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Abstract: A two-section semiconductor laser can exhibit excitability for certain parameter settings.
When used as a photonic spiking neuron, it is relevant to investigate its sensitivity to noise due to,
e.g., spontaneous emission. Under excitable conditions, the system emits irregularly timed noise-
triggered pulses. Their statistics is analyzed in terms of a first-passage time distribution for the
fluctuating intensity to reach the threshold for excitable response. Two analytic approximations
valid for short and long times, respectively, are derived which very well explain measured and
simulated pulse-repetition time distributions. This provides physical insight into the noise-triggered
spiking mechanism.
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1. Introduction

A vast spectrum of scientific and engineering fields employ and benefit from in-
creasingly more complex artificial intelligence (AI) algorithms, which in turn drive the
demand for faster and more energy-efficient computational hardware. Brain-inspired,
neuro-morphic, hardware architectures are being investigated [1,2], among which photonic
implementations are studied for their ultra-fast and parallel processing capabilities [3].
Spiking neural network (SNN) hardware has attracted a lot of interest for its similarity with
information processing (neural behavior) in the human brain, which is the most energy
efficient neural network known and where data are encoded using short electrical signals or
spikes [4]. It has been shown that photonic implementations can result in spiking neurons
employing optical pulses at a much shorter time scale [5,6]. The spikes in the human
brain are digital in amplitude but analogue in time, generated by individual neurons and
transmitted through axons [7]. In [4], an extensive comparison between the human brain
and digital computing in terms of energy efficiency is given.

The principles of a biological SNN can be transferred to integrated photonics due
to the spiking capabilities of semiconductor lasers [5,8,9]. Integrated photonic SNNs
benefit from high switching speed, high communication bandwidth, low crosstalk [5,9] and
temporal characteristics governed by ultra-fast carrier dynamics [10,11]. This results in the
operation of an optical neuron orders of magnitude faster than its biological counterpart.
These semiconductor lasers can be the building block in an all-optical SNN on a photonic
integrated circuit (PIC).

One successful realization of a photonic spiking neuron is by using an integrated
two-section Fabry–Pérot-type (FP) semiconductor laser, where one section operates as the
gain and the other as saturable absorber. This configuration is known to exhibit, apart
from self-pulsations and CW operation, a form of excitability when operating near, but
below threshold [12–14]. In excitable conditions, the laser emits a short optical pulse when
triggered by an optical input pulse of sufficiently large energy and thus can operate as an
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artificial neuron. We will demonstrate, both experimentally [15] and in simulations, that
near the lasing threshold, such an optical trigger can also be caused by a sufficiently large
positive intensity fluctuation due to spontaneous-emission noise. As this “spontaneous”
emission of output pulses is a source of errors in the functionality of this artificial neuron, it
is relevant to investigate this phenomenon in more detail as to its statistics, which is the
purpose of the present study.

A semiconductor laser with saturable absorber is accurately described by the well-
known Yamada model [12,16,17], which will be used in this paper to investigate the effects
of optical noise on the laser’s self-spiking behaviour and in simulations. By interpreting the
noise-triggered self-pulsations in the excitability parameter region, in terms of first-passage
events for the intensity, we derive analytic approximations for the self-pulsation timing
statistics, which can be compared with simulated and observed timing statistics [15].

2. Device under Study and Observations

The gain and saturable absorber integrated laser was fabricated in a commercially
available active–passive multi-project wafer (MPW) InP integration platform [18]. The de-
vice basically consists of two electrically isolated semiconductor optical amplifiers (SOAs),
one for the gain and the other for the saturable absorption, between two mirrors. The
output of the laser is coupled to the edge of the chip, where the emitted light is collected
using lensed fibers. A schematic of the two-section laser and a photograph of one of
the fabricated devices can be seen in Figure 1. The measurement set up and method are
described in [15].
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Figure 1. (a) Schematic overview of a laser with saturable absorber and gain section laser. The
absorber and gain elements are surrounded by mirrors (DBR and MIR, see text) to create an optical
cavity. (b) Micrograph of prototype gain and saturable-absorber laser.

The linear cavity contains an 80 µm saturable absorber, 500 µm gain section and a
500 µm phase shifter. One mirror is a 350 µm distributed Bragg reflector (DBR), optimized
for reflections at 1550 nm, and the other a multimode interference reflector (MIR), with
estimated reflectivities of 0.76 and 0.40, respectively. The electrical isolation sections are
30 µm in length. In the measurement setup, an optical isolator prevents back reflections
from the measurement equipment to the chip (see [15]).

The gain and absorber currents are set to values for which simulations indicate the
existence of the excitability regime (see [15]). This corresponds to laser operation just below
threshold, which for our two-section laser is 50.54 mA at the saturable-absorber voltage
of 0.72 V. To investigate the emission of output pulses in the excitability regime under the
influence of spontaneous-emission noise, the absorption is decreased, so that the laser oper-
ates even closer to, but still below, threshold and the relative intensity fluctuations become
large enough to have a measurable probability to overcome the excitability threshold. The
noise-triggered pulses are observed first when the gain section is biased at 50.11 mA and
the absorber voltage at 0.720 V. For this setting, the laser starts to generate pulses, without
any optical injection. By increasing the absorber voltage slightly, the absorption decreases
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and the pulse density increases. In Figure 2, two examples of measured time traces of the
laser output at absorber voltages of 0.727 V and 0.730 V are given. These pulses do not
occur at a fixed repetition rate, as would be expected for a self-pulsating laser, but occur in
a random manner and rather are triggered by spontaneous-emission noise.
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Figure 2. Spontaneous-emission-triggered excitable pulses for absorber voltages in (a) 0.727 V and
(b) 0.730 V. In both cases, the gain section is biased at 50.11 mA. From [15].

Figure 3 shows a histogram of observed consecutive pulse timings for an injection
current of 50.12 mA for the gain section and voltage 1.38 V for the absorber. The time
unit is ∆T ≡ 1/SR with SR the sampling rate of the oscilloscope. The pulse-repetition
time distribution is characterized by an initial time interval without pulses, a very steep
initial flank and a maximum, followed by a slower decaying tail. We interpret the time at
which the pulse-timing distribution starts as the refractory time Tre f r associated with the
excitability at hand [12]. The skew distribution will be analyzed and explained in terms of
a first-passage-time distribution in Section 3. Simulations based on the Yamada model (see
next section) give rise to pulse timing histograms, that will be shown in Section 4 (see also
Figure 13 in [15]), which are similar to the histogram in Figure 3. In the next section, we
will derive respective asymptotic expressions for short-time and long-time pulse-timing
distributions in terms of first-passage times and explain the typical form of the pulse-
timing distribution.
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Figure 3. Histogram of 313 measured consecutive pulse-timing events. The black line is a calculated
fit (skewnorm.fit() function in Python). The refractory time Tre f r ≈ 200∆T.
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3. Theoretical Description

The theoretical analysis and simulations are based on the Yamada model [12,16,17],

d
ds

G = γG(PG − G− G I); (1)

d
ds

Q = γA(BA −Q− σAQ I); (2)

d
ds

I = (G−Q− 1)I + Rs+FI(s), (3)

where all variables and parameters are dimensionless and their meanings summarized
in Table 1. The fluctuating Langevin noise term FI(s) describes the effect of spontaneous
emission events on the intensity dynamics and it has the correlation properties [19]

< FI(s) >= 0;< FI(s)FI
(
s′
)
>= 2Rs Iδ

(
s− s′

)
, (4)

where < . . . > denotes the mean value. In fact, I, G and Q are stochastic variables and their
values given by probability distributions. Denoting the probability distribution for I at
time t by P(I, t), it can be shown that P is a solution of a Fokker–Planck type diffusion
equation [20]

∂

∂s
P(I, t) =

1
2

∂2

∂I2 [D(I)P(I, t)]− ∂

∂I
[B(I)P(I, t)], (5)

subject to adequate boundary conditions, and where D(I) and B(I) are the diffusion
coefficient and drift, respectively, and related to (3) and (4) by

D(I) = 2RS I, (6)

B(I) =(G−Q− 1)I + Rs. (7)

Table 1. Variables and parameters in the Yamada model.

Symbol Name

s
τP

Time (in units τP)
Cavity photon lifetime

G Gain
Q Absorption
I Intensity

PG Gain pump parameter
BA Absorption pump parameter
γG Gain decay rate
γA Absorption decay rate
σA Absorption-to-gain saturation ratio
Rs Spontaneous-emission rate

FI(s) Langevin noise

To obtain an explicit expression for B(I) in terms of I, we apply the adiabatic-following
solution for G and Q, by equating (1) and (2) to 0. This yields G = PG

1+I and Q = BA
1+σA I , so

that in this adiabatic approximation, we find

B(I) = RS +

(
PG

1 + I
− BA

1 + σA I
− 1
)

I. (8)

If we then express the stationary solution of (5) as

P0(I) =
1
C

e−V(I), (9)
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with C a constant normalizing P0 to unity, that is,
∫ ∞

0 dIP0(I) = 1 and V the potential that
can be associated with the dynamical system (1), (2) and (3) (in the adiabatic approximation),
Equation (5), with the right-hand side set to 0, leads to

B(I) =
1
2

d
dI
D(I)− 1

2
D(I)

d
dI

V(I). (10)

Solving (10) for V(I), we find

V(I) =
I

RS
+

BA
RSσA

ln(1 + σA I)− PG
RS

ln(1 + I). (11)

where we fixed the integration constant such that V(0) = 0. Hence, we can write

P0(I) =
1
C

e−I/RS
(1 + I)PG/RS

(1 + σA I)BA/(RSσA)
. (12)

In Figure 4, an example is shown for B(I), V(I) and the corresponding stationary
intensity distribution P0(I). For this value of the spontaneous-emission rate (RS = 10−2),
the intensity is nearly Gaussian distributed with mean <I> = 1.72 and FWHM = 0.44.
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Now, we consider the situation where the intensity fluctuations are driven by the
diffusion coefficient (6) in the force field described by the drift (7). We are interested in
the time T it takes for the intensity, initially at I1, to hit the excitability threshold value
IC > I0 for the first time, where I0 is the most probable intensity, I0 ≈ <I>. When this
happens, a response pulse will be emitted by the laser. It then takes one refractory period
Tre f r before the laser is ready for the next excitation. This time T, the first-passage time
(FPT), is obviously a stochastic quantity itself and thus given by a distribution, the first-
passage-time density (FPTD) Pf irst(T; I1, IC) for the intensity to diffuse from I1 to IC. The
pulse timing distribution is then given by Ptim(T; I1, IC) = 0 when 0 < T < Tre f r and
Ptim(T; I1, IC) = Pf irst(T− Tre f r; I1, IC) for T > Tre f r. Strictly speaking, since the refractory
time follows a distribution itself, the final pulse repetition statistics is a convolution of the
FPTD and the refractory-time distribution. As we have not found an analytical solution for
the refractory-time distribution, we will treat Tre f r as a fixed given quantity.

It is shown in [20] that the FPTD can be expressed entirely in terms of the stationary
intensity distribution P0(I). The main general results will be repeated here; the full details
can be found in [20]. First of all, we introduce the moment-generating function

M(z; I1, I2) ≡
∫ ∞

0
dTezT Pf irst(T; I1, I2), (13)
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with z ≥ 0. M is a Laplace transform with negative argument (s→ −z) and can be derived
from a function G(z; I ) such that

M(z; I1, I2) = exp
{∫ I2

I1

dIG(z; I)
}

. (14)

Introducing another function

K(z; I) ≡ D(I)P0(I)G(z; I), (15)

and expressing K(z; I) as a power series in z,

K(z; I) = ∑∞
n=1Kn(I)zn, (16)

the following result is derived in [20]:

K1(I) = 2
∫ I

0
dI′P0

(
I′
)

(17)

Kn(I) =
∫ I

0
dI′

∑ p, q
p + q = n

Kp(I′)Kq(I′)

D(I′)P0(I′)
, (n = 2, 3, 4, . . .) . (18)

The problem of determining M(z; I1, I2) is, in principle, solved now, apart from the
actual calculation of the integrals. It follows directly from definition (13) that the mean
first-passage time from I1 to I2 is given by

< T >I1,I2=
∂M(z; I1, I2)

∂z
|z=0 = 2

∫ I2

I1

dI
D(I)P0(I)

∫ I

0
dI′P0

(
I′
)
. (19)

By repeatedly using (18), the moments can be expressed in multiple integrals, the
number of which rapidly increases with increasing order n.

So far, (13) to (19) are exact and generally valid. In order to derive an explicit expression
for the FPTD, we proceed by making some approximations, based on the observation that
the function 1

D(I)P0(I) has two sharp maxima on the interval [0, I2], one at I = 0, the other
at I = I2, if I2 � I0. Thus, for I < I0, we have

K2(I) =
∫ I

0
dI′

K1(I′)2

D(I′)P0(I′)
∼= K1(0)2

∫ I

0

dI′

D(I′)P0(I′)
= 0, (20)

implying that Kn(I) = 0 for all n = 2, 3, 4, . . . and

M(z; I1, I2) ∼= exp
{∫ I2

I1

dI
K1(I) z
D(I)P0(I)

}
= exp{ z < T >I1,I2

}
, (I1 < I2 ≤ I0) , (21)

where the last equality follows from (19). An approximated expression for M when IC > I0
is derived in Appendix A with the result

M(z; I1, IC) ≈ exp
(
< T >I1,I0 z +

TI0,IC z
1− TI0,IC z

)
, (IC > I0 > I1), (22)

where TI0,IC is a characteristic time related to the first passage from I0 to IC, defined as

TI0,IC ≡
K1(IC)

D(IC)

∫ IC

I0

dI
P0(I)

. (23)
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Although TI0,IC may be of the same order of magnitude as the average first-passage
time (19), it should not be confused with that.

By inverse Laplace transform, (22) with I1 = I0 leads to the following explicit analytic
form for the FPTD:

Pf irst(T; I0, IC) = e
−(1+ T

TI0,IC
)

IBessel,1

(
2
√

T
TI0,IC

)
√

TI0,IC T
, (T large), (24)

where IBessel,1 is the modified Bessel function of the first kind. It can easily be checked that
(24) is not valid for short times. In fact, for T ↓ 0 , (24) yields Pf irst → (eTI0,IC )

−1 (see [21]
(p. 375)), whereas on physical grounds, Pf irst should vanish there. Another argument why
(24) is an asymptotic expression for large T is given in Appendix A. There, it is argued that
the approximation leading to (22) can only be accurate for small z, implying large T.

For the short-time behavior, we assume that the fluctuating intensity near the mean
value I0 behaves under the influence of the spontaneous emission noise as a random walk,
with fixed diffusion coefficient D = 2RS I0, flat potential V and zero drift, B = 0. For
such a case, the probability density for the first-passage time from initial intensity Ii to the
absorption point at IC > Ii in this random-walk approximation is given by [22,23]

Pf irst(T; Ii, IC) =
(IC − Ii)√

4πDT3
e−

(IC−Ii)
2

4DT , (25)

which has a maximum for Tmax = (IC−Ii)
2

6D , the most likely first-passage time.
It should be realized that the random-walk approximation for the first-passage time

can be correct only for small T but for large T, the tail of the distribution will approach
zero faster. This is a consequence of the potential not being flat (as in the random walk),
but forming a hill slope upward for intensities near the threshold intensity IC. Therefore,
the probability for a first passage at larger times T will be smaller than in the random-walk
case. Indeed, it can be shown that for large T, the tail of the distribution in (24) behaves
asymptotically as [21]

Pf irst(T; 0, IC) →
T→∞

e
−(
√

T
TI0,IC

−1)
2

T1/4
I0,IC

T3/4
. (26)

In Figure 5a, the two approximations for Pf irst(T; I0, IC) are depicted. The yellow curve
is the large-T approximation (24) for TI0,IC = 3.1 with I0 = 1.72, IC = 2.2 and, RS = 0.01,
while the green curve is the random-walk approximation (25). These data pertain to the
situation of Figure 4. The two curves connect around T ∼ 6. This can be seen more
convincingly in the logarithmic plots of Figure 5b, which also illustrates that the long-time
tail of the distribution decreases faster than exponentially (see (26)), i.e., much faster than
the random-walk approximation.

We have applied the asymptotic expressions (24) and (25) to the histogram of measured
data (Figure 2), the result of which is depicted in Figure 6. The green curve is the long-time
approximation (24), the yellow curve—the short-time approximation (25).
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Figure 5. Two approximations for Pf irst(T; I0, IC) plotted versus time T. The green curve is the
approximation (24) and is valid for large T, while the yellow curve is the random-walk approximation
(25), valid for small T. In (a), the vertical scale is linear; in (b), the vertical scale is logarithmic.
Parameters are TI0,IC = 3.1, IC = 2.2, I0 = 1.72, D = 2RS I0 and RS = 0.01. These data pertain to the
situation of Figure 4. The yellow curve assumes its maximum for Tmax = 1.12.
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Figure 6. The measured histogram of Figure 3 with the large-time approximation (yellow), the
short-time approximation (green) and the skewnorm.fit() function Python fit (black). The parameters
used for the approximations are TI0,IC = 33.3, IC = 6.1 and other parameters as in Figure 5.

4. Simulations

The results of the simulations are shown in Figure 7 and they demonstrate that in
case of sufficiently weak absorption, i.e., BA 4 3.680, excitable pulses can be triggered
by intensity noise due to spontaneous emission in a narrow region very close to and
below the laser threshold. The noise results in an irregular train of pulses, of which
the density can be controlled by changing the absorption. This can be compared with
experimental observations shown in Figure 2. The scenario predicted by theory is in
qualitative agreement with the observation, although the horizontal time span in Figure 7,
i.e., 20 ns (with τp = 2 × 10−12 s) is more than 6 orders of magnitude smaller than in
Figure 2. The explanation for this is as follows: we observe from Figure 7 that an increase
of BA by 0.003 leads to one decade decrease in pulse density. Therefore, it is reasonable
to conjecture that the 6 decades of time scale difference can be bridged by upshifting
the BA-interval by 0.018. Performing the simulations for the upshifted BA-values would
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increase the computation time by at least 6 orders of magnitude and hence be impractical, if
not impossible.
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Figure 7. Excitable intensity pulses simulated in the Yamada model with noise, i.e., Equations (1)–(3),
for fixed gain parameter PG = 4.5 and slightly different values for the absorption BA as indicated.
Other parameters are Rs = 0.2, γG = 0.05 and γA = 0.1.

A typical pulse-timing histogram based on a simulated pulse train is shown in Figure 8,
for BA = 3.6460, and other parameters as in Figure 7. The black line is the fit provided by
Python, the yellow and green curves are the respective approximations (24) and (25) for
large and short times.
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Figure 8. Histogram of 583 simulated consecutive pulse-timing events. The black line is a calculated
fit (Python). The refractory time Tre f r ≈ 230τp. The large-time approximation is the yellow curve,
and the short-time approximation—the green curve. The parameters used for the approximations are
TI0,IC = 66.7, I0 = 1.0, IC = 18.45 and RS = 0.2.
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5. Discussion

We have analyzed and explained the emission of irregularly timed optical pulses from
a two-section semiconductor laser with saturable absorber, operating near threshold in
a regime of excitability. It is shown that the pulses are triggered by the relatively large
spontaneous-emission intensity noise. When such a laser system is used as a neuron, this
“spontaneous” emission of output pulses is a source of quasi-random spikes following
the derived distribution. It could be employed to simulate random spiking in biological
neurons [24], because this phenomenon has similarities to the stochastic behavior of neurons
being studied in neuroscience [25–27], with models based on the Fokker–Planck-type
equation. This work contributes to the prospect that stochastic neural networks can be
simulated with photonics and that problems such as random number generation [28],
tunable rate encoding for SNNs [29] or analysis of network population dynamics [30] can
be tackled in the future. We have investigated this phenomenon in more detail by focusing
on the statistics of the spontaneously emitted pulses.

The numerical simulations and analytical theory are based on the Yamada model for a
single-mode semiconductor laser with saturable absorber. By using this model, successful
reproduction of observed trends in pulse statistics was obtained in [15]. The observed
irregular pulse trains are analyzed in terms of an initial refractory time, whereafter the time
interval until the next emitted pulse follows a first-passage-time distribution, for which
analytic asymptotic short-time and long-time approximations are derived, which very well
explain measured and simulated pulse-repetition time distributions. This provides physical
insight into the noise-triggering mechanism.

The noise in the system is mostly dominated by spontaneous emission and its coupling
into the lasing mode can be tailored through technology choices, such as the choice of index
or gain guiding, variation of the active geometry and the choice of gain material. Hence,
the amount of noise can be altered if deterministic spiking is desired.

An interesting research question for further investigation is the observation of coher-
ence resonance [12] in the device studied here. The relevant quantity to investigate then
is the normalized jitter < (T − 〈T〉)2 >1/2/<T>, as a function of the absorber voltage VA,
where <T> is the mean pulse-repetition time.

Finally, there are major challenges in moving from a single photonic spiking neuron
towards a spiking network on-chip. The output of a single laser neuron needs to be able to
trigger another subsequent laser neuron, making it cascadable. This depends on the inter-
connection architecture, on-chip losses and the required excitation pulse energy. Another
challenge is to address on-chip spurious reflections, originating from interfaces and other
components in a photonic neural network, prompting for more research in active laser
feedback compensation techniques. The third challenge is related to the accurate control of
many interconnected laser neurons. This requires high-density electrical interconnects, con-
trol electronics and optical monitoring functions to be co-integrated with the photonic chip.
Furthermore, low-energy components that perform synaptic weighting on the photonic
chip are subject of active research and required in an all-optical SNN.

6. Conclusions

Excitable pulse-firing semiconductor lasers with saturable absorber are promising
candidates as spiking neurons in an all-optical SNN. Next to desired deterministic spiking
when triggered by an input pulse, we observe that these neurons show random output
spikes as a consequence of large-enough intensity fluctuation due to spontaneous emission
noise. The (average) rate of emission of these noise-induced pulses is investigated in terms
of a first-passage time phenomenon. The average time between consecutive pulses is
given by < T >I0,IC +Tre f r, where < T >I0,IC is expressed in (19) in terms of the intensity
diffusion coefficient and the stationary intensity probability distribution.

The distribution of spiking events is investigated experimentally and in great detail
theoretically. Asymptotic expressions for small and large times are derived and, when
confronted with the measured timing statistics, shown to correctly describe the pulse-
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timing distribution. The understanding of the influence of spontaneous-emission noise
is important for reliable operation of an excitable two-section semiconductor laser when
used as a photonic spiking neuron and it can be helpful for studies of stochastic spiking of
biological neurons, as well.
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Appendix A. Derivation of Approximate Expression for M(z;I1,I2) When I0 ≤ I1 ≤ I2

We can now approximate K2(I) (see (18)) for I > I0 by

K2(I) =
∫ I

I0

dI′
K1(I′)2

D(I′)P0(I′)
∼=

K1(I)2

D(I)

∫ I

I0

dI′

P0(I′)
. (A1)

and K3(I) by

K3(I) =
∫ I

0 dI′ 2K1(I′)K2(I′)
D(I′)P0(I′) = 2

(∫ I0
0 dI′ +

∫ I
I0

dI′
)

K1(I′)K2(I′)
D(I′)P0(I′)

∼= 2
∫ I

I0
dI′ K1(I′)
D(I′)P0(I′)

(∫ I0
0 dI ′′ +

∫ I′
I0

dI ′′
)

K1(I′′ )2

D(I′′ )P0(I′′ )

∼= 2
∫ I

I0
dI′ K1(I′)
D(I′)P0(I′)

∫ I′
I0

dI ′′ K1(I′′ )2

D(I′′ )P0(I′′ )

∼= 2 K1(I)3

D(I)2

∫ I
I0

dI′
P0(I′)

∫ I′
I0

dI′′
P0(I′′ ) =

K1(I)3

D(I)2

(∫ I
I0

dI′
P0(I′)

)2
, (I > I0).

(A2)

In the derivation of (A2), we use several times the approximation mentioned just
above (20). Similarly, for n = 3, 4, 5, . . . we obtain

Kn(I) ≈ K1(I)n

D(I)n−1

(∫ I

I0

dI′

P0(I′)

)n−1

. (A3)

Hence we derive, using (16),

K(z; I) ≈ K1(I)z∑∞
n=0

(
K1(I)z
D(I)

∫ I

I0

dI′

P0(I′)

)n

=
K1(I)z

1− K1(I)z
D(I)

∫ I
I0

dI′
P0(I′)

, (I > I0). (A4)
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Since the cumulative error in the approximation (A3) increases with increasing order
n, (A4) should not be taken too seriously for large z. Defining a characteristic time TI1,I2

related to the first passage from I1 to I2, i.e.,

TI1,I2 ≈
K1(I2)

D(I2)

∫ I2

I1

dI
P0(I )

, (A5)

we can express K(z; I) as

K(z; I) ≈ K1(I)z
1− TI0,Iz

, (A6)

from which we obtain

G(z; I) ≈ K1(I)z
D(I)P0(I )

1
1− TI0,Iz

, (A7)

and
M(z; I1, I2) ≈ exp

(∫ I2
I1

dI K1(I)z
D(I)P0(I )

1
1−TI0,I z

)
≈ exp

( TI1,I2 z
1−TI0,I2 z

)
, (I2 ≥ I1 ≥ I0).

(A8)

Finally, using (see (14))

M(z; I1, IC) = M(z; I1, I0)M(z; I0, IC), (A9)

we find with (21) and (A8)

M(z; I1, IC) ≈ exp
(
< T >I1,I0 z +

TI0,IC z
1− TI0,IC z

)
, (IC ≥ I0 > I1), (A10)

which is the desired expression given in (22). Note that TI0,IC should not be identified with
〈T〉I0,IC

.
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