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Abstract: We experimentally demonstrate the application of a double deep Q-learning network
algorithm (DDQN) for design of a self-starting fiber mode-locked laser. In contrast to the static opti-
mization of a system design, the DDQN reinforcement algorithm is capable of learning the strategy
of dynamic adjustment of the cavity parameters. Here, we apply the DDQN algorithm for stable
soliton generation in a fiber laser cavity exploiting a nonlinear polarization evolution mechanism.
The algorithm learns the hysteresis phenomena that manifest themselves as different pumping-power
thresholds for mode-locked regimes for diverse trajectories of adjusting optical pumping.
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1. Introduction

Machine learning (ML) algorithms have already shown their potential for improving
performance of ultrafast photonic systems [1]. In particular, applications of ML in mode-
locked fiber lasers target three main areas: self-starting [2], system optimization [3] and
characterization [4]. Most of the conventional ML methods optimize static topology of
the fitness function and do not take into account the trajectory of adjusting controlling
parameters [5–7]. However, fiber mode-locked lasers are complex nonlinear systems that
are sensitive to initial conditions and often possess hysteresis phenomena [8,9] that require
special approaches to smart control of such devices. Hysteresis and bistability effects
may lead to incorrect operation of the optimization algorithms—e.g., genetic or particle
swarm optimization algorithms that do not consider dynamic changes in laser cavity
parameters. For given control parameters and different tuning strategies, the algorithm will
meet different output regimes with corresponding different values of the optimized fitness
function. Reinforcement learning (RL) algorithms are attractive candidates for dynamic
optimization [10]. In the context of mode-locked lasers, there are already promising
applications of deep RL to control the output radiation. Kutz et al. [11] demonstrated
using the numerical model of fiber cavity that a deep Q-learning algorithm is capable of
learning how to operate with bi-stability to achieve stable mode-locking regimes. In [12],
the possibility of stabilizing the mode-locking operation of an NPE laser under temperature
and vibratory disturbances by an actor–critic RL algorithm was demonstrated. In our
previous work, we have showed that the DDQN algorithm may be efficiently applied to
a changeable environment, such as an 8-figure mode-locked laser with a tunable spectral
filter [13].

In this Letter we experimentally validate RL’s ability to find nontrivial optimization
trajectories when adjusting pumping power of the laser cavity for soliton generation with
targeted properties.

2. Experimental Setup

We consider here a fiber mode-locked laser based on the nonlinear polarization effect
as an experimental platform; see Figure 1. The laser comprises an active Erbium fiber, an
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electronically driven polarization controller (EPC), an output coupler, a piece of passive
SMF-28 fiber and an optical isolator with blocked fast axis. Active fiber was pumped
through the WDM coupler by a single-mode laser diode operating at 978 nm. The fiber
laser cavity was placed on a thermal plate inside a thermostat box to eliminate the influence
of the ambient temperature fluctuations. The temperature of the plate was controlled by a
PID regulator and was set to 32 °C. The goal for the RL algorithm was to learn the behavior
of the laser system and to obtain a stable mode-locked regime at a low level of pumping
power. We deliberately chose such a relatively simple setup to be able to comprehensively
verify the correctness of the algorithm and to demonstrate the feasibility of the method.

Figure 1. Experimental setup of the fiber mode-locked laser and measuring system.

Anomalous dispersion of the laser cavity provides the conditions for generation of
classical optical solitons. A stable mode-locked regime was achieved by proper adjustment
of the EPC controlling voltage and reaching the threshold value of the pumping power.
The repetition rate of a pulse train was 14.51 MHz with an energy of 1.2 pJ for the pulses.
Figure 2a depicts an optical spectrum of the generated solitons with the characteristic Kelly
side-bands. A further increase in the pumping power led to multi-soliton generation. For
instance, single-soliton generation was obtained at 290 mA (Figure 2b); then, after reaching
310 mA, the output switched to double-soliton regime.

Figure 2. (a) Optical spectrum of the generated optical solitons. (b) Number of generated solitons as
a function of the pumping laser diode current for different direction of the current adjustment.

Multi-soliton generation (also known as soliton quantization) features a hysteresis
effect: the number of solitons is different for different directions of adjusting the pumping
power [14–16]. Starting from the high level of pumping power, stable soliton generation
remained until 280 mW, but it did not exist in case of starting from the low level of the
pumping power (Figure 2b). Initiation of a mode-locked lasing regime requires more
pumping power than supporting stable soliton generation when it already exists. The
goal for the reinforcement learning algorithm was to learn this hysteresis phenomenon
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without explicit programming and obtain a stable soliton regime at the lowest level of
pumping power.

3. Reinforcement Learning

The RL algorithm operates with the mode-locked laser as a black-box. It does not
have information about underlying physics and learns the behavior of the system through
the actions and their consequences. In terms of the RL-algorithm, the considered problem
is formulated as follows: the laser is an environment where an agent, a neural network,
is acting by changing the parameters of the cavity. Fixed parameters of the laser cavity
determine the characteristics of the output optical radiation, which are denoted as a state
of the environment. The goal for the agent is to maximize the reward gained for the
appropriate actions. Reward r is a function that is designed to have maximum at desired
mode-locked regime. In our case, we have used the following function:

r =
1

max(ACF)
(1)

where max(ACF) is the amplitude of the maximum central peak at the autocorrelation func-
tion of the oscilloscope trace. This function provides the highest reward for mode-locked
regimes at the lowest pumping power levels. We also have found that the autocorrelation
function of an oscilloscope trace provides a convenient way to filter unstable, q-switched
and continuous wave regimes (Figure 3). At the first stage, the autocorrelation function of
the oscilloscope trace is calculated. Then, the algorithm detects the number of the peaks
applying the peak detection algorithm available through Python Scipy package. If the
number of the peaks is less than 2, the reward is zero; otherwise, the reward is calculated
with Equation (1).

Figure 3. (a–c) Oscilloscope traces of stable single-pulsed regime; unstable, Q-switched, mode-locked
regime; stable double-pulse regime. (d–f) Corresponding autocorrelation functions of the regimes.

Reinforcement learning algorithms usually require a large amount of training time. In
case of an experimental mode-locked laser, there is no straightforward possibility to parallel
the training procedure. We have used the double deep Q-learning network (DDQN) as a
solution with a balanced trade-off between the stability and training time. For instance, the
less complicated deep Q-learning algorithm suffers from an overestimation effect [17], and
the actor–critic algorithm requires more training time and is less data efficient.

The scheme of the applied DDQN algorithm is depicted at Figure 4a. Firstly, the
feed-forward neural network Qnet is initialized with random weights of neurons. Qnet
predicts the action that has to be done based on the current state. The state in our case is a
combination of laser diode current and reward that was measured at this current. The input
layer has two neurons; the first corresponds to the the current of the laser diode, and the



Photonics 2022, 9, 921 4 of 7

second—to the estimated reward. The output layer has two neurons that correspond to the
actions: increasing or decreasing the current of the pumping laser diode by 1 mA. Qnet also
contains three hidden fully connected layers with 32 neurons each with a ReLu activation
function. Next, Qtnet is initialized by copying Qnet. Due to the low dimensions of the input
and output layers, we did not use large neural networks. The final architectures of neural
networks were designed by optimization of their performances to the toy numerical model
of the hysteresis effect.

Figure 4. (a) Principle scheme of the DDQN algorithm. (b) Learning curve of the DDQN algorithm.
(c) Laser current adjustment by the DDQN algorithm after the training stage. Blue and orange
lines correspond to the calculated reward by consequently increasing the current up to 305 mA and
decreasing it back down to initial point.

To prevent oscillation and divergence of the algorithm, we implemented the concept
of experience replay buffer [18]. It breaks data correlation and makes it possible to use old
experience for off-policy algorithms [19]. An experience replay buffer is a table containing
the tuple of initial state, action, final state and reward that is obtained by transferring from
initial to final state after the action. After Qnet and Qtnet initialization, an experience replay
buffer with a fixed size of 1000 was filled by records of acting based on Qnet predictions.
Finally, we introduced the penalty procedure to avoid the situation when the agent receives
high cumulative reward by oscillating around some intermediate point at the hysteresis
curve. After each action, 10% of the maximum possible reward is deducted from the
total reward. The training procedure includes the stage during which the agent makes
100 actions from initial point, trying to maximize the cumulative reward. Every action,
the experience buffer was updated by substituting the old records by a new ones. The
experience buffer was used as a training dataset for Qnet. The weights of Qnet were updated
every 3 actions, and after 50 actions, the weights of Qtnet were copied from Qnet. The new
weights were calculated by backpropagation with an adam optimizer [20] at a learning rate
of 10−4. The optimizer minimizes the following loss function:
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L =

(
r + γ max

a′
Qtnet

(
s′, a′

)
−Qnet(s, a)

)2
(2)

where γ—discount factor equal to 0.9; s, s′ —current and next states of the environment;
a—action. This loss function allows one to find the optimal Q-function which maximizes
the cumulative reward during the self-adjusting procedure [21]. The Q-function is defined
as the expected discounted reward for an agent making action a from a state s and then
following policy π. Mathematically, it can be described in the following way:

Qπ(s, a) = Eπ [Rt|st = s, at = a] (3)

where Rt is the expected reward that we will receive at the end of the episode. Using two
neural networks allows one to solve overestimation bias for predicting the value of the
Q-function. To determine the value of the Q-function, the minimum of the predictions of
both networks is used. In order to run parallel learning of two networks asynchronously,
two identical networks Qnet and Qtnet were used. Qnet was trained by a back propagation
method, and Qtnet copied the weights of Qnet every few steps.

To make the agent act different during the learning process, thereby exploring the
environment, an ε-greedy strategy was used to select an action. During the episode,
the agent choose an action predicted by Qnet network with probability (1− ε) or acted
randomly with probability ε, where ε starts from value 0.5. Each epoch consisted of
10 episodes ε multiplied by 0.99. The iterations of the algorithm ran while the probability
to make random actions was higher than 10−4%. Figure 4b depicts the learning curves of
the DDQN algorithms. After each epoch, we tested the trained agent on a laser system and
measured the maximum reward it obtained after 100 actions.

There are three key stages of the agent’s learning process. First, the agent makes almost
random steps and does not explore the mode-locked regime. At this first stage the agent
gets almost zero or negative reward. At second stage, the agent finds the mode-locked
regime at a high level of pumping power, but then, the actions are close to random. At the
last stage, the agent finds the way to decrease the pumping power to increase the reward.
One may mention the corresponding three levels with around 0, 2.5 and 8.5 values for
the reward. The abrupt drops in the reward at the last stage of the learning curve are
caused by excessive step-down of the agent, which leads to breaking of a mode-locked
regime. Since the experimental laser exhibits power fluctuations, the threshold value of the
pumping power slightly changes. One experimental sampling point consisting of one step
of pumping diode current and subsequent measurement of a oscilloscope trace took 0.48 s.
Therefore, overall training time during 800 epochs was approximately 110 h.

Figure 4c depicts the strategy of the trained agent. The agent starts tuning a current
of the laser diode from the initial point at 280 mA. Blue points correspond to increasing
the current level by 1 mA, and red points correspond to decreasing the current level by
1 mA. At the first stage, the agent increases the current step-by-step until 294 mA—when
the mode-locked regime emerges. Then, the agent starts to decrease the current while
maintaining the mode-locked regime. The crucial point for successive adjustment is to
stop decreasing the current on time. Figure 4c demonstrates that the agent has learned the
threshold level of the current below which the mode-locked regime breaks up. On reaching
the vicinity of the reward maximum, the agent consequently increases and decreases the
current maintaining stable mode-locked regime at the lowest current.

4. Conclusions

We have demonstrated the feasibility of using the DDQN algorithm for the self-
adjusting operation of a mode-locked fiber laser. The attractive feature of the algorithm
is its ability to find a dynamic strategy to tune the pumping power of the laser diode
in order to achieve a stable mode-locked regime. We would like to note that this is an
initial demonstration and we expect to improve overall performance. For instance, at the
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moment, despite the relatively simple task, a large amount of training data was required to
teach the agent. In the case of a high-dimensional task, the number of required training
samples would increase dramatically. Therefore, we believe that further development of
RL algorithms applied to experimental laser systems should be combined with the appro-
priate numerical models capable of generating synthetic data close to the experimental
ones. This would enhance the approach through distributed learning [22] approaches and
parallelization of the learning process. Additionally, the transfer learning [23–25] concept
may be applied to speed up the learning process; for instance, the already trained network
may be applied to other laser system with hysteresis phenomena. We anticipate that our
work will stimulate further study of the dynamic design and optimization of complex
laser systems, when it is necessary to determine not optimal parameters of the cavity, but
also trajectories (in the space of parameters) of reaching them. We believe that results
contribute to development of “smart” fiber lasers that can self-adjust their operation to the
changing environment.
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