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Abstract: Silicon photomultipliers (SiPMs) offer advantages such as lower relative cost, smaller
size, and lower operating voltages compared to photomultiplier tubes. A SiPM’s readout circuit
topology can significantly affect the characteristics of an imaging array. In nuclear imaging and
detection, energy, timing, and position are the primary characteristics of interest. Nuclear imaging
has applications in the medical, astronomy, and high energy physics fields, making SiPMs an
active research area. This work is focused on the circuit topologies required for nuclear imaging.
We surveyed the readout strategies including the front end preamplification topology choices of
transimpedance amplifier, charge amplifier, and voltage amplifier. In addition, a review of circuit
topologies suitable for energy, timing, and position information extraction was performed along with
a summary of performance limitations and current challenges.

Keywords: SiPM; readout electronics; optical detectors

1. Introduction

Silicon photomultipliers are widely used in a number of different applications in the
health, environmental, and scientific discovery fields. Silicon photomultipliers, shortened
to SiPMs, are semiconductor-based optical detectors that, when implemented in silicon-
based semiconductors, image in primarily the visible region of light. Silicon photomulti-
pliers are not significantly affected by magnetic fields and have lower operating voltages
compared with photomultiplier tubes (PMTs). SiPM properties are also relatively con-
sistent over time, and aging does not affect the SiPM’s performance [1–3]. In addition
to this, SiPMs implemented in commercial CMOS foundries allow for the inclusion of
the electronics directly on chip, leading to reduced parasitics and higher throughput and
speed. Due to this, SiPMs are being widely used to replace PMTs and other photodetec-
tors in applications such as Light Detection and Ranging (LiDAR) [4–7], optical imaging
systems [8–12], medical imaging [13–17], fluorescence imaging [18–20], astrophysics and
gamma detection [21–30] where they may be used in different types of experiments such
as time correlated single photon counting [31–33].

A SiPM is an array of single photon avalanche diodes, or SPADs, and quenching
devices. The overall structure is shown in Figure 1a. Each SPAD is biased in reverse
breakdown (Geiger mode), with a quenching device in series with it. When photons are
incident on the SPADs, electron–hole pairs are created and accelerated under the high
electric field. They undergo impact ionization leading to avalanche multiplication and a
large current. The quenching device can be implemented using passive devices (resistor)
or active devices (MOSFET transistor). A simple SiPM equivalent circuit model is shown in
Figure 1b, where the model is divided into avalanching vs non-avalanching cells, and each
cell consists of parasitic devices [34–36]. The model shows only a single avalanching cell.
To account for more cells avalanching at a given time, the model would be adjusted to
have F firing microcells and M non-avalanching microcells where F + M = N. It should
be noted that all cells do not necessarily fire at the same time, and that there may be a small
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delay that is not captured in this model. This model also does not take into account the full
probabilistic nature of the photon-induced avalanche process, but is suitable for designing,
simulating, and characterizing the readout electronics’ performance before committing
to potentially expensive devices or fabrication. The parastic capacitances are due to the
parallel and fringe capacitances of the metal interconnects and the depletion capacitances
of the diodes. The use of devices integrated on the same chip offers lowered parasitics
compared to off chip devices. SiPMs can be either analog or digital. In analog SiPMs,
the output is measured at the common cathode or the common resistor node or through
a capacitor connected at the resistor–SPAD junction (Figure 1a). The other end of all the
capacitors are a common node Vo. This approach offers improved timing performance.
In digital SiPMs, the output of each SPAD is taken directly at the node between the
quenching resistor and diode through its own dedicated readout circuit. In this case,
the output of the SPAD is typically a digital signal. SiPMs have been implemented using
custom fabrication processes and commercial foundry processes. Implementing SiPMs
in commercial foundries can require an initial fabrication run to develop test devices in
order to extract parameters suitable for simulating the model shown in Figure 1b with the
designed electronics. However, in recent years, a few commercial foundries, such as XFAB,
have begun offering single photon avalanche diodes as part of their fabrication options
which will enable easier simulations of the SiPMs and the electronics on the same chip.

Figure 1. (a) A SiPM is an array of SPADs each with its own quenching resistor RQ. For analog SiPMs
the output is the sum of the avalanche currents taken at either the common cathode C or common
anode A. (b) SiPM circuit model showing 1 avalanching cell and (N-1) non-avalanching cells. CQ

is the quenching device’s parasitic capacitance, CD is the diode parasitic capacitance, and CG is the
equivalent parasitics associated with routing. Rin represents the input impedance of the readout
circuit [36].

SiPM-based imaging systems can consist of commercially available SiPMs with dis-
crete off the shelf or custom electronics on a PCB board [37]. However, this approach
generally has higher parasitics which may limit the system speed. It also has optical dead
zones which increase the fill factor and spatial resolution. Integration of the electronics in a
single chip can reduce those parasitics. However, the electronics, particularly if complex
with multiple stages, could potentially use the available area for the optical detector, reduc-
ing the overall fill factor across the chip. Fill factor is typically calculated as the ratio of the
optical active area, typically defined by the depletion region of the pn junction, and the area
of non-optical-related devices such as resistors and transistors as well as any metal routing
combined with the total pn device area. This integration of readout and optical devices
on the same chip can be accomplished by implementing both the SiPM and electronics in
standard CMOS processes [38,39]. In vertical integration, the diodes are in one layer, while
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the other devices are in a separate layer. Thus, this offers the largest fill factor compared to
a 2D implementation [40,41].

In this review, the primary focus is on nuclear imaging which is accomplished using
a scintillator material, such as LYSO (lutetium–yttrium oxyorthosilicate), coupled to the
SiPM. Scintillators emit light when particles, such as gamma rays or neutrons, are incident
on them. A schematic of a typical nuclear imaging system is shown in Figure 2, where
time of arrival, energy, and position are the three quantities of interest. There are a number
of options for integrating the SiPM and scintillator. The exact method will depend on
the material used to fabricate the scintillator. The method of integrating the two will
also depend on the application, as this will drive the accuracy, sensitivity, and resolution
constraints of the entire system. In general, the SiPM and scintillator can be integrated using
commercially available optical coupling gels or grease. More details on the performance
parameters of optical coupling materials can be found in [42]. A typical readout architecture,
whether in integrated circuits or discrete off-the-shelf components, is composed of a number
of modules, and is shown in Figure 3.

Figure 2. Scintillators convert nuclear particles into photons which are then converted by the SiPM
into electrons. These can be amplified and further processed using charge-, current-, or voltage-based
readout electronics.

Figure 3. The typical readout in a nuclear imaging system requires various circuit topologies to
extract time, energy, or position information.

Regardless of the application, the initial SiPM output signal must be amplified be-
fore being further processed and digitized. The three typical approaches for front-end
amplification that are used to readout the SiPM arrays consist of charge, transimpedance,
or voltage amplification and are shown in Figure 4. The paper first gives an overview of the
preamplifier structures. This is followed by a discussion on energy, timing, and position
measurement along with a summary of array readout strategies. Finally our conclusion
summarizes the paper and describes the challenges and possible future paths.
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Figure 4. Typical preamplifier topologies (a) charge amplifier, (b) transimpedance amplifier, and (c)
voltage amplifier.

2. Preamplifier Structure in Nuclear Imaging Systems

The preamplifier is the front-end circuitry between the raw SiPM readout and the
signal processing electronics. Thus, its characteristics directly affect the performance of
subsequent stages. The preamplifier stage can be implemented as either single ended or
fully differential. When implemented as a fully differential amplifier, a common-mode
feedback stage is required to maintain the common mode at a known level [43]. Typical
common mode approaches will take the difference of the average of the amplifier outputs
with the common mode voltage to adjust the tail current or the currents in the active
loads to move the common mode voltage up or down as required. Implementations of
common mode feedback can use either diff amp-based or switch capacitor-based methods.
Reference [44] describes an auxiliary amplifier-based common-mode feedback circuit
(CMFB) that has a phase margin of 62.1◦ and gain margin of 25 dB.

2.1. Charge-Sensitive Preamplifiers (CSP)

A charge sensitive preamplifier has an output voltage that is proportional to the inte-
grated input current. A typical architecture consists of an operational amplifier, a capacitor
in the feedback path, and a reset switch or circuit. The reset circuit discharges the feedback
capacitor, otherwise the output voltage eventually saturates. High input impedance guar-
antees the current flows primarily through the feedback capacitor. Due to the Miller effect,
the feedback capacitor (C f ), appears as large capacitance at the input (Ce f f = (1 + A)C f )
which is in parallel with other parasitic input capacitances. Thus, the gain of this structure
is proportional to the feedback capacitance and is relatively independent of the devices’ ca-
pacitances. The feedback network can be implemented using passive or active components.
The advantage of active feedback (transistors) over passive networks (RC) lies in the active
devices’ lower noise and tunability. In addition, small chip area is required to implement
the circuit. An active feedback with leakage current compensation is highlighted in [45].
Ref [46] uses an active feedback network for gamma-ray tracking detectors with a low
gain, noninverting amplifier between the charge amplifier and the feedback resistance.
Thus, the discharge time constant can be made shorter, while leaving the RC network
unchanged. In another work, an active feedback network is designed upon two different
active feedbacks based on the mosfet devices and a voltage-controlled switch as the reset
network. Using this technique, the device can operate at as high as 4.5 MHz and can read
out 1 to 104 photons with an energy of 1 and 10 keV [47]. In [48], a two amplifier feedback
network replaces the large resistor. One amplifier maintains the DC offset voltage at zero
and the other one constitutes the negative feedback around the main amplifier.

The Opamps used for CSPs can be based on BJT transistors [49,50] or MOSFET and
JFET transistors [51–53]. JFET-and BJT-based opamps are widely available commercially.
In comparison to MOSFET, JFET CSPs provide better noise performance. A noise model for
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JFET CSPs can be found in [51]. The result of this work revealed that, at 10 kHz, the JFET
amplifier’s input-referred inherent noise exhibited 22 dB improvement as opposed to
MOS-based CSPs.

However, MOSFET-based approaches can offer reduced size and the ability to integrate
the SiPM with the amplifier on the same chip [43,54–57]. BiCMOS (Bipolar and CMOS on
the same die) technologies are less radiation-hard compared to CMOS [57], and in general
CMOS is less radiation tolerant than SOI (Silicon on insulator) [58,59]. The irradiation
tests in [57] demonstrate that, with high input gamma-rays, the CSPs output amplitude
signal and the SNR reduces up to 34.3% and 11.6 dB. Moreover, the fall time also increases
significantly from 201 ns to 1730 ns. This research also indicates that MOS transistors are
more tolerant to radiation sources and provide better performance than BiCMOS.

A challenge for CMOS-based CSPs is the relatively large area capacitor. A typical
capacitor may be 10 times as large as typical analog sized transistor. The capacitor has to
discharge periodically. This can be performed using feedback resistors, transistors and other
novel active devices [43,45–47]. Passive resistance is common; however, the large value
has implications on the opamp DC characteristics and requires large area if implemented
in integrated circuits. R f can be implemented with MOS transistors to reduce area and
provide greater design flexibility [60]. The offset, bandwidth, power consumption, dynamic
range, and gain of CSP, are functions of the feedback components [44,48,61,62]. Figure 5
shows a comparison of the gain and bandwidth of characteristics of a few implemented
charge amplifiers.

Figure 5. Gain and bandwidth of charge amplifiers proposed in [44,57,63–67].

2.2. Transimpedance Preamplifier

The conventional preamplifier used in nuclear imaging systems comprises a charge
sensitive and shaping amplifier [68]. An ideal nuclear imaging system needs to be fast, with
a small rise time and dynamic slew rate correction and be low power and small sized for
radiation detection readout [69,70]. However, even with design techniques, the CSP’s slew
rate is in the microseconds range [71]. In practice, CSP and the shaping amplifier can be
substituted with a transimpedance amplifier, where the current can be directly converted
into an output voltage [72].

In general, a typical TIA implementation using off the shelf discrete components is a
feedback resistor with an amplifier. For large gain, the input resistance, Rin=R f /(A + 1), is
minimized. The TIA input slew rate is a function of the input RC time constant. Lower RC
gives a higher slew rate, and is suitable particularly for high count rate applications [68,72–77].
The input impedance of a transimpedance amplifier is,

Zin =
R f

gmRo
+

sR f Co
gm

=
R f
gm

(
1

Ro
+ sCo

)
(1)

where R f is the resistor in the feedback path, gm is the transconductance gain, C0 is the
internal capacitance of amplifier, and R0 is load resistance. This can cause oscillations when
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coupled with the large input capacitance from a SiPM. To mitigate this, a capacitance is
placed in parallel with the feedback resistor. The large feedback resistor may be imple-
mented by an MOS device operating in triode [78,79]. In order to detect and transform
nanosecond-wide signals, the TIA requires a large bandwidth. A TIA’s bandwidth can be
written as,

BWTIA =

√
GBW

2πRFCD
(2)

where BWTIA is the bandwidth, RF is the resistance, GBW is the gain bandwidth product,
and CD is the detector capacitance. The GBW is a constant for the open loop opamp or
OTA structure. In [71], in order to increase the bandwidth, two inductors are series with the
TIA. There are multiple approaches to implement a suitable TIA for nuclear imaging [80].
Reference [74] proposes a TIA based on second generation voltage conveyors (VCII). This
current conveyer has been implemented using discrete components [75,76]. VCII, compared
to the first generation, provides variable front-end gain and low impedance at the input of
VCII that helps to decrease the effect of usually large output parasitic capacitance associated
with SiPM.

Common base and common gate amplifiers provide low input impedance and do
not require feedback resistances. These single transistor amplifier architectures may be
modified into regulated structures or incorporate cascoding to improve performance [80,81].
In order to achieve the best performance with a regulated common gate TIA, such as
that proposed in [80], the DC output voltage of the TIA needs to close to the overdrive
voltage, VDSAT , of the input transistor and the load resistor needs to be approximately ten
times larger than the drain to source resistance. Similar to CSPs, TIAs can also be made
of technologies other than CMOS. The first TIA using organic thin-film transistors was
proposed in [79], where the TIA was based on a voltage-controlled resistor and common
gate input stage.

A multi-channel readout based on a transimpedance topology was proposed in [73]
(Figure 6), where in order to prevent the possible oscillations, a series resistor (Rs) was
placed between the common anode of the SiPM and the input port of the operational
amplifier. In this design, the inductors represent the parasitic inductances presented by the
metal lines, wires, and printed circuit board. In order to modify the offset, output signal
tail and the undershoot, [82] uses trimmers. A TIA implemented in SiGe BiCMOS that
used a transformer-based input stage for improved frequency response was proposed in
response [83]. Figure 7 shows the gain and bandwidth of a few transimpedance amplifiers
that have been implemented.

Figure 6. A multi-channel SiPM’s readout based on transimpedance topology, proposed in [73].
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Figure 7. Gain and bandwidth of transimpedance amplifiers proposed in [68,71,76,81,84–88].

2.3. Voltage-Sensitive Preamplifiers

Robustness, simplicity, and ease of implementation and simulation make the voltage
amplifier an ideal choice of readout circuit when dealing with unknown SiPMs. However,
this is sometimes achieved at the cost of implementing a large shunt resistor, compared to
the TIA design. Large shunt resistors impose higher RC time constants which correspond
with wider output pulses. In addition, the gain of this structure depends on the signal size
and the currents flow through the device [73].

The use of a voltage amplifier requires a resistor in series with the SiPM. The voltage
developed across the resistor is then amplified. A typical implementation using com-
mercially available off the shelf parts may use the standard inverting or non-inverting
configuration where the gain is a function of the resistive feedback network (Figure 4c).
The size of Rload affects the input DC bias of the opamp [89]. The total input capacitance,
formed by the parallel combination of parasitic capacitance of the SiPM and amplifier, Cd
and Cin and the total input impedance, form a time constant that should be minimized
such that the fastest input signal can be recognized [90].

In some applications further processing may require the output voltage to be converted
back into current. To avoid multiple conversions, topologies such as that in Figure 8a have
been proposed [91]. To achieve better performance, the current mirror that is used in [91]
can be replaced with improved topologies with higher output impedance by cascoding
or regulated drain structures. These alternative topologies employing feedback such
as Figure 8b,c have also been implemented in 350 nm CMOS processes [92], where (b)
achieves higher dynamic range and tunability and (c) is optimized for bandwidth and
input impedance. In [77] the voltage amplifier is coupled with TIA. In this method,
the width of the input current pulses is controlled by the circuit time constant which can
be adjusted by TIA’s feedback network. Figure 9 shows a comparison of the gain and
bandwidth of voltage amplifiers implemented in the literature.

Figure 8. (a) The current mode readout circuit proposed in [91]. Alternative current mode readout
toplogies for the current buffer (b,c) where i represents the SiPM current [92].
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Figure 9. Gain and bandwidth of the voltage amplifiers proposed in [90,93–98].

3. Energy Measurements

The photon energy of an event (defined as photons being incident on the SiPMs), is
proportional to the SiPM’s charge or current pulse, and is an important characteristic. The
peak signal provides information on the energy of the photons. However, regardless of
readout type, energy resolution may be affected by the scintillator material, scintillator
thickness [99], and other physical mechanisms such as ballistic deficit, pulse pileup, or base-
line fluctuation [25,100–104]. Table 1 shows a relative comparison of the energy resolution
using different scintillator materials. The total photon absorption depends on the type and
thickness of material and incident energy of photons. For example, four different scintil-
lators, CsI(Tl), NaI(Tl), LaBr3(Ce) and GAGG(Ce), showed a direct relationship between
energy resolution and material type and thickness [99]. Thus, it is important to take the
scintillator material into account when characterizing the full system. In addition, since the
scintillator is the front end transducer, its properties will limit the overall imaging system
characteristics. Figure 10, shows readout circuit topologies and scintillators.

Table 1. SiPM readout energy resolution based on Scintillator type.

Reference [105] (2016) [106] (2019) [107] (2017) [108] (2019) [108] (2019)

Scintillator LaBr3:Ce CeBr3 LaBr3(Ce) LaBr3(Ce) LaBr3(Ce) co-doped with Sr

SiPM Custom SensL FBK FBK FBK

Resolution % 4 % 4.54 % 3.19 % 3.4 % 2.6
at 661 KeV at 661 keV at 661 keV at 661 keV at 661 keV

Figure 10. Readout circuits used in nuclear imaging with various scintillator materials, from 2012 to
2021 [30,108–135].

Pulse pileup occurs when the time distance between the two or more pulses is less than
the pulse resolution time [136]. Resolution time is the precision of a SiPM in determining
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the arrival time of a single photon. Pulse pile up can be either head pileup or tail pileup.
Head pileup occurs when the rising edge of a second pulse come to pass the rising edge
of the first pulse. Tail pileup occurs when the rising edge of the second pulse occurs on
the falling edge of the first pulse [137]. These pileups can result in a shift of the baseline
voltage [54]. Pulse pileup can be mitigated by rejection, filtering, or a transformation
algorithm. Many of these are implemented in software or using off chip microprocessors
and FPGAs.

The shaper stage (also known as shaper filters), which may be present in energy,
timing, and position measurement [138,139], are used to tackle the problem of pulse
pileup. Gaussian-based architectures are popular shaper implementations [140]. Frequency
bandwidth limitations can improve the sSNR [141]. However, bandwidth limitation, may
cause negative overshoot for large shaping parameter [138]. Quasi-Gaussian or trapezoidal
shapers have also been implemented [139]. Low-pass filters, for example using a Sallen–
Key filter, can calibrate for drift and improve signal-to-noise [142]. Shapers have also
been implemented using digital CR− RCm [143]. The pulse pile up problem needs to be
investigated at high input rate application. This problem can be addressed by implementing
pole zero cancellation circuits (PZC). An example of this type of circuit can be find in [54],
where the PZC has been implemented by twenty PMOS transistors and a 24 pF capacitor. In
addition, to tackle the problem of pile up, Pole zero cancellation eliminates the undershoot
and allows for higher rate counting [139,144–146].

The shaper’s output signal is passed into a sample and hold circuit (also called a
peak stretcher) to store the peak value of the signal before digitizing [147]. Analog to
digital converters (ADCs) are also used in energy measurement systems. They range
from successive approximation (SAR), delta-sigma, dual slope, pipelined and flash archi-
tectures [25,148–150]. These architectures offer various advantages in speed, resolution,
power, and area on chip. ADCs in general are power hungry and can be area intensive on
chip. Thus, other digitization and quasi-digitization strategies such as time-over-threshold
(ToT) circuits may be employed [151]. In a ToT circuit, the difference between two time
stamps where the signal crosses a pre-defined threshold is stored. This can be implemented
with time to digital conversion [152,153]. Integration of readout electronics and digital
SiPM, within a single chip can make them noisier than analog SiPMs. This is because the
digital SiPMs will typically be in standard CMOS where no special efforts have been made
to optimize the process for optical detection [154]. Many commercially available off the
shelf SiPMs are analog and are optimized for optical response. For analog and digital SiPMs
both implemented in CMOS, the noise of the optical detecting device remains the same
and there are distinct advantages and disadvantages for the digital or analog approach.
Customized analog SiPMs have better noise performance for energy measurements as the
energy resolution depends on the optical performance, i.e., the statistical properties of
photon-induced charge generation. [155].

4. Timing Measurements

In addition to energy, the time of arrival of pulses, corresponding to events, is also of
interest [156]. Figure 11 shows the response of various types of events. Time of flight mea-
surements determine the distribution of the time difference between events. Uncorrelated
signals will have a flat time difference distribution. Correlated signals, such as those which
occur in prompt coincidence, delayed coincidence, or time of flight experiments, show a
delta or spike-shaped distribution [157–159]. Noise in time of flight is controlled by the
coincidence resolving time [160]. Time domain information can always be converted to
frequency domain. This can be done either in software or in hardware using either analog,
digital, or a combination of analog and digital techniques.
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Figure 11. Time measurements due to a source or sources, (a) uncorrelated events (b) prompt
coincidence (c) delayed coincidence (d) time of flight [157].

Figure 12a shows the use of a discriminator (comparator) to determine if an event
occurred [161,162]. Delay units to enable proper comparison of the time stamps [163,164],
time to amplitude converters (TAC) [165], and multi-channel analyzers [166,167] are re-
quired to accurately report the timing. Figure 12b filters the events within some range
before the discriminator and improves the signal to noise [168]. Each of these approaches
can be implemented using discrete off the shelf components or implemented using custom
integrated circuits fabricated in commercial foundries. In all cases, the analog modules
contain amplifiers and filters, along with the digital and quasi-digital blocks, such as
comparators, and encoders [139,169–173]. Depending on the scintillator type and material,
such as LGSO, LYSO, GAGG, LuAG, YAG, LSO, and LFS, various types of SiPMs may have
different time resolutions [174]. The required resolution depends on application, where,
for example, in PET, sub 10 ps is a research target. The maximum achievable coincidence
time resolution (CTR), based on scintillator statistics, can be estimated using [175],

CTR = α

√
τrτf

n
(3)

where τr and τf are the scintillation rise and fall time, n is the number of photons, and α
is a constant. For example, for an output light of between 27.9 and 49.5 kphoton/MeV
measured upon gamma CS173 excitation, the best achievable CTR with Cerium-doped
GAGG:Ce scintillator was 87 ± 2 ps [161]. The other factor that has an influence on
time resolution is the readout electronic noise. [156] proposed a passive compensation
circuit for device capacitance to reduce the effect of electronic noise on time resolution.
This technique provided no injection of noise from the SiPM to the readout circuit and
improved the single photon time resolution. In some other work, different time resolution,
ranging from less than 80 ps [174] up to more than 330 ps FWHM [176] can be found.
In [177,178], improved time resolution is achieved by connecting multiple SiPMs in series
creating multiple scintillation counters. For a readout circuit, consisting of an N counter,
the resolution improves by a factor of 1/

√
N.
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Figure 12. (a) Time to analog conversion [179], (b) time spectrometer with a differential ampli-
fier [168], and (c) definitions of the shaping and peaking times [180].

To determine the time of an event, comparators and digital gates may be used [181,182].
Comparators type (or discriminators) can be constant fraction (CFD) or leading edge
(LED) [183]. However at a lower threshold, LED provide better time resolution [184,185].
Comparators can have errors due to jitter, long term and short term drift, and variation
in the shape and amplitude of the input pulse [186]. This can be compensated for by 1-D
techniques such as linear or logarithmic compensation or 2-D compensation techniques
like artificial neural networks and polynomials [187,188]. Time resolution is determined
with the full width half maximum of the time spectrum [189]. To achieve the best time
resolution, [180] we suggest setting the shaping time at 61% of the pulse amplitude. where
the peaking time needs to be approximately of three to five times greater than the shaping
time (Figure 12c).

Delays can be generated using coaxial cables, active circuits or lumped ele-
ments [148,190,191]. However, the use of coaxial cables may also attenuate, frequency
shift or reflect the signal. Time to amplitude converters (TAC) generate an analog
output whose amplitude is proportional to the measured time interval. They may be
implemented using a purely analog, digital or mixed signal approach [179,192,193].
The time resolution is limited by the accuracy of the timing discriminators [145,180].
As with the energy measurements, ADCs may be replaced by time to digital converters
(TDC) [194,195].

Both analog and digital readout approaches can have similar time resolution [196–199].
Due to increased power consumption, large numbers of readout channels, and challenges in
digital realization [200], analog SiPMs are more prevalent in nuclear imaging applications.
Figure 13 shows CTR and energy resolution for different front-ends.

Figure 13. Time and energy resolution of different readout topologies charge amplifier (CSP),
transimpedance amplifier (TIA) and voltage amplifier [111–113,116–118,120,121,135,201].
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5. Position Sensing

When implemented in integrated circuits, the inherently asynchronous and event-
based nature of the signal makes them suitable for employing the asynchronous readout
such as in address event representation (AER) protocol [202–204]. This has been imple-
mented in a standard CMOS technology with a digital SiPM architecture [205]. By com-
parison of the arrival time of two or more pixels, from the AER communication protocol,
position information also can be extracted [206,207] (Figure 14).

Figure 14. (a) SPAD pixel within SiPM and (b) an actual AER protocol [204].

For conventional analog SiPM arrays, typical position sensing may require a large
number of readout channels and may show limited position resolution due to the SiPM’s pixel
size [208]. To achieve higher spatial resolution, artificial neural networks [131,209] and novel
position-sensitive SiPM (PS-SiPM) fabrication processes [210,211] can increase the position
sensing performance. Multiplexing [25,212] and multi-channel integrated readouts [164,213,214]
simplify the readout and improve performance characteristics (Figure 15). In this figure,
each diode symbol represents a SiPM. Position detection has also been performed using
multiple cameras, algorithms to determine the center of gravity of signals spread across the
pixels, Compton scattering, and time of flight measurements, [215–220]. In many cases these
approaches involve significant use of signal processing software and thus approaches that
utilize microprocessors on the same chip as the SiPM or with 3D integration can potentially
offer improved readout speed and throughput.



Photonics 2021, 8, 266 13 of 23

Figure 15. Position sensing readout based on a multiplexing circuit [212].

6. Array Readout

For small arrays, each channel may be read independently. Each can have its own
amplifier and data acquisition channel [221–224]. Larger arrays require multiplexing and
processing to reduce complexity and cost [225–227]. Multiplexing may reduce the capa-
bility to discriminate several events or scatter interactions and correct for anode/pixel
non-uniformities [228]. Multiplexing of multiple SiPM sensors using resistor networks can
lead to reduced timing performance [25]. Common multiplexing schemes include Anger,
discretized positioning (DPC) [229], row/column or crosswire readout [230], and symmet-
ric charge division multiplexing (SCD) [231]. Row/column readout can be standard X-Y or
scrambled X-Y, where the devices are placed in series-parallel connections. In standard X-Y
readout, all cathodes in each row and all anodes in each column are shorted. For a case with
nine SiPM arrays, with each of those consisting of 16 pixels, the readout electronics require
12 threshold comparators to detect when an event has occurred. However, using a scram-
bled approach, where the cathodes of all the devices in each array are connected together,
nine threshold detector channels can be used. Since the average energy, time, and position
resolution is degraded with noise [212,232], reduction in the number of SiPMs connected
to a single readout channel results in less noise and better system performance [233].

7. Conclusions

The readout architecture of a SiPM-based array will be a function of application.
Applications range from those which have weak light sources to those with stronger
incident light sources. Depending on the application, either digital or analog SiPMs can
be used. Digital SiPMs digitize at the microcell level, after which any digital system
such as an FPGA, complex logic, or microprocessor can be used to process the signal.
For many applications, an analog SiPM is used instead due to the increased optical active
area. The readout of analog SiPMs typically targets energy, time, or position of interaction.
The readout electronics can be implemented using commercial off the shelf components or
custom integrated circuits. Both options add constraints that must be taken into account
for a given application and SPICE models may be used to predict system performance.
Discrete electronics will typically have larger parasitics and thus operate at slower speeds
than systems where the devices and electronics are integrated on the same chip.

The main challenges in SiPM readout design can be broken down into three cate-
gories, the readout circuit, packaging and interfaces, and signal processing. In general,
an imaging system consists of hundreds of SiPMs with many readout circuits that are
typically multiplexed to reduce the power and complexity. However, multiplexing can
impair the SiPM’s performance. Strategies may involve sharing circuits between pixels
or adding in circuits for calibration. At the packaging and interface level misalignment
and edge effects may affect energy, time, and position resolution. Post fabrication of a
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scintillator material directly on top of the SiPM is a possible solution to this. However,
wafer dicing will be subject to inaccuracies and new materials and fabrication protocols
are germane to any integration of a scintillator and optical detector. Processing of the
signal can be performed after digitizing using analog to digital converters, microprocessors,
and software. These are all very power-hungry and space-intensive. Readout using in-pixel
digitized approaches along with asynchronous readout can help reduce complexity. Finally,
the use of 3D integration can allow for increased pixel fill factor (i.e., increased optical
active area) while still allowing integrated circuit sized readout electronics.
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