

entangled. Later, at the time indicated by the (), particles one and two are maximally
entangled with each other but disentangled from the third particle.

3.4. State Read Out via the Outgoing Fiber Fields

In the previous chapters we discussed how the motional states of the particles can be
manipulated, but how would such a manipulation be measured?

The fields leaving the fiber at the left and right edges contain information about the
states of the particles in the system and by measuring the outgoing intensities one can
determine the states of the particles.

Following the beamsplitter matrix formalism introduced in [19] we find for the amp-
litudes of the outgoing fields to the left E_(x1) and to the right E (xy) of a system with
N particles,

Ie it(rx

E-(x) =) ) [ ooeftim), (30a)
k i=1 0

Eq(x >_Zi I ik(xn—x;) (30b

+(xn) = P . )
k i=1 0

As the particles are well trapped, we can linearize these amplitudes as we did for the
Hamiltonian and find

ZZ e

. 2
—Eszsgelkwn) (ﬁi +af —ay — a{) )

( ek (xi=1) | jgoeik(ximx1) (a ot —a— a{) (31a)

( oK =21) kg ik (en—xi) (aN ot —a;—af ) (31b)

-L Z =
—Eszsgefkw—x:') (aN +at, —a;—at )2>

This way, we can calculate the expectation values for amplitudes and intensities for
any given particle state.

Figure 7 shows an example for the outgoing intensity expectation values for three
particles. It confirms that the outgoing intensity depends on the states of the particles.
Here, the states [100) and |011) cannot be distinguished in the left outgoing intensity, I,
but they can be distinguished in I .

In Figure 8, we plotted the outgoing intensity for the initial conditions as in Figure 6.
From the outgoing intensity, we can learn which particles are entangled and which are not.
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Figure 7. State-dependent light intensities emitted from the fiber to the left I_ and to the right I for
a system with three particles. Here, the distance between the first two particles stays constant with
dp = Ag, while we vary the position of the third particle. Red lines correspond to the ground state
|000), blue lines to the single excited state [100), green lines to a doubly excited state |011) and purple
lines corresponds to the state [111). Note that in the left figure the green and blue lines overlap.
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Figure 8. Average output power [_ emitted on the left side of the fiber and I, on the right side for a
system of two particles as a function of time. The initial condition is the same as in Figure 6. The blue
line corresponds to the outgoing intensity to the left side (I_) and the purple line to the (constant)
outgoing intensity to right (I ). (A) corresponds to the state %(\OOl) —i]010) +i]100)), () to the
state %(|01> — |10)]0), (+) to the state \% (—]001) 4 i]010) — #|100)) and (-) to —|001). The light
leaving the system thus contains information about the entangled motional states of the particles.

4. Discussion

Our theoretical studies suggest that transversely illuminated particles trapped next
to a nanofiber offer a versatile platform for studying and testing a wide range of physical
phenomena. In Section 3.1, we show that one is able to set up simulations for a wide
range of two-particle interactions. Alternatively, possible implementations of bipartite
quantum gates are demonstrated in Section 3.2, where one can switch from a two-state to
an oscillator basis. Certainly, there are still some technical challenges to be met such as,
for example, ensuring sufficient radial confinement and cooling.

To implement complex shaped interactions, one can make use of a range of illumin-
ation frequencies. A central challenge here of course is, as in the example discussed in
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Section 3.1, that one needs a high number of frequencies over a large bandwidth to precisely
control the interactions between the particles. In an experiment, one is generally restricted
to frequencies within a certain bandwidth to ensure sufficient interaction between the
atoms and the light field, which limits the system versatility.

Another practical issue to resolve is the finite back scattering of the fiber field by
the particles, which we assumed to be negligible to arrive at Equation (1). Here, residual
reflection inside the fiber opens additional coupling and interaction channels between the
particles, which have to be accounted for, especially for larger particle numbers. The con-
crete implications are hard to predict in general and will have to be studied in detail for
any specific experimental implementation.

As has been observed in some of the pioneering experiments, vibrations of the nan-
ofiber can heat the particles and affect both the trapping of particles and their interactions.
Luckily, to a large extent, this problem can be overcome by choosing the fiber radius to
be as large as possible and by optimizing the taper at both ends of the nanofiber. In this
case, one can choose special positions of the particles along the waveguide to mimimize
vibration effects [49].

Theoretically, a more precise model should also include back scattering inside the
fiber and a chirality-related scattering control [8,50-53]. This, on the one hand, could be
very challenging to calculate, but, on the other hand, could be a very promising extension
towards even more control possibilities of this system.

5. Conclusions

This work shows how mechanical interactions of particles trapped in the vicinity of
an optical nanofiber can be controlled in a versatile form by choosing the properties of in-
coming transverse pump light. Using spatial and spectral light shaping of the illumination
lasers, the interactions between the particles can be tailored to simulate a wide class of
interaction potentials between the particles.

We studied the low temperature limit using a quantum mechanical description of
the particle motion along the fiber direction at the trap sites and coupled the particles
via a non-local interaction through collective coherent light scattering into the fiber. We
demonstrate that this system can be used to simulate, for example, Coulomb interactions
between harmonically trapped particles with high precision. The idea can be extended
in a straightforward manner beyond linear equidistant chains to effectively mimic a very
general class of geometries including 2D-configurations. Using time-dependent laser
illumination, one can even turn on and off specific interactions between arbitrary particle
pairs simultaneously. By monitoring the spectrum and intensity of the light scattered out
of the fiber ends, ample information on the particle motion can be extracted in a minimally
invasive way.

As another natural application, the system offers varied possibilities to design two-
qubit gates, using not only oscillator eigenstates but also coherent states as a computational
basis. The virtually infinite range of the fiber mediated interaction should allow us to im-
plement larger systems of many qubits, without the requirement of closely spaced trapping
sites, allowing independent pairwise addressing control of quantum gates. As generic
examples, we studied the preparation of multi-partite entangled states by placing the
particles at specific positions with respect to the illumination lasers. Again, monitoring
the outgoing intensity at the fiber ends allows one to continuously determine key prop-
erties of the collective motional states of the particles with minimal perturbation of the
entanglement properties.

So far, most experimental and theoretical works focused on the manipulation of and
the coupling between internal atomic degrees of freedom. However, with the recent imple-
mentation of transverse pumping near a nanofiber [6], we believe the path to manipulating
motional degrees of freedom is promising and open. Note that the general form of the
interaction bears great similarity with the phonon-based motion interaction in ion traps,
which proved to be one of the most successful quantum bus systems. Here, due to the
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virtually infinite range of the fiber-based forces, one can choose a much larger particle
spacing and thus separate individual and collective controls. In addition, the Coulomb
interaction cannot simply be turned off as pump lasers can.
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Appendix A. Data Values for Figure 4

Here, we list the distances, frequencies and interaction strengths used to create
Figure 4 for different shapes of interacting ions.

Table A1. Data values for Figure 4.

Triangle Triangle with Suppressed Interactions

0o/Q 251.5 251.4
0,/0Q 643 642.6
0,/Q 580.5 580.1
03/0Q 72 72
04/Q 0 0
O5/Q 666.2 665.8
O6/Q 1149.7 1149.1
0O,/Q 754.3 754.3
Og/Q 104.7 104.8
0y/Q 115.5 115.3
01p/Q 591.3 590.8
011/Q 724.8 724.5
012/0 392.4 392.4
013/Q 81.2 81.3

Appendix B. Time Evolution of the Coherent States

In this section, we go into more detail on the time evolution of coherent states |a)|a’)
()| o) = e 81 BEH182) o) o), (A1)

with «, & taking values of +a.
Using the definition of a coherent state, and the facts that U(¢)|00) = |00) and that
U(t) is unitary, we can rewrite this equation

7‘,,(‘245‘“/'2 (&) am‘xln

U(t)la)la’) =e

(a(t)am+(t))m(a(t)a;aw))"mm. (A2)

ma=0 Vm!n!

To evaluate B;(t) := U(t)al U (t), we use

ZBi(1) = igl(t) [l + mal, af |07 (1) = igd,, (A3)
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for j # i. The solution of this system of differential equations is

A

A; = af cos(gt) + iﬁ;-r sin(gt). (A4)

This way, the sum in Equation (A2) can be rewritten as

() IXlem

— (ﬁ{ cos(gt) + ial sin(gt))m (iﬁ{ sin(gt) + a3 cos(gt)) n|00>
m,n=0 Ik

_ ea(ﬁ{ cos(gt)+ia} sin(gt))erx’ (iﬁir sin(gt)+a} cos(gt)) |00>

a

— ohila cos(gt)+ia’ sin(gt))eﬁz(a’isin(gt)-i-a cos(gt)) |00) (A5)

As e~ (isin(gt)+acos(gt)) |0) = |0) and the displacement operator is defined as D (&) =
e |al?/2p88" =04, wyith D()|0) = |a), we find the desired result

U(t)|a)|a") = Dy (acos(gt) +ia’ sin(gt)) Do (' cos(gt) + iasin(gt))|0)|0)

= |acos(gt) +ia’ sin(gt))|a’ cos(gt) + iasin(gt)). (A6)
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