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Abstract: Wide field-of-view (FOV) and high-resolution (HR) imaging are essential to many appli-
cations where high-content image acquisition is necessary. However, due to the insufficient spatial
sampling of the image detector and the trade-off between pixel size and photosensitivity, the ability of
current imaging sensors to obtain high spatial resolution is limited, especially under low-light-level
(LLL) imaging conditions. To solve these problems, we propose a multi-scale feature extraction
(MSFE) network to realize pixel-super-resolved LLL imaging. In order to perform data fusion and
information extraction for low resolution (LR) images, the network extracts high-frequency detail
information from different dimensions by combining the channel attention mechanism module and
skip connection module. In this way, the calculation of the high-frequency components can receive
greater attention. Compared with other networks, the peak signal-to-noise ratio of the reconstructed
image was increased by 1.67 dB. Extensions of the MSFE network are investigated for scene-based
color mapping of the gray image. Most of the color information could be recovered, and the similarity
with the real image reached 0.728. The qualitative and quantitative experimental results show that
the proposed method achieved superior performance in image fidelity and detail enhancement over
the state-of-the-art.

Keywords: super resolution; low-light-level; deep learning network; multi-scale feature extraction

1. Introduction

Super-resolution (SR) algorithms [1,2] serve the purpose of reconstructing high-
resolution (HR) images from either single or multiple low-resolution (LR) images. Due to
the inherent characteristics of the photoelectric imaging system, normally, it is challenging
to obtain HR images [3]. In this regard, the SR algorithm provides a feasible solution to
restore HR images from LR images recorded by sensors. As one of the essential sources of
information acquisition in a low illumination environment, a low light level (LLL) imaging
detection system [4] employs high sensitivity optoelectronic devices to enhance and record
weak target and valuable environment information.

Unfortunately, due to the insufficient spatial sampling of the image detector and the
trade-off between pixel size and photosensitivity, the ability of current imaging sensors to
obtain both high spatial resolution and a large field-of-view is limited [5]. However, in tra-
ditional optical imaging, obtaining a slight improvement in imaging performance usually
means a dramatic increase in hardware cost and, thus, causes difficulty in engineering
applications.
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The emergence of computational imaging [6–8] ideas has reversed this circumstance,
drawing an exceptional opportunity for the remote sensing field. Image resolution is no
longer only dependent on physical devices and, in turn, on the joint design of front-end
optics and back-end image processing, to achieve sub-pixel imaging. With the development
of deep learning methods, single image SR [9] has made significant progress. Utilizing this
method, the non-linear function can be generated more effectively to deal with complex
degradation models.

To date, image SR methods can be generally classified into traditional multi-frame
image SR methods [10,11] and deep-learning-based methods [12–14]. In the conventional
passive multi-frame image SR imaging algorithm, multiple frames with relative sub-pixel
shifts based on the target scene are formed by the random relative motion [15–17] between
the target and the sensor. Similarly, scholars proposed using computational imaging
methods to reconstruct an HR image from one or more low-resolution images. However,
non-ideal global panning, alignment errors, and non-uniform sampling are still problems
in multi-image reconstruction algorithms.

The appearance of the convolutional neural network [18,19] reversed this situation.
Deep-learning-based methods focus on exploiting external training data to learn a mapping
function in accordance with the degradation process [20]. Its extraordinary fitting ability
and efficient processing algorithms have enabled it to be generally utilized. Similarly,
the processing method of single-frame image SR based on deep learning is not omnipotent,
which has the disadvantages [21] of a slow training speed, poor network convergence,
and the demand for an abundant amount of data. Therefore, how to achieve high speed,
accurate, and effective image enhancement is still an essential issue to be solved.

In order to solve the above problems and make full use of the advantages of deep
learning networks in feature extraction and information mapping, an SR neural network
based on feature extraction is proposed, as shown in Figure 1. Compared with other
single image SR methods, the significant advantage of MSFE is that it can draw out
otherwise available information from the different scale observations of the same scene.
The innovations of this paper are mainly in the following four aspects:

1. High-frequency information and low-frequency components can be fused in different
scales by applying the skip connection structure.

2. The channel attention module and the residual block are combined to make the
network focus on the most promising high-frequency information, mostly overcoming
the main locality limitations of convolutional operations.

3. The dimension of the extracted high-frequency information is improved by sub-pixel
convolution, and the low-frequency components are fused by element addition.

4. The network structure is expanded to realize grayscale image colorization and procure
HR color images with a low-cost, LR monochromatic LLL detector in real-time.

The rest of the paper is structured as follows. In Section 2, some classical super-
resolution imaging methods are briefly reviewed. In Section 3, the basic structure of our
network is described in detail. In Section 4, the method of dataset building, details of
training, comparison of the SR results, and color imaging results are presented. Section 5 is
a summary of the article.
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Figure 1. Schematic diagram of super-resolution reconstruction. (a) Multi-frame subpixel offset (b) Pixel super-resolution
diagram (c) Super-resolution of a deep neural network.

2. Related Works

The most common SR method is based on interpolation, including bicubic linear
interpolation and bilinear interpolation. Although the speed of these methods is perfect,
each pixel is calculated according to the surrounding pixels, which only enlarges the
image and cannot effectively restore the details of the image. The multi-reconstruction
method [22] is to establish an observation model for the image acquisition process and
then achieve SR reconstruction by solving the inverse problem of the observation model.
However, the degradation model is often different from the actual situation, which cannot
predict the image correctly.

The super-resolution method based on the sparse representation (SCSR) method [23,24]
treats HR images and LR images as a dictionary multiplied by atoms. By training the dictio-
nary, HR images can be obtained from multi-LR images. Insufficiently, it is evident that the
dictionary training time is longer, and the reconstructed image has an apparent sawtooth
phenomenon. Another key technology to realize SR reconstruction is micro-scanning SR
imaging [25,26], which is realized by the vibration of the detector or the rotation of the
scanning mirror or the flat plate to obtain the steerable displacement between the optical
system and the sensor.

In addition, the method of controlled micro scanning can simplify the steps of image
registration and improve the accuracy of the reconstruction results. However, sub-pixel
scanning requires HR optoelectronic devices, such as motors and piezoelectric drivers,
dramatically increasing the cost and complicating the whole imaging system. Therefore,
the traditional image SR reconstruction method [27] still has the limitations of multi-frame
image reconstruction, algorithm complexity, a complex imaging system, and a precise
control system.

Learning-based methods build upon the relation between LR-HR images, and there
have been many recent advancements in this approach, mostly due to deep convolutional
neural networks. In the pursuit of higher image quality, the super resolution convolutional
neural network (SRCNN) [28] applied a convolutional neural network (CNN) to image SR
reconstruction for the first time, and the SR images obtained were superior to traditional
SR algorithms.
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Based on SRCNN, the fast super-resolution convolutional neural network (FSRCNN) [29]
was ] proposed, which directly sent LR images to the network for training and used
a deconvolution structure to obtain reconstructed images. The improved network not
only improved the depth of the network but also significantly reduced the amount of
calculations and improved the speed of calculations. In deep residual networks (Res
Net) [30], the residuals were directly learned through skip connections, which effectively
solved the problem of gradient disappearance or explosion in deep network training.

Next, the Laplacian pyramid networks (LapSRN) [31,32] realized parameter sharing in
different levels of amplification modules, reduced the calculation amount, and effectively
improved the accuracy through the branch reconstruction structure. The wide activa-
tion super-resolution network (WDSR) [33] ensured more information passing through
by expanding the number of channels before the activation function and also provided
nonlinearity fitting of the neural network.

After that, the channel attention (CA) mechanism was used in deep residual channel
attention networks (RCAN) [34], which can focus on the most useful channels and improve
the SR effect. However, to achieve the additional benefits of the CNN, a multitude of
problems needs to be solved. For the most current super-resolution imaging methods, if the
input image is a single channel gray image, the output image is also a single channel gray
image. Human eye recognition objects can be identified by the brightness information and
color information.

Colorizing images can produce more completed and accurate psychological repre-
sentation, leading to better scene recognition and understanding, faster reaction times,
and more accurate object recognition. Therefore, color fusion images [35] can make the
naked eye recognize the target more accurately and faster. Directed against the above prob-
lems, this paper proposes a convolution neural network based on feature extraction, which
is employed to SR imaging of LLL images under dark and weak conditions to achieve HR
and high sensitivity all-weather color imaging. The network uses a multi-scale feature
extraction module and low-frequency fusion module to combine multiple LR images.

3. Super-Resolution Principles

According to the sampling theory, an imaging detector can sample the highest spatial
frequency information that is the half of the sampling frequency of its sensor. When the
sensor’s pixel size becomes the main factor restricting the resolution of an imaging system,
the simplest way to improve the imaging resolution is to reduce the pixel size to enhance
the imaging resolution. However, in practical applications, due to the limitations of the
detector manufacturing process, the pixel size of some detectors, such as the LLL camera,
cannot be further reduced.

This means that, in some cases, the LR image will lose some information compared
with the HR image; inevitably, there will exist the pixel aliasing phenomenon. Therefore,
the sampling frequency of the imaging sensor will be the key factor to limit the imaging
quality. The SR method improves the spatial resolution of the image from LR to HR.
From the perspective of imaging theory, the SR process can be regarded as the inverse
solution of blur and down-sampling. SR is an inherently ill-posed problem in either case
since multiple different solutions exist for any LR image. Hence, it is an underdetermined
inverse problem with unique solutions. Based on a representation learning model, our
proposed methodology aims to generate a super-resolved image function from the HR
image to the LR image.

3.1. Image Super-Resolution Forward Model

A flow chart for the observation model is illustrated in Figure 2. For an imaging
system, the image degradation process is first affected by the optical system’s lens, leading
to the diffraction limit, aberration, and defocusing in an optical lens, which can be modeled
as linear space invariant (LSI). Unfortunately, it is more problematic that pixel aliasing will
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occur if the detector pixel size exceeds a specific limitation, making the high-frequency
part of the imaging object unavailable in the imaging process.

It is inevitable to introduce the subsampling matrix, which generates aliased LR images
from forward-generating the blurring HR image into the imaging model. Conventionally,
SR image reconstruction technology utilizes multiple LR observation images to reconstruct
the underlying HR scene with noisy and slight movement. Consequently, assuming a
perfect registration between each HR and LR image, we can derive the expressions of the
observation HR image, sampled scene x in matrix form as:

y = BDx + n (1)

where D is a subsampling matrix, B typifies a blurring matrix, x symbolizes the desired HR
image, y represents the observed LR image, and n is the zero-mean white Gaussian noise
associated with the observation image. Different from the traditional multi-frame super-
resolution imaging, the deep learning reconstruction method establishes the mapping
relationship between the LR image and the HR image. Through the information extraction
of different dimensions, the problem of image pixelation imaging is effectively solved,
and super-pixel resolution imaging is realized.

Continuous

Scene Continuous to 

Discrete Without 

Aliasing

Desired HR Image x

Sampling

-Translation

-Rotation, Etc.

Warping

kth Warped 

HR Image xk

-Optical Blur

-Motion Blur

-Sensor PSF, Etc.

Blur

Undersampling 

(L1,L2)

Down Sampling

Noise(nk)

kth Observed 

LR Image yk

Figure 2. Image super-resolution forward model.

3.2. Network Structure

An overview of the RAMS network is depicted in Figure 3. The whole network is a
pyramid model, which is cascaded by two layers of the model, and each layer of the model
realizes twice the LR LLL image feature extraction. Vertically, the model is composed of
two branches, the upper part is the feature extraction branch of the LLL image, and the
lower part is the reconstruction branch of the LLL image.

The feature extraction branch obtained the high-frequency information of the corre-
sponding input image. High-frequency features are more helpful for HR reconstruction,
while LR images contain abundant low-frequency information, which directly forwards
to the network tail-ends. The reconstruction branch obtains the up-sampled image cor-
responding to the size of the HR image. In order to express the SR of the network more
clearly, the network model can be defined as:

Iout (x, y) = Fω,θ [ILR(x, y)] (2)

where Fw,θ [•] represents the nonlinear mapping function of the network, ω and θ, re-
spectively, depict the trainable parameters of weight and deviation in the network, ILR
describes the LR LLL input image, and Iout typifies the HR image predicted by the network.
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The specific convolution layer number and parameters of the super-resolution network
structure are shown in Table 1.

Table 1. The number and parameters of convolution layer in the super-resolution network structure.

Layer Numbers

Convolution layer (3 × 3 × 32) 10
Convolution layer (3 × 3 × 192) 8
Convolution layer (3 × 3 × 4) 4
Sub-pixel convolution layer 4

Deconvolution layer (2 × 2 × 32) 1
Global Average Pooling layer 8

Fully connected layer (FC) (24) 8
Fully connected layer (FC) (192) 8

The main task of low-level feature extraction, high-level feature extraction, and feature
mapping is mainly to collect the promising compositions from the input ILR image into
the CNN network and to express all information into feature maps. It is noteworthy
that the corner, edge, and line can be dug out from the feature maps. The attention
mechanism module focuses on the most promising features and reduces the interference of
irrelevant features.

We formulate the procedure as Fw,θ [•], which consists of four parts:

1. Low-Level Feature Extraction: This step aims to extract the fundamental information
from the input ILR image and forward it as a series of feature maps.

2. High-Level Feature Extraction: In this operation, through a convolution operation of
different dimensions and channel attention mechanism module, the calculation of the
network is mostly focused on the acquisition of high-frequency information.

3. Features Mapping: In order to reduce the hyperparameters, the mapping process
from high-dimensional vector to low ones is designed.

4. Reconstruction: This operation integrates all the information to reconstruct an HR
image Iout .

In the following paragraphs, we present the overall architecture of the network with a
detailed overview of the main blocks. Finally, we conclude the methodology section with
precise details of the optimization process for training the network.
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Figure 3. Structure diagram of the super-resolution deep learning network based on multi-scale feature extraction.
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3.2.1. Feature Extraction Branch

The feature extraction branch of each pyramid model mainly includes a convolution
layer, wide activation residual module, and sub-pixel convolution layer. The purpose of
the feature extraction branch is to realize the feature extraction of the LLL image. The wide
activation residual module mainly includes a channel attention mechanism and skip
connection. The channel attention mechanism is similar to the human selective visual
attention mechanism. The core goal is to select the more critical information to the current
task from several details.

In the deep learning network, the channel attention mechanism can adjust each
channel’s weight and retain valuable information beneficial to obtain HR LLL image
to achieve SR reconstruction of the LLL image. In addition, the current mainstream
network structure models are developing in a deeper direction. A deeper network structure
model means a more dependable nonlinear expression ability, acquiring more complex
transformation, and fitting more input complex features. To this end, we employed a
long skip connection for the shallow features and several short skip connections inside
each feature attention block to let the network focus on more valuable high-frequency
components.

In addition, the skip connection in the residual structure efficiently enhanced the
gradient propagation and alleviated the problem of gradient disappearance caused by
the deepening of the network. Therefore, the skip connection was introduced in the wide
activation residual module, to extract the image detail information and improve the super-
resolution performance of the network structure. As shown in Figure 4a, the experiments
of wide activation residual module without skip connection and with skip connection were
carried out, respectively. The network structure with a skip connection produced a more
robust SR performance and better expressed the details of the image.

Similarly, as shown in Figure 4b, the number of wide activation residual modules
in each pyramid model was verified. In the verification experiment, only the number of
wide activation residual modules was changed. By this, it can be seen from the impact
that the network structure with multiple wide activated residuals had a higher fidelity SR
performance than those with single wide activated residuals as shown in Figure 4b.

Bicubic

(23.53/0.54)

Without 

skip-connection

(26.52/0.64)

Adding

skip-connection

(26.75/0.67)Ground Truth

High-Resolution Bicubic

(20.53/0.49)

With Single-WDSR

(23.79/0.60)

With Multi-WDSR

(24.24/0.62)
Ground Truth

Low-Resolution

High-ResolutionLow-Resolution

(a)

(b)

Figure 4. The comparison experiment of various network structure parameters. (a) Comparison of the skip connection
residual structure. (b) Comparison of multiple wide activation residual modules.

3.2.2. Reconstruction Branch

The reconstruction branch mainly includes a convolution layer and sub-pixel convo-
lution layer to enlarge the feature image. In general deconvolution, there will be several
values of zero, which may reduce the performance of SR reconstruction. In order to max-
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imize the effectiveness of the image information to enhance the imaging resolution, we
employed the sub-pixel convolution with reconstruction from the LR image to the HR
image by pixel shuffling. Subpixel convolution combines a single pixel on a multichannel
feature map into a unit on a feature map. That is to say, the pixels on each feature map are
equivalent to the subpixels on the new feature map.

In the reconstruction process, we set the number of output layers to a specified size
to ensure that the total number of pixels is consistent with the number of pixels of the
HR image. By doing so, the pixels can be rearranged through the sub-pixel convolution
layer, and we finally obtain the enlarged LLL image. This method utilizes the ability of
the sub-pixel deconvolution process to learn complex mapping functions and effectively
reduces the error caused by spatial aliasing. The model predicts and regresses the HR
image gradually in the process of reconstruction through gradual reconstruction.

This feature makes the SR method more applicable. For example, depending on the
available computing resources, the same network can be applied to enhance the different
video resolutions. The existing techniques based on the convolutional neural network
cannot provide such flexibility for the scene with limited computing resources. In contrast,
our model with four-times magnification can still perform two times better than the SR
and only requires bypassing the more refined residual calculation.

3.2.3. Loss Function

Let ILR denote the LR LLL input image, and Iout represents the HR LLL image
predicted by the network. ω and θ depict the trainable parameters weight and deviation in
the network. Our goal is to learn a nonlinear mapping function Fw,θ [·] to generate a HR
LLL image Iout (x, y) = Fω,θ [ILR(x, y)], which is as close as possible to the real image IHR.
The loss function used in the training is the mean square error, which can be expressed by
the following formula:

L(ω, θ) =
1
N

N

∑
i=1

∥∥∥Fω,θ

[
Ii
LR(x, y)

]
− IHR(x, y)i

HR

∥∥∥2
, (3)

where IN is the number of training samples. The curve of the loss function during training
is shown in Figure 5.

Figure 5. The training loss function of the super-resolution network.

4. Analysis and Discussion

In this section, first, the details of the data set and the experimental setup are intro-
duced, and then the LR LLL images are input into four different networks to quantitatively
evaluate the SR reconstruction results. After that, the network is extended to RGB color
image reconstruction, and its colorization ability is verified.
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4.1. Data Set Establishment

We utilized the telescope to obtain the LLL image resolution of 800 × 600. After clip-
ping, LLL images with the size of 800 × 500 were obtained. Then, multiple images with
the size of 128 × 128 were cropped to the size of 800 × 500. In this paper, 500 images
were input as the training set, 50 images were input as the verification set, and some of
the representative training sets are shown in Figure 6. Finally, the original LLL images
size of 128 × 128 were taken as the ground truth, and then the LLL images were down-
sampled four times to obtain the LR LLL images resolution of 32 × 32 as input to form the
training set.

Figure 6. The representative training sets for super resolution.

4.2. Experimental Setup

In the network, the batch size was set to 4, and the epoch was set to 300. Empirically,
we employed an Adam optimizer to optimize the network structure, and the initial learning
rate was set to 10−4. The activation function was Leaky Rectified Linear Unit (LReLU),
and the parameter was 0.2. The hardware platform of the network for model training was
an Intel Core TM i7-9700K CPU @ 3.60 GHz × 8, and the graphics card was RTX2080Ti.
The software platform was TensorFlow 1.1.0 under the Ubuntu 16.04 operating system.

The LR LLL image dimension of 32 × 32 and the corresponding HR LLL image
dimension of 128 × 128 were sent into the program as the original image to train the neural
network. The network training took 3.2 h. In the test, the input LLL image size was 200 ×
125, and the HR LLL image size was 800 × 500. The test time of each image was 0.016 s.
Therefore, our proposed network not only realized SR imaging but also realized all-weather
real-time imaging. Part of the real-time images are shown in Figure 7.

Super-resolution Raw-image

Super-resolution

Raw-image

Figure 7. The output part of the real-time image in the video stream.
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4.3. Comparison of Super-Resolution Results with Different Networks

The imaging ability of three traditional SR neural networks (CDNMRF [36], VDSR [37],
and MultiAUXNet [38]) was compared with our network. We utilized the peak signal-to-
noise ratio (PSNR) and structural similarity (SSIM) as specific numerical evaluation indexes,
and the particular results are shown in Table 2. In the case of four up-sampling scales,
we compared the experimental results with CDNMRF, VDSR, and MultiAUXNet, and the
results are shown in Figure 8. Subjectively, our method reconstructed the most similar
details of the wall, iron frame, window, car, and so on, and the edges of the images were
the clearest. In the objective evaluation, PSNR and SSIM were calculated and compared.

Low resolution High resolution

(PSNR/SSIM)

Bilinear

(23.41/0.43)

Bicubic

(23.82/0.47)

CDNMRF

(25.76/0.58)
VDSR

(25.55/0.60)

Ours

(27.07/0.67)
MultiAUXNet

(26.96/0.62)

Ground truth

Low resolution High resolution

(PSNR/SSIM)

Bilinear

(21.33/0.45)

Bicubic

(21.77/0.49)

CDNMRF

(24.31/0.60)
VDSR

(23.48/0.61)

Ours

(25.35/0.67)
MultiAUXNet

(25.18/0.64)

Ground truth

Low resolution High resolution

(PSNR/SSIM)

Bilinear

(23.45/0.48)

Bicubic

(24.06/0.52)

CDNMRF

(26.19/0.61)
VDSR

(25.10/0.59)

Ours

(26.71/0.63)
MultiAUXNet

(26.53/0.62)

Ground truth

(a)

(b)

(c)

Figure 8. Comparison of the super-resolution results with different networks. (a–c) Different test scenes.
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Table 2. The PSNR and SSIM results of different super-resolution networks.

Image 1 Image 2 Image 3

Methods PSNR/SSIM PSNR/SSIM PSNR/SSIM

Bilinear 23.41/0.43 21.33/0.45 23.45/0.48
Bicubic 23.82/0.47 21.77/0.49 24.06/0.52

CDNMRF 25.76/0.58 24.31/0.60 26.19/0.61
VDSR 25.55/0.60 23.48/0.61 25.10/0.59

MultiAUXNet 26.96/0.62 25.18/0.64 26.53/0.62
Ours 27.07/0.67 25.35/0.67 26.71/0.63

In terms of PSNR, our results were 0.96 db higher than CDNMRF, 1.67 db higher
than VDSR, and 0.15 dB higher than MultiAUXNet. In terms of SSIM, our results were
0.06 higher than CDNMRF, 0.06 higher than VDSR, and 0.03 higher than MultiAUXNet.
In general, our network structure showed better super-resolution performance in the wide
FOV LLL images.

4.4. Application for RGB Images

Remote imaging detection requires the imaging system to provide detailed high-
frequency information and visible spectral information in the imaging process. The color
information of most color images is quite different from that of the natural scene, which is
not realistic. Nevertheless, the observer can further segment the image by distinguishing
the color contrast of the fused image to recognize different objects in the image.

In addition to the SR task of the gray image, we also extended the network perfor-
mance in our work. As shown in Figure 9, by expanding the number of channels in the
original network, the color image’s RGB channel corresponded to one gray level output,
and gray images of different scenes were colorized under the condition of LLL imaging.

MSFE-Net 

The colorization network framework suitable for RGB images.

Channel mapping

Figure 9. The colorization network framework for the RGB images.

The proposed LLL image colorization was combined with the existing scene image
library for supervised learning. First, the input LLL gray image was classified, and the
category label was obtained. Then, the natural color fusion image was recovered by
color transfer. Compared with the color look-up table method, the proposed method can
adaptively match the most suitable reference image for color fusion without acquiring the
natural image of the scene in advance. As shown in Figure 10, we realized the color image
reconstruction based on the jungle and urban environments, respectively.

Similarly, we also evaluated the color image output by the network, as shown in
Figure 11. Figure 11c describes the difference between the network output image and the
actual color image captured by the visible light detector. We can see that only the local
color information was wrong. Furthermore, we quantitatively evaluated the histogram
distribution similarity of the two images. The color distribution was basically the same,
and the similarity of the final histogram distribution was 0.728, as shown in Figure 11.
In general, the imaging results met the requirements of human visual characteristics and
intuitively handled the scene information in HR.
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(c1) (c2)

(a2)(a1) (a3)

(b1) (b2) (b3)

(c3)

Figure 10. The image color reconstruction results based on the scene. (a1–c1) Input grayscale images; (a2–c2) output color
images; and (a3–c3) color images captured by the visible sensor.

(a) (b) (c)

(d) (e) (f)

Figure 11. Quantitative evaluation of color images. (a) The true image; (b) the output image; (c) the chromatic aberration
diagram; and (d–f) histogram comparison of the R, G, and B channels.

5. Conclusions

In summary, we demonstrated an SR network structure based on multi-scale feature
extraction. The proposed network learned an end-to-end mapping function to reconstruct
an HR image from its LR version, which could robustly reproduce the visual richness of
natural scenes under different conditions and output photos with high quality. The network,
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which is based on high-frequency component calculation, effectively improved the peak
signal-to-noise ratio of the reconstructed image by 1.67 dB.

The effective network structure realized the image output of 0.016 s per frame and,
thus, guarantees real-time imaging. In order to realize the output of the color image,
we expanded the number of channels of the network to achieve the mapping of a single
channel image to a three-channel image. The similarity between the histogram distribution
of the final output color image and the authentic image captured by the visible detector
reached 0.728. The experimental results indicate that the proposed method offers superior
image fidelity and detail enhancement, which suggests promising applications in remote
sensing, detection, and intelligent security monitoring.

Author Contributions: C.Z. and B.W. proposed the idea. Y.Z. and B.W. jointly wrote the manuscript
and analyzed the experimental data. L.Z. and B.W. performed the experiments. Y.H. and H.Y.
analyzed the data. Q.C. and C.Z. supervised the research. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (61722506,
11574152), National Defense Science and Technology Foundation of China (0106173), Outstanding
Youth Foundation of Jiangsu Province (BK 20170034), The Key Research and Development Pro-
gram of Jiangsu Province (BE2017162), National Defense Science and technology innovation project
(2016300TS00908801), Equipment Advanced Research Fund of China (61404130314), and Open Re-
search Fund of Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense (3091801410411),
Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX21_0274).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:
MSFE Multi-Scale feature extraction
LLL Low-Light-level
HR High-Resolution
LR Low-Resolution
CDNMRF Cascaded deep networks with multiple receptive fields
VDSR Very deep super resolution
MultiAUXNet Multi auxiliary network
WDSR Wide Activation Super-Resolution
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