hv .
Ry Photonics

Article

DeepGOMIMO: Deep Learning-Aided Generalized Optical
MIMO with CSI-Free Detection

Xin Zhong !, Chen Chen 1*

check for
updates

Citation: Zhong, X.; Chen, C,; Fu, S.;
Zeng, Z; Liu, M. DeepGOMIMO:
Deep Learning-Aided Generalized
Optical MIMO with CSI-Free
Detection. Photonics 2022, 9, 940.
https://doi.org/10.3390/
photonics9120940

Received: 7 November 2022
Accepted: 2 December 2022
Published: 5 December 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Shu Fu 1, Zhihong Zeng ? and Min Liu !

School of Microelectronics and Communication Engineering, Chongqing University,

Chonggqing 400044, China

LiFi Research and Development Centre, Institute for Digital Communications, The University of Edinburgh,
Edinburgh EH9 3JL, UK

*  Correspondence: c.chen@cqu.edu.cn

Abstract: Generalized optical multiple-input multiple-output (GOMIMO) techniques have been
recently shown to be promising for high-speed optical wireless communication (OWC) systems.
In this paper, we propose a novel deep learning-aided GOMIMO (DeepGOMIMO) framework
for GOMIMO systems, wherein channel state information (CSI)-free detection can be enabled by
employing a specially designed deep neural network (DNN)-based MIMO detector. The CSI-free
DNN detector mainly consists of two modules: one is the preprocessing module, which is designed
to address both the path loss and channel crosstalk issues caused by MIMO transmission, and the
other is the feedforward DNN module, which is used for joint detection of spatial and constellation
information by learning the statistics of both the input signal and the additive noise. Our simulation
results clearly verify that, in a typical indoor 4 x 4 MIMO-OWC system using both generalized
optical spatial modulation (GOSM) and generalized optical spatial multiplexing (GOSMP) with
unipolar nonzero 4-level pulse-amplitude modulation (4-PAM) modulation, the proposed CSI-free
DNN detector achieves near the same bit error rate (BER) performance as the optimal joint maximum-
likelihood (ML) detector, but with much-reduced computational complexity. Moreover, because the
CSI-free DNN detector does not require instantaneous channel estimation to obtain accurate CSI, it
enjoys the unique advantages of improved achievable data rate and reduced communication time
delay in comparison to the CSI-based zero-forcing DNN (ZF-DNN) detector.

Keywords: optical wireless communication; multiple-input multiple-output; deep learning

1. Introduction

Due to the exhaustion of radio frequency (RF) spectrum resources, optical wireless
communication (OWC) which explores the infrared, visible light, or ultraviolet spectrum
has been envisioned as a promising candidate to satisfy the ever-increasing data demand in
future indoor environments [1]. In recent years, bidirectional OWC, which is also named light
fidelity (LiFi), has been widely considered as one of the key enabling technologies for 5G/6G
and Internet of things (IoT) communications [2-5]. Although OWC systems have many
inherent advantages such as abundant license-free spectrum resources, no electromagnetic
interference (EMI) and enhanced physical-layer security, the practically achievable capacity
of OWC systems is largely limited by the small modulation bandwidth of commercial off-the-
shelf (COTS) optical elements, especially for illumination light-emitting diodes (LEDs) [6].

As a very natural way to efficiently improve the achievable capacity of indoor OWC
systems that use LEDs, multiple-input multiple-output (MIMO) transmission has attracted
great attention recently, which fully exploits the existing LED fixtures in the ceiling of a
typical room to harvest substantial diversity or multiplexing gain [7-9]. So far, various
optical MIMO techniques have been introduced for OWC systems, among which optical
spatial multiplexing (OSMP) and optical spatial modulation (OSM) are two of the most
popular. Specifically, OSMP can achieve a full multiplexing gain and hence a relative
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high spectral efficiency, but suffers from severe interchannel interference (ICI) [10]. In
contrast, OSM can remove ICI by activating a single LED to transmit signal at each time
slot. Although OSM can transmit additional index bits, only one constellation symbol can be
transmitted at each time slot, and hence it is challenging for OSM systems to achieve high
spectral efficiency [11]. Lately, generalized optical MIMO (GOMIMO) techniques, including
generalized OSM (GOSM) and generalized OSMP (GOSMP), have been further proposed to
boost the capacity of MIMO-OWC systems [12-15]. In GOSM systems, multiple LEDs are
activated to transmit the same signal, and therefore more index bits can be transmitted and the
diversity gain can also be increased. In GOSMP systems, only a subset of LEDs are activated
to transmit different signals, resulting in reduced multiplexing gain. However, additional
index bits can be transmitted, and the ICI can also been reduced in GOSMP systems.

In order to successfully implement GOMIMO systems, an efficient MIMO detection
scheme should be adopted. Generally, the joint maximum-likelihood (ML) detector serves
as the optimal detector for GOMIMO systems [16]. Nevertheless, the ML detector usually
has high computational complexity, making it infeasible in practical applications. Instead,
the combination of zero-forcing (ZF) equalization and ML detection can be a practical
low-complexity detection scheme for GOMIMO systems [16]. However, ZF equalization
inevitably leads to noise amplification due to high channel correlation in typical indoor
MIMO-OWC systems. Moreover, the ZF-ML detector also suffers from the adverse effect of
error propagation, because the detection error of spatial symbols might propagate to the
estimation of constellation symbols.

With the rapid development of machine learning technology, machine learning has re-
vealed its great potential in wireless communication systems [17,18]. Moreover, machine
learning techniques have also been widely applied in optical communication systems. In [19],
a distributed collaborative learning approach was proposed for cognitive and autonomous
multidomain elastic optical networking. In [20], two machine learning algorithms were pro-
posed for bit error rate (BER) degradation detection and failure identification in elastic optical
networks. In [21], a machine learning method was proposed for quality of transmission predic-
tion of unestablished lightpaths. In [22], a convolutional neural networks-based error vector
magnitude estimation scheme was proposed for fast and accurate signal quality monitoring in
coherent optical communications. In [23], a long-short-term-memory (LSTM) algorithm was
proposed to mitigate transmission impairments of 4-level pulse-amplitude modulation (PAM4)
produced by silicon-microring modulator. Most recently, deep learning techniques have been
further introduced in OWC systems for binary signaling design [24], mitigation of both linear
and nonlinear impairments [25], energy-efficient resource management [26], and so on. More
specifically, a ZF-based deep neural network (DNN)-detection scheme has been proposed for
MIMO detection in GOMIMO systems [27]. The obtained results in [27] show that the ZF-DNN
detector can achieve comparable BER performance as the optimal joint ML detector with greatly
reduced computational complexity. Nevertheless, the ZF-DNN detector takes the ZF equalized
signal as its input, which requires accurate channel state information (CSI), i.e., the MIMO
channel matrix, to successfully perform ZF equalization. Although CSI can be estimated by
using training symbols [28], training-based instantaneous channel estimation inevitably causes
both the loss of achievable data rate and the increase of communication time delay:.

In this paper, to address the disadvantages of CSI-based ZF-DNN detection due to
the requirement of instantaneous CSI for ZF equalization, we for the first time propose
a DeepGOMIMO framework for GOMIMO systems where CSI-free MIMO detection is
achieved by a novel DNN detection scheme. By adding a specially designed preprocessing
module before the feedforward DNN module, CSI-free detection can be successfully en-
abled for GOMIMO systems. The key difference between our previous work [15] and this
current work can be described as follows: our previous work [15] mainly proposed four
OFDM-based GOMIMO schemes, whereas this current work proposes a CSI-free DNN de-
tection scheme for PAM-based GOMIMO systems. Numerical simulations are extensively
conducted to evaluate the performance of the proposed CSI-free DNN detector, which is
also compared with other three benchmark schemes including the joint ML detector, the
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ZF-ML detector and the ZF-DNN detector. Our simulation results verify the advantages
of the proposed CSI-free DNN detector in comparison to other benchmark schemes in
GOMIMO systems. To the best of our knowledge, it is the first time that a CSI-free DNN
detection scheme is proposed and evaluated in detail for PAM-based GOMIMO systems.

The rest of this paper is organized as follows. In Section 2, we describe the mathemati-
cal model of a general GOMIMO system. In Section 3, we introduce four detection schemes
for GOMIMO systems. Detailed simulation setup and results are presented in Section 4.
Finally, Section 5 concludes the paper.

2. System Model

In this section, we introduce the mathematical model of a general GOMIMO system
equipped with N; LEDs and N, photodetectors (PDs). The channel model is first described,
and then the basic principle of GOMIMO is further reviewed.

2.1. Channel Model

Letting x = [x1,xp,- -+ , X N,]T be the transmitted signal vector, H represent the N, x N;
MIMO channel matrix and n = [ny,np, -, nN,]T denote the additive noise vector, the
received signal vector y = [y1,¥2,- - - ,¥n,]” is obtained by

y =Hx+n, )
and the corresponding channel matrix H can be expressed by

hi1 -

H= , )

hna o0 BN,

where byt (r =1,2,--- ,Ny;t =1,2,- - -, N;) denotes the direct current (DC) channel gain
between the r-th PD and the ¢t-th LED. Assuming that each LED follows the general
Lambertian radiation pattern and only the line-of-sight (LOS) transmission is considered,
hy+ is calculated by [29]

I[+1)pA
Iy = %cosm (@rt) T (671)g (81t ) cos(611). 3)
27dz,
In Equation (3), I = —In2/In(cos(¥)) denotes the Lambertian emission order, with ¥ being

the semiangle at half power of the LED; p and A represent the responsivity and the physical
area of the PD, respectively; d,; is the distance between the r-th PD and the ¢-th LED; ¢,;
and 6,; are the emission angle and the incident angle, respectively. T; (0y¢) is the gain of
optical filter, and g(6,¢) = Sig; & 1s the gain of optical lens, where 1 and ® are the refractive
index and the half-angle field-of-view (FOV) of the optical lens, respectively.

Moreover, the additive noise in typical OWC systems consists of both shot and thermal
noises, and it is reasonable to model the additive noise as a real-valued zero-mean additive
white Gaussian noise (AWGN) [8]. Letting Ny denote the noise power spectral density
(PSD) and B be the signal bandwidth, the power of the additive noise is given by P,, = NyB.

2.2. Principle of GOMIMO

The concept of GOMIMO was first proposed in [15], which aims to fully explore the
potential of MIMO transmission for spectral efficiency enhancement of bandlimited OWC
systems. Specifically, GOMIMO techniques can be generally divided into two main categories:
one is GOSM, in which all the activated LED transmitters transmit the same signal, and the
other is GOSMP, in which the activated LED transmitters transmit different signals. For more
details about the GOMIMO techniques, please refer to our previous work [15].
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Figure 1 illustrates the block diagram of a general N; x Ny GOMIMO system, where
N; (1 < N; < N;) LEDs are activated for signal transmission during GOMIMO mapping.
As we can see, the input bits are first divided into two streams: one is fed into the constel-
lation mapper which converts the binary bits into constellation symbols, and the other is
sent into the LED index selector which selects the desired LEDs to transmit the generated
constellation symbols accordingly. Based on the obtained constellation symbol vector ¢ and
spatial index vector v, GOMIMO (GOSM or GOSMP) mapping is performed to generate
the transmitted signal vector x. The mapping tables for GOSM and GOSMP with N; = 4
and N, = 2 are given in insets (a) and (b) of Figure 1, respectively. On the receiver side, the
received signal vector y is fed into the GOMIMO detector which finally yields the output
bits. The detailed GOMIMO detection schemes will be discussed in the following section.

e [ ALED [ >-of PD1 [
Input GOMIMO , _ GOMIMO | Output
N X H A H y —> .
bits mapper o 5 detector bits
LED index |V SN
selector | W--)--W
(a) GOSM Mapping Table with N;=4 and N,=2 (b) GOSMP Mapping Table with N,=4 and N,=2
¢ Sft’)?ga' v |LED1|LED2|LED3|LED 4 c Sl;?gal v |LED1|LED2|LED3|LED 4
00 |[L2]| ¢ @ 0 0 00 |[L2]| a o 0 0
01 |[L3]| ¢ 0 @ 0 oL |[L3]| a 0 I 0
[e.c] [c1.c2]
11 |[[24]] © @ 0 c 11 |[24]| © al 0 c
10 |[3.4]] O 0 @ c 10 |[34]| © 0 a1 c

Figure 1. Block diagram of a general N, x Ny GOMIMO system. Insets (a) and (b) show the mapping
tables of GOSM and GOSMP, respectively.

In typical LED-based OWC systems, intensity modulation with direct detection (IM/DD)
is generally applied due to the noncoherence nature of LEDs. As a result, only real-valued
nonnegative signals can be successfully transmitted in the IM/DD OWC systems [29]. In this
work, unipolar M-ary PAM (M-PAM) is adopted as the modulation format for GOMIMO
systems. In order to avoid the loss of spatial information when performing GOMIMO
mapping, the M-PAM symbols cannot have zero values [15]. Therefore, unipolar nonzero
M-PAM modulation is utilized here and the corresponding intensity levels are given by

21
Im:M:_Vlm, m=1,---,M, 4)

where I,y denotes the average optical power emitted [8]. By using M-PAM modulation, the
spectral efficiencies (bits/s/Hz) of the N, x Ny GOMIMO system with N, activated LEDs
applying GOSM and GOSMP mappings are respectively given by

ncosm = log, (M) + [log, (C(Nt, Na)) |, ®)

nGosmp = Nalog, (M) + [log, (C(Nt, Na)) |, (6)

where | -| denotes the floor operator, which outputs an integer smaller or equal to its input
value and C(-, ) represents the binomial coefficient.

3. Detection Schemes for GOMIMO Systems

In this section, we first introduce two conventional detection schemes for GOMIMO
systems by utilizing M-PAM modulation, including the optimal joint ML detection and the
ZF-ML detection. After that, we further present two deep learning-aided detection schemes,
including the CSI-based ZF-DNN detection and our newly proposed CSI-free DNN detection.
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3.1. Joint ML Detection

Assuming perfect CSI, joint ML detection is the optimal detection scheme for GOMIMO
systems with M-PAM modulation. More specifically, the joint ML detector estimates the
transmitted constellation and spatial information simultaneously in a joint manner. By ap-
plying the joint ML detector, the transmitted signal vector x can be estimated by

XML = argmin ||y — Hx||2, 7)
xeX

where ||-||, denotes the modulus operator and X represents the set of all the considered
transmitted signal vectors.

Although the joint ML detection can achieve optimal performance, it suffers from
high computational complexity. Therefore, it is usually not feasible to apply the joint ML
detector in practical GOMIMO systems.

3.2. ZF-ML Detection

In order to avoid the high computational complexity of joint ML detection, a low-
complexity ZE-ML detection scheme can be applied in GOMIMO systems, which is basically
a three-step detection scheme [15,30]. In the first step, ZF equalization is performed for
MIMO demultiplexing. The estimate of the transmitted signal vector x after ZF equalization
can be obtained by

%zr = H'y =x+H'n, 8)

where H' denotes the pseudoinverse of H [10].

In the second step, ML detection is executed to obtain the estimate of the spatial index
vector according to Xzp. Finally, in the third step, the estimate of the constellation symbol
vector can be obtained accordingly by using Xzr and the estimate of the spatial index vector.
For more details about the principle of ZF-ML detection for GOMIMO systems, please refer
to our previous work [15].

Compared with joint ML detection, the computational complexity of ZF-ML detection
is significantly reduced. Nevertheless, the performance of ZF-ML detection is also largely
degraded in comparison to that of joint ML detection, which can be explained as follows.
On the one hand, ZF equalization inevitably causes severe noise amplification due to the
high channel correlation in typical MIMO-OWC systems [8], which might greatly degrade
the performance of GOMIMO systems. On the other hand, the detection error of spatial
symbols might propagate to the estimation of the constellation symbols [31], which leads
to further substantial performance degradation of GOMIMO systems.

3.3. CSI-Based ZF-DNN Detection

To efficiently address both the high computational complexity issue of joint ML de-
tection and the noise-amplification and error-propagation issues of ZF-ML detection, a
ZF-DNN detection has been proposed for GOSMP systems in [27]. The key idea of the
ZF-DNN detection scheme is to employ a feedforward DNN module to directly and simul-
taneously estimate the transmitted spatial and constellation bits by taking the ZF equalized
signal vector Xzr as input. For more details about the implementation of the ZF-DNN de-
tector, please refer to [31,32]. In a word, the feedforward DNN module can fulfill the tasks
of spatial index vector estimation, constellation symbol vector estimation, spatial symbol
demodulation, and constellation symbol demodulation at the same time. Simulation results
in [27] clearly show that, by selecting a proper training signal-to-noise ratio (SNR), the
ZF-DNN detector can achieve nearly the same BER performance as the optimal joint ML
detector, but with a significantly reduced computational complexity.

Despite the near-optimal BER performance and low computational complexity of the
ZF-DNN detector, it takes the ZF equalized signal vector Xz as the input of the feedforward
DNN module. As per (8), Xzp is obtained by multiplying the received signal vector y with
H, ie., the pseudoinverse of the channel matrix H. Generally, the CSI (i.e., the channel



Photonics 2022, 9, 940

6 of 16

matrix) can be efficiently estimated by transmitting training symbols [28]. Nevertheless,
the use of training symbols for accurate CSI estimation inevitably reduces the achievable
data rate of GOMIMO systems, especially for low SNR scenarios. Furthermore, because the
channel matrix is highly related to the specific location of the MIMO receiver, i.e., the PD
array, channel estimation needs to be executed instantaneously with the change of receiver
location. In consequence, instantaneous channel estimation inevitably introduces additional
communication time delay and computational complexity in practical GOMIMO systems.

3.4. Proposed CSI-Free DNN Detection

Considering the many disadvantages of CSI-based ZF-DNN detection due to the
requirement of instantaneous CSI for ZF equalization, in this work, we for the first time
propose a novel CSI-free DNN detection scheme for GOMIMO systems. Figure 2 depicts
the schematic diagram of the proposed CSI-free DNN detector, which consists of a pre-
processing module and a feedforward DNN module. It can be seen that a preprocessing
module is placed in front of the feedforward DNN module in the proposed CSI-free DNN
detector, which is the key to dealing with the impact of MIMO transmission through free-
space channels and hence realize detection without the need of CSI. Specifically, as can be
found from (1), the impact of MIMO transmission on the transmitted signal vector x can
be characterized from the following two aspects. First, because the channel coefficients in
typical MIMO-OWC systems are within the region from 1076 to 10~* [8,33], the electrical
path loss caused by MIMO transmission is about 80 to 120 dB. Secondly, MIMO transmis-
sion also inevitably leads to channel crosstalk, which might cause severe ICI, especially for
GOSMP systems. As a result, the designed preprocessing module should be able to address
both the path loss issue and the channel crosstalk issue caused by MIMO transmission.

Pre-processing module Feed-forward DNN module

Output i Decision |
layer 1 layer
Z

ol e

oFy Z3

1

1

1

1

i

—+ s :

1

i Amplitude Feature }
— . L .

1 scaling extraction | 1

.I .

N GO N I S DR

SN L !

1

1

Figure 2. Schematic diagram of the proposed CSI-free DNN detector consisting of a preprocessing
module and a feedforward DNN module.

As shown in Figure 2, our specially designed preprocessing module mainly contains
two parts: one is the amplitude scaling part and the other is the feature-extraction part.
Specifically, the amplitude scaling part is adopted to address the path loss issue by multi-
plying the received signal vector y with a scaling factor a. Note that a proper « value is
determined in advance for each receiver location in the GOMIMO system, and hence no
instantaneous CSI is needed to achieve amplitude scaling. Moreover, the feature-extraction
part is used to address the channel crosstalk issue, which multiplies the scaled received
signal vector ay by a feature matrix F. Hence, the output signal vector of the preprocessing
module in the CSI-free DNN detector, i.e, § = [1, 72, - , yANr]T, can be obtained by

y = aFy. )

In order to provide enough information for the following feedforward DNN module to
efficiently learn and remove the impact of channel crosstalk caused by MIMO transmission,
the feature matrix F should be able to reflect all the potential signal superposition cases at the
receiver side. Consequently, according to the mapping tables of both GOSM and GOSMP in
Figure 1, we adopt the corresponding unified mapping matrix as the feature matrix, i.e.,
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1100
1 010

F= 0101 (10)
0 011

Subsequently, the preprocessed signal vector ¥ is fed into a feedforward DNN module,
which mainly consists of an input layer, multiple hidden layers, an output layer, and a
decision layer. Because ¥ is a vector with N, elements, the input layer contains N, neurons
accordingly. Moreover, we set totally four fully connected hidden layers in the feedforward
DNN module, which are used to learn the statistical characteristics of both the input signal
and the additive noise. The number of neurons in the i-th (1 < i < 4) hidden layer is
denoted by L;, and the rectified linear unit (ReLU) function, i.e., freLu(#) = max(0, ), is
adopted as the activation function of the hidden layers. For the output layer, it adopts the
Sigmoid function, i.e., fsigmoid (¢) = 1/(1 +exp™*), as the activation function to generate
a fuzzy bit information, so as to map the output of each neuron within the range [0, 1].
Because the DNN detector takes the input binary bits corresponding to a transmitted signal
vector as the output, both the output layer and the decision layer have the same number of
neurons, which is equal to the spectral efficiency of the GOMIMO system, i.e., S = 7gommoO-
Therefore, letting z; denote the output of the k-th (1 < k < 6) layer of the feedforward
DNN module, the corresponding input—output relationship can be described by

«Fy, k=1
zr = ¢ fReluWi—1Zk—1 +brq), 2<k<5, (11)
fsigmoid(Wk-12x—1 +bx_1), k=6

where W), and b, with 1 < p <5 represent the corresponding weight matrix and the bias
vector, respectively. According to (11), the mean-square error (MSE) loss can be calculated
as follows:

1
eMSE = §||Z6 -b|?, (12)

where b denotes the corresponding transmitted bit vector ans S is the length of b.

Finally, the decision layer is utilized to determine the noninteger output of each neuron
in the output layer to be 0 or 1. Letting b = [by, by, - - -, bs]” denote the final output binary
bit vector, the g-th (§ = 1,2, - - -, S) binary bit in b can be estimated by

A 0, Ze,q < 0.5
by = { 1, 26,>05" (13)

4. Simulation Results

In this section, we evaluate and compare the performance of four different detection
schemes in a typical indoor GOMIMO system through numerical simulations.

4.1. Simulation Setup

In our simulations, we consider a 4 x 4 (N, = N; = 4) GOMIMO system configured
in a typical 5m x 5m x 3 mroom. The 2 x 2 square LED array is placed at the center
of the ceiling and the spacing between two adjacent LEDs is 2 m. The height of the re-
ceiving plane is 0.85 m, and two receiver locations over the receiving plane, i.e., the center
(2.5m, 2.5 m, 0.85 m) and the corner (0 m, 0 m, 0.85 m), are considered for performance evalua-
tion. The receiver consists of a 2 x 2 square PD array, where the spacing between two adjacent
PDs is 10 cm. For both GOSM and GOSMP mappings, two out of four LEDs are activated for
signal transmission, i.e., N; = 2. Moreover, unipolar nonzero 4-PAM modulation is adopted
in the GOMIMO system, and hence the corresponding spectral efficiencies for GOSM and
GOSMP mappings are 4 and 6 bits/s/Hz, respectively. In addition, we adopt transmitted SNR
as the measure to evaluate the BER performance of the GOMIMO system, which is defined as
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the ratio of the transmitted electrical signal power to the additive noise power [8,15]. The other
simulation parameters of the GOMIMO system can be found in Table 1.

Table 1. Simulation parameters.

Parameter

Value

Room dimension
Height of receiving plane
Number of LEDs

Semi-angle at half power of LED

LED spacing
Gain of optical filter
Refractive index of optical lens
Half-angle FOV of optical lens
Number of PDs
Responsivity of PD
Active area of PD
PD spacing
Number of activated LEDs, N,
PAM levels, M

S5mx5mx3m
0.85m
4
60°
25m
0.9
15
72°
4
1A/W
1 cm?
10 cm
2
4

The detailed parameters of the CSI-free DNN detectors for GOSM and GOSMP are
given in Table 2. For GOSM, the number of neurons of four hidden layers is 128, 64, 32,
and 16, respectively. The learning rate is 0.01 when the receiver is located at the center of
the receiving plane, and it is reduced to 0.001 when the receiver is moved to the corner.
Moreover, the scaling factors are set to 1 x 10° and 2 x 10° when the receiver is located at
the center and the corner, respectively. For GOSMP, every hidden layer contains 64 neurons,
and the learning rates are 0.01 and 0.005 when the receiver is located at the center and the
corner of the receiving plane, respectively. In addition, the scaling factors of 1 x 10° and
1 x 10° are used for center and corner received locations, respectively. For both GOSM and
GOSMP, the lengths of training set and validation set are assumed to be 150,000 and 50,000,
respectively. In order to accelerate the convergence speed, we use the minibatch technique
in training, and each minibatch contains 100 transmitted signal vectors.

Table 2. Parameters of the DNN detector for GOSM and GOSMP.

Parameter

GOSM

GOSMP

Receiver locations

(2.5m, 2.5m, 0.85), (0 m, 0 m, 0.85)

Number of input nodes 4
Number of hidden layers 4
Number of neurons 128 x 64 x 32 x 16 64 x 64 x 64 x 64
Number of output nodes 4 6
Hidden layer activation ReLU
Output layer activation Sigmoid
Loss function MSE
Optimizer Adamax
Learning rate 0.01 | 0.001 0.01 | 0.005
Length of training set 150,000
Length of validation set 50,000

Scaling factor

1x10° |2 x 10°

1x10% |1 x 10°

4.2. MSE Loss

We first analyze the MSE loss of the proposed CSI-free DNN detector in the 4 x 4
GOMIMO system. Figure 3a,b show the MSE losses versus the number of epochs for GOSM
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and GOSMP, respectively, where the receiver is located at the center of the receiving plane.
As we can see, the MSE loss decreases rapidly with the increase of training epochs for both
GOSM and GOSMP. Moreover, the MSE loss is much reduced when a higher training SNR
is used, especially for GOSMP. It can be seen from Figure 3a that the MSE loss for GOSM
converges quickly with only a few epochs. For GOSMP, as shown in Figure 3b, about
20 epochs are required for the MSE loss to converge. Hence, owing to the use of the minibatch
technique, the CSI-free DNN detector only requires a very limited number of epochs for
efficient training, indicating that it can be deployed rapidly in practical applications.

0.6 T T :
(a) ——GOSM, training SNR = 130 dB
0 5‘ —8-GOSM, training SNR =140 dB| |
Ty ——-GOSM, training SNR = 150 dB
0.4
a 0.3
<0
0.2
0.1
0 =8 : 2
0 10 20 30 40 50
Number of Epochs
0.6 T T .
(b) ——GOSMP, training SNR = 130 dB
0.54 —=-GOSMP, training SNR = 140 dB | |
- —6-GOSMP, training SNR = 150 dB

Number of Epochs

Figure 3. MSE training loss of the proposed CSI-free DNN detector with receiver located at the center
of the receiving plane for (a) GOSM and (b) GOSMP.

4.3. BER Performance

We further evaluate and compare the BER performance of the proposed CSI-free
DNN detector with the other three benchmark detectors in the 4 x 4 GOMIMO system.
Figure 4a,b compare the BER performance of four detectors for GOSM with the receiver
located at the center and the corner of the receiving plane, respectively. When the receiver
is located at the center of the receiving plane, as shown in Figure 4a, the ZF-ML detector
requires a high transmitted SNR of 163.4 dB to achieve the target BER of 10~3. However,
the required SNR to reach BER = 1073 is reduced to 138.9 dB for the joint ML detector.
As a result, a substantial 24.5-dB SNR gain can be obtained by the joint ML detector in
comparison to the ZF-ML detector, which is mainly because the ZF-ML detector suffers
from severe noise amplification and error propagation. Moreover, it can be further seen
that the ZF-DNN detector with an optimal 140-dB training SNR can achieve comparable
BER performance as the joint ML detector in the high SNR region, suggesting the excellent
error performance of the ZF-DNN detector under the condition of accurate CSI for ZF
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equalization. Finally, for our proposed CSI-free DNN detector, we investigate the impact of
training SNR on its error performance and three different training SNRs of 130, 140, and
150 dB are considered. It is clearly shown that the CSI-free DNN detector with 140-dB
training SNR achieves nearly the same BER performance as the joint ML detector across
the whole SNR region, which slightly outperforms the ZF-DNN detector in the low SNR
region. However, the joint ML detector outperforms the CSI-free DNN detector when
a lower training SNR of 130 dB or a higher training SNR of 150 dB is adopted, and the
reasons can be explained as follows. The DNN module can better learn the statistics of the
noise with a relatively small training SNR, whereas the statistics of the data symbols can
be more accurately learned when the training SNR is relatively large. As a result, there
exists an optimal training SNR which can make a tradeoff for the DNN module to learn the
statistics of both the noise and the data symbols and hence lead to a minimum overall BER.
When the receiver is moved to the corner of the receiving plane, as shown in Figure 4b,
we can observe that the joint ML detector outperforms the ZF-ML detector by an SNR
gain of more than 40 dB at BER = 1073, whereas the ZF-DNN detector with an optimal
training SNR of 160 dB obtains near-optimal BER performance as the joint ML detector
only for relatively low BERs. Furthermore, the CSI-free DNN detector achieves comparable
BER performance as the joint ML detector in the high SNR region, which outperforms the
ZF-DNN detector in the low SNR region. It should be noted that an error floor occurs for
the CSI-free DNN detector with a lower training SNR of 140 dB, which is mainly due to the
insufficient learning of the statistics of the data symbols in a very noisy environment.

——GOSM, center, ZF-ML

—%—GOSM, center, joint ML

—&— GOSM, center, ZF-DNN, 140 dB
—6—GOSM, center, CSI-free DNN, 140 dB
-0~ GOSM, center, CSI-free DNN, 130 dB
~@-GOSM, center, CSI-free DNN, 150 dB

=4
23| q 4
m
2
‘ \Q "-Q
3 %
\\ Q
\ =
(a) ®
\ 1
107 : : P '
120 128 136 144 152 160 168

Transmitted SNR (dB)

——GOSM, corner, ZF-ML

—%—GOSM, corner, joint ML

—8—GOSM, corner, ZF-DNN, 160 dB
—6-GOSM, corner, CSI-free DNN, 160 dB
-6 GOSM, corner, CSI-free DNN, 140 dB
+@+GOSM, corner, CSI-free DNN, 180 dB

(b)

—4 ! ! i 1 1 L L L

142 150 158 166 174 182 190 198 206 214
Transmitted SNR (dB)

Figure 4. BER comparison of the proposed CSI-free DNN detector and three benchmark detectors for
GOSM at (a) the center and (b) the corner.
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The BER versus transmitted SNR for GOSMP is plotted in Figure 5. As we can see,
the ZF-DNN detector with an optimal training SNR can achieve very close performance
as the joint ML detector when the receiver is located at the center of the receiving plane,
but it performs worse than the joint ML detector when the receiver is moved to the
corner, especially in the low SNR region. In contrast, the proposed CSI-free DNN detector
can achieve comparable BER performance as the joint ML detector for both center and
corner receiver locations. Moreover, error floors occur for the CSI-free DNN detector
when the adopted training SNR is too small or too large. It can be further observed from
Figures 4 and 5 that the optimal training SNRs for the ZE-DNN detector and the CSI-free
DNN detector at the same receiver location are generally the same in GOMIMO systems.

—0—GOSMP, center, ZF-ML

—*—GOSMP, center, joint ML

—&— GOSMP, center, ZF-DNN, 140 dB
—6—GOSMP, center, CSI-free DNN, 140 dB
-6 GOSMP, center, CSI-free DNN, 130 dB
~@-GOSMP, center, CSI-free DNN, 150 dB

65,5
-6 0-9-6-0 0-g-0-0 O

()
4 . . .
132 136 140 144 148 152 156 160 164 168
Transmitted SNR (dB)

—9—GOSMP, corner, ZF-ML

——GOSMP, corner, joint ML

—&- GOSMP, corner, ZF-DNN, 170 dB
—6—GOSMP, corner, CSI-free DNN, 170 dB
=& GOSMP, corner, CSI-free DNN, 160 dB
+@-GOSMP, corner, CSI-free DNN, 180 dB

C060060000600000000000000000009

(b) L
10*4""§“"'

146 154 162 170 178 186 194 202 210 218
Transmitted SNR (dB)

Figure 5. BER comparison of the proposed CSI-free DNN detector and three benchmark detectors for
GOSMP at (a) the center and (b) the corner.

4.4. Impact of Input Pre-Processing

It can be seen from Figure 2 that the preprocessing module, which preprocesses the
input of the feedforward DNN module, plays a vital role to guarantee that the proposed
CSl-free DNN detector can successfully perform MIMO detection without the need of
CSI. In the next, we evaluate the impact of input preprocessing on the performance of the
CSI-free DNN detector. Here, two different inputs of the feedforward DNN module are
considered: one is ay, i.e., the preprocessing module only performs amplitude scaling,
and the other is aFy, i.e., the preprocessing module performs both amplitude scaling and
feature extraction. Figure 6 compares the BER performance of the proposed CSI-free DNN
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detector where the feedforward DNN module having different inputs for both GOSM
and GOSMP with the receiver located at the center of the receiving plane. As we can see,
for GOSM, the BER performance is only slightly improved when the input is changed
from ay to aFy, and the SNR gain at BER = 1073 is only 0.8 dB. In contrast, for GOSMP,
a noticeable BER improvement can be obtained by replacing the input ay with aFy, and
the corresponding SNR gain at BER = 1073 is increased to 2.4 dB. The difference between
BER improvements for GOSM and GOSMP can be explained as follows. As discussed
in Section 3.4, because the feature matrix F contains the spatial mapping information of
GOMIMO systems, the feedforward DNN module can use the spatial mapping information
to remove the channel crosstalk. As a result, the feedforward DNN module with input aFy
can efficiently mitigate the adverse effect of error propagation. However, in GOSM systems,
the activated LEDs are used to transmit the same signal and hence error propagation
only leads to reduced diversity gain, which might not significantly degrade the BER
performance. In contrast, because the activated LEDs transmit different signals in GOSMP
systems, error propagation leads to the missing of constellation information and hence
results in significant BER degradation.

-& GOSM, input = ay

—=GOSM, input = aFy
- GOSMP, input = ay
—-GOSMP, input = aFy| 1

4

130 135

140 145 150
Transmitted SNR (dB)

Figure 6. BER comparison of the proposed CSI-free DNN detector where the feedforward DNN
module having different inputs for both GOSM and GOSMP at the center of the receiving plane.

Due to the substantial path loss during MIMO transmission, the received signal needs
to be properly amplified before it can be fed into the feedforward DNN module. Figure 7a,b
show the BER versus Log,,a with different transmitted SNRs for GOSM and GOSMP,
respectively. For GOSM, as shown in Figure 7a, we can observe that a feasible range of « is
around [10°, 10”] when the receiver is located at the center of the receiving plane. Moreover,
the feasible range of a keeps the same for different transmitted SNR values. When the
receiver is moved to the corner, the feasible range of « is [10°, 108]. For GOSMP, as shown
in Figure 7b, the same feasible range of « is obtained as that of GOSM when the receiver is
located at the center of the receiving plane. However, the feasible range of « for GOSMP is
only around 10° when the receiver is moved to the corner. To successfully implement the
proposed CSI-free DNN detector, the proper « value with respect to each receiver location
is determined in advance.
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Figure 7. BER vs. log;a of the proposed CSI-free DNN detector for (a) GOSM and (b) GOSMP.

4.5. Computational Complexity
Finally, we evaluate the computational complexity of the proposed CSI-free DNN

detector and compare it with other benchmark detectors. For both the CSI-free DNN
detector and the ZF-DNN detector, once the detector has been successfully trained, it can
be used for MIMO detection for a long period of time without further retraining, unless
the system parameters such as receiver location have been changed [27]. Hence, only the
computational complexity of the online detection process is considered for the CSI-free
DNN detector and the ZF-DNN detector, whereas the complexity of the offline training
process is not taken into account. Moreover, the computational complexity of the proposed
DNN detectors and the other three benchmark detectors is evaluated and compared in terms
of computation time, which is a common way for computational complexity evaluation
in the literature [34]. Figure 8a,b compare the computation time of the proposed DNN
detectors and the other three benchmark detectors for GOSM and GOSMP, respectively. As
we can see, for GOSM, the CSI-free DNN detector, the ZF-DNN detector and the ZF-ML
detector require nearly the same computation time which is less than 3 s. However, the joint
ML detector requires totally 48.42 s to finish the computation, which is significantly longer
than that of the other three detectors. It is the same for GOSMP that the CSI-free DNN
detector, the ZF-DNN detector, and the ZF-ML detector require comparable computation
time, which is much shorter than that required by the joint ML detector. Therefore, the
proposed CSI-free DNN detector achieves near-optimal BER performance as the joint ML

detector, but with substantially lower computational complexity.
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Figure 8. Computation time comparison of the proposed CSI-free DNN detector and three benchmark
detectors for (a) GOSM and (b) GOSMP at the center of the receiving plane.

5. Conclusions

In this paper, we have for the first time proposed a novel DeepGOMIMO framework
for GOMIMO systems, where a DNN-based detector is specially designed to realize CSI-
free detection of the received MIMO signals. The proposed CSI-free DNN detector contains
a preprocessing module and a feedforward DNN module, which are used to address
the adverse effects of MIMO transmission and to perform joint detection of spatial and
constellation information, respectively. It is shown by our simulation results that, in a
typical indoor 4 x 4 MIMO-OWC system adopting both GOSM and GOSMP with unipolar
nonzero 4-PAM modulation, the CSI-free DNN detector achieves comparable BER perfor-
mance as the optimal joint ML detector, which greatly outperforms the ZF-ML detector.
Moreover, the CSI-free DNN detector, the ZF-DNN detector and the ZF-ML detector require
nearly the same computation time to perform detection, which is significantly shorter than
that required by the joint ML detector. In addition, compared with the ZF-DNN detector,
the CSI-free DNN detector can achieve an improved achievable data rate and reduced
communication time delay because it does not require instantaneous channel estimation to
obtain accurate CSI for ZF equalization. In conclusion, our proposed DeepGOMIMO can be
a potential candidate for the implementation of practical high-speed and low-complexity
OWC systems.
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