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Abstract: The measurement of surface curvature is of great significance in aerospace, structural
health monitoring, energy batteries, etc. In this paper, a fiber-optic surface curvature sensor, based on
intracavity sensing of fiber ring laser (FRL), is experimentally demonstrated. A no-core fiber- based
filter performs as the sensing head of the FRL sensor. The response between the curvature of the NCF
and the output wavelength of the FRL was investigated. In the measurement of curvature, the sensor
system showed a narrow 3-dB bandwidth of 0.08 nm, with a high signal-to-noise ratio of about 60 dB.
The curvature sensitivities were measured as −0.348 nm/m−1 within 0.2 m−1, and −3.185 nm/m−1

from 0.2 m−1 to 0.475 m−1. The performance of the surface curvature sensor was characterized by
parameters, including output stability, temperature cross-sensitivity, and detection limit.

Keywords: fiber optics sensors; curvature; laser

1. Introduction

Surface curvature sensors, based on an all-fiber structure, have been widely inves-
tigated, due to their significant applications in aerospace, structural health monitoring,
energy batteries, etc. Compared with traditional electromagnetic sensors, the fiber-optic sen-
sors have advantages of anti-interference, compact size, high sensitivity, and fast responses.
Several fiber-optic surface curvature sensors with special structures have been demon-
strated, such as the fiber gratings [1,2], cavity ring down configuration [3], Mach-Zehnder
interferometers [4–7], multimode interferometers [8,9], and tapered fiber [10]. Multicore
fibers have also been applied to measure curvature by probing the super-modes [11,12]. Ar-
naldo Junior and colleagues offer new opportunities to create fiber-optic curvature sensors
based on polymer optical fibers [13–15] and they have developed important compensa-
tion techniques and applications [16–18]. Traditional fiber-optic sensors have a resonant
wavelength for sensing with a wide spectral bandwidth. They are usually measured by a
broadband light source and demodulated by an optical spectrum analyzer (OSA). However,
the accurate determination of the resonant wavelength is limited to their wide spectral
bandwidth [19].

Recently, intracavity sensors, based on the fiber ring laser (FRL), have attracted great
attention, due to their excellent performance in narrowing the spectral bandwidth in com-
munication windows for accurate measurement [20] and remote detections [21]. Different
types of FRL sensors have been developed to measure bend [19], strain [20], refractive index
(RI) [22], temperature [23], and gas concentration [24]. Some of them have temperature
cross-sensitivity in measurement. Simultaneously, the sensing head developed in the FRL
sensor, may bring output decline to the emission wavelength and intensity. As a conse-
quence, the applications of the intracavity sensors are mainly limited by cross-sensitivity
and output stability.
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In this work, an intracavity curvature sensor, based on the FRL embedded with no-core
fiber (NCF), is demonstrated. Multimode interference is induced in the laser cavity with
the structure of single-mode–no-core–single-mode (SNCS) fiber, which works as the filter
and sensing head in the system simultaneously. The response between the curvature of
the NCF and the output wavelength of the FRL was experimentally investigated. What is
more, the performance of the intracavity curvature sensor was characterized. The proposed
sensor shows the advantages of low temperature cross-sensitivity, high output stability,
and low detection limit.

2. Experimental Setup and Theory of Operation

The surface curvature sensor was fabricated by a short length of NCF embedded in an
FRL. The structure of the sensor is illustrated in Figure 1.
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Erbium-doped fiber (EDF, Nurfen, EDFC-980-HP), with a length of 3 m, was used
as the gain medium of the FRL and was pumped by a 980-nm diode laser via a WDM
coupler (980/1550 nm). An isolator (ISO) worked to force the laser oscillation to propagate
in the clockwise direction. The coating of the NCF was removed with a diameter of 100 µm
(Tianjin Opticontact Technology Development Co., Ltd., China). Then, the NCF was spliced
between two single-mode fibers in the laser cavity, which formed the SNCS fiber. The SNCS
fiber was located at the center of two clamps to experience different curvatures. As shown
in Figure 1. the curvature can be calculated by:

kcur = 8h/(4h2 + L2) (1)

The output spectrum of the FRL was recorded by the OSA (YOKOGAWA, AQ6370)
with a wavelength resolution of 0.02 nm. In the SNCS fiber, when the light was coupled
from the single-mode fiber into the NCF, high order eigenmodes in the NCF were excited
and multimode interference occurred in these modes. Assuming only the symmetric mode
LP0m had been excited in the NCF, then only linear polarized radial modes would be excited.
With the field profile of LP0m mode defined as ψm(r), the input field of the SNCS fiber iss:

E(r, 0) =
M

∑
m=1

cmψm(r) (2)

where r is the radial coordinate of the cross section in the NCF. For the LP0m mode, cm is
the excited coefficient with the mode order of M, which is given by:

cm =

∫ ∞
0 E(r, 0)ψm(r)rdr∫ ∞
0 ψm(r)ψm(r)rdr

(3)
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The transmission field distribution of the light in the NCF can be written as:

E(r, z) =
M

∑
m=1

cmψm(r) exp(iβmz) (4)

where βm is the propagating constant of the LP0m and z is the distance. The difference of
the longitudinal propagation constants between LP0m mode and LP0n mode is calculated
as [25]:

βm − βn =
u2

m − u2
n

2ka2nco
(5)

where ux = π(x − 1/4) with x = m, n are the roots of the zeroth-order Bessel function. a
and nco are the radius and RI of the NCF, respectively. k is the free-space wavenumber.
Then, the transmission spectrum of the SNCS fiber can be described as:

T(λ) =
M

∑
m,n=1

c2
mc2

n × cos[(βm − βn)L] =
M

∑
m,n=1

c2
mc2

n × cos(
u2

m − u2
n

2ka2nco
L) (6)

where L is the length of the NCF. As the curvature of the NCF changes, the distribution of
nco along the NCF changes, which contributes to the changing of the transmission spectrum
of the SNCS fiber. This process is schematically described in Figure 2 and the RI distribution
can be expressed by [26]:

nco(x, y) = nmaterial(1 +
x
R
) = nmaterial(1 + kcurx) (7)

where, nmaterial is the RI of the bent waveguide cross-section. Thus, the curvature sensitivity
can be obtained by the derivative of (6)

dT
dkcur

=
M

∑
m,n=1

c2
mc2

nL
u2

m − u2
n

2ka2nmaterial
sin[

u2
m − u2

n
2ka2nmaterial(1 + kcurx)

L]
kcur

(1 + kcurx)2 (8)
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The SNCS fiber performs as the filter and sensing head simultaneously in the proposed 
curvature sensor system. The emission wavelength of the FRL is at the minimum spectral 
transmission loss in the FRL system [21], which is mainly determined by the filtering 
characteristics of the sensing head. Therefore, as the curvature of the NCF varies, the 
output wavelength of the FRL changes, which can be used to measure the curvature. 

 
Figure 2. (a) Schematic diagram of the bent NCF and (b) the equivalent, straight NCF with conformal
mapping. Light was guided along the φ and z directions, respectively.

From (8), it was proved that the curvature sensitivity of the sensor was nonlinear.
The SNCS fiber performs as the filter and sensing head simultaneously in the proposed
curvature sensor system. The emission wavelength of the FRL is at the minimum spectral
transmission loss in the FRL system [21], which is mainly determined by the filtering
characteristics of the sensing head. Therefore, as the curvature of the NCF varies, the
output wavelength of the FRL changes, which can be used to measure the curvature.

3. Results and Discussion

When the curvature of the NCF was 0 m−1, the transmission spectrum of the SNCS
fiber was measured by a supercontinuum light source (NKT Photonics, SuperK COMPACT).
When the pump power was set at 100 mW, the output spectrum of the FRL is shown in
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Figure 3. The 3-dB bandwidth was obtained as ~0.08 nm with the signal-to-noise ratio
(SNR) of ~60 dB. In the experiment, the 125-mm NCF was used to ensure a spectral
overlap between the transmission peak of the SNCS fiber and the gain peak of the FRL.
Simultaneously, the transmission spectrum of the SNCS fiber preferred to avoid multi-
wavelength competition [27] which would make the output of the sensor unstable. Since
the interference spectrum of the SNCS fiber was difficult to control in practice [28], many
samples were fabricated and a suitable one was selected for the experiment.
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Figure 3. The spectrum of the sensing head and the FRL sensor system.

When the curvature of the NCF changed from 0 m−1 to 0.5 m−1, the output spectra of
the FRL sensor were measured, and are shown in Figure 4a.

Photonics 2022, 9, 781 4 of 8 
 

Figure 2. (a) Schematic diagram of the bent NCF and (b) the equivalent, straight NCF with 
conformal mapping. Light was guided along the φ  and z directions, respectively. 

3. Results and Discussion 
When the curvature of the NCF was 0 m−1, the transmission spectrum of the SNCS 

fiber was measured by a supercontinuum light source (NKT Photonics, SuperK 
COMPACT). When the pump power was set at 100 mW, the output spectrum of the FRL 
is shown in Figure 3. The 3-dB bandwidth was obtained as ~0.08 nm with the signal-to-
noise ratio (SNR) of ~60 dB. In the experiment, the 125-mm NCF was used to ensure a 
spectral overlap between the transmission peak of the SNCS fiber and the gain peak of the 
FRL. Simultaneously, the transmission spectrum of the SNCS fiber preferred to avoid 
multi-wavelength competition [27] which would make the output of the sensor unstable. 
Since the interference spectrum of the SNCS fiber was difficult to control in practice [28], 
many samples were fabricated and a suitable one was selected for the experiment. 

 
Figure 3. The spectrum of the sensing head and the FRL sensor system. 

When the curvature of the NCF changed from 0 m−1 to 0.5 m−1, the output spectra of 
the FRL sensor were measured, and are shown in Figure 4a. 

  
(a) (b) 

Figure 4. (a) The output spectra of the curvature sensor as the curvature of the NCF within 0.475 
m−1. (b) The curvature responses of the emission wavelength of the FRL sensor system and its linear 
fit. 
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(b) The curvature responses of the emission wavelength of the FRL sensor system and its linear fit.

As the curvature of the NCF changed from 0 m−1 to 0.5 m−1, the emission wavelength
of the fiber ring laser shifted from 1546.87 nm to 1546.44 nm. As shown in Figure 4b, there
was a nonlinear response between the emission wavelength of the laser and the curvature
of the NCF within 0.475 m−1, which was similar to a passive curvature sensor, based on
an SNCS fiber [29]. In order to evaluate the sensing ability of the sensor, the linear opera-
tions were applied to fit the curvature–wavelength curve with a range of 0 m−1–0.2 m−1 and
0.2 m−1–0.475 m−1, respectively. The corresponding sensitivities were −0.348 nm/m−1 within
0.2 m−1, and −3.185 nm/m−1 from 0.2 m−1 to 0.475 m−1. In Figure 4b, when the curvature
was more than 0.475 m−1, the laser achieved the saturation of wavelength shift. That meant this
sensor was mainly used in the low-curvature measurements from 0 m−1 to 0.475 m−1.

The output stability of intracavity sensing in FRL sensors is important in practical
applications. Therefore, the output stability of the curvature sensor system was measured.
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In order to evaluate the stability of the sensor system, the output wavelength and intensity
of the FRL sensor were monitored over 3 min by fixing the curvature at 0.202 m−1 and
0.351 m−1, respectively. As shown in Figure 5, the wavelength perturbation was measured
at less than 0.02 nm, which was limited by the OSA. The intensity perturbation was
~0.6 dBm. The result showed the sensor system had an excellent output performance in
stability with little perturbation, due to the anti-interference ability of the SNCS fiber.
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Figure 5. The output wavelength and intensity of the curvature sensor in 3 min by fixing the curvature
at 0.202 m−-1 and 0.351 m−1, respectively.

In addition, the temperature cross-sensitivity of the curvature sensor was measured in
a temperature chamber (VOS-30A, STIK CO. LTD, China) to experience temperature in a
range from 20 ◦C to 95 ◦C. The output spectra and the linear fit of the output wavelength
are shown in Figure 6. As is depicted in Figure 6, as the temperature increased, the output
wavelength of the curvature sensor had a small shift with the temperature sensitivity of
-3.3 pm/◦C. The temperature stabilization with standard deviation was 0.088 nm. This
indicated that the curvature sensor had a low sensitivity to temperature, which was much
smaller than its sensitivity to curvature.
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The detection limit was used to analyze the performance of the curvature sensor,
which took into account the sensitivity, spectral resolution of the system, and a number
of noise parameters. The detection limit was calculated by R/S, in which R was the
smallest detectable change for wavelength, which is called sensor resolution, and S was the
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sensitivity of the device [30]. In this curvature sensor system, the resolution of the OSA
was 0.02 nm. The 3-dB bandwidth was ~0.08 nm. The SNR was ~60 dB. The temperature
stabilization with standard deviation was 0.088 nm from 20 ◦C to 95 ◦C. Thus, a low
detection limit was obtained as 0.08 m−1. Some similar fiber-optic curvature sensors are
compared with this work in Table 1. The proposed sensor showed the advantages of low
temperature cross-sensitivity and low detection limit.

Table 1. The performance of some similar fiber-optic curvature sensors.

Sensor
Highest

Sensitivity
(nm/m−1)

Temperature
Cross-Sensitivity

(pm/◦C)

Detection Limit
(m−1) Ref.

Long-period
fiber grating 30.85 76 N.A. [31]

Microstructured fiber 1.118 >40 N.A. [32]

In-fiber Mach–Zehnder interferometer 2.491 9.72 N.A. [33]

Four-core fiber Mach–Zehnder interferometer −18.75 74 0.042 [34]

SNCS fiber + FRL −3.185 −3.3 0.08 This work

4. Conclusions

In this work, a surface curvature sensor system, based on intracavity sensing in an
FRL, was demonstrated. A short length of NCF was inserted into the FRL, which formed
the structure of the SNCS fiber. The SNCS fiber worked as the filter and sensing head in the
curvature sensor system, simultaneously. As the curvature of the NCF varied, the filtering
characteristics of the SNCS fiber changed, and, then, the output wavelength of the FRL
shifted. The intracavity curvature sensor was obtained with a 3-dB bandwidth ~0.08 nm
and SNR ~60 dB, and its curvature sensitivities were −0.348 nm/m−1 within 0.2 m−1,
and −3.185 nm/m−1 from 0.2 m−1 to 0.475 m−1. What is more, the performance of the
curvature sensor was characterized by some parameters. The stability of the intracavity
curvature sensor was measured by output wavelength and intensity in 3 min and the results
showed that it had good stability. The temperature cross-sensitivity was also measured
from 20 ◦C to 95 ◦C and it had a low temperature cross-sensitivity of −3.3 pm/◦C. The
detection limit was obtained as low as 0.08 m−1. The proposed sensor shows the advantages
of low temperature cross-sensitivity, high output stability, and low detection limit. It can be
applied in aerospace, structural health monitoring, energy batteries, etc.
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