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Abstract: In near-eye displays (NEDs), issues such as weight, heat, and power consumption mean
that the rendering and computing power is usually insufficient. Due to this limitation, algorithms
need to be further improved for the rapid generation of holograms. In this paper, we propose two
methods based on the characteristics of the human eye in NEDs to accelerate the generation of
the pinhole-type holographic stereogram (HS). In the first method, we consider the relatively fixed
position of the human eye in NEDs. The number of visible pixels from each elemental image is very
small due to the limited pupil size of an observing eye, and the calculated amount can be dramatically
reduced. In the second method, the foveated region rendering method is adopted to further enhance
the calculation speed. When the two methods are adopted at the same time, the calculation speed
can be increased dozens of times. Simulations demonstrate that the proposed method can obviously
enhance the generation speed of a pinhole-type HS.

Keywords: near-eye display; pinhole-type holographic stereogram; visible pixels; foveated region rendering

1. Introduction

Near-eye displays have attracted a great deal of interest since they are essential devices
giving immersive and interactive experiences in virtual reality (VR) and augmented reality
(AR) applications [1,2]. Most commercial NEDs are based on binocular disparities by
presenting a pair of stereoscopic images, which causes a mismatch between the accom-
modation distance and the convergence distance of human eyes. Holographic NEDs can
effectively overcome the accommodation–convergence conflict (AC conflict) by reconstruct-
ing the wavefront of three-dimensional (3D) images [3]. Compared to other advanced
3D display technologies, such as super multi-view displays [4], integral imaging [5,6],
multi-focal display [7] and tensor displays [8], holographic displays have the very crucial
advantage that they can offer all depth cues that human eyes require by reproducing both
light intensity and phase.

Although holographic displays have a bright future, the rapid generation of high-
quality computer-generated holograms (CGHs) is a major challenge. Usually, there are
two types of algorithms for calculating CGHs: wave-optics-based algorithms and ray-
optics-based algorithms. Wave-optics-based algorithms mainly contain the point-source-
based methods [9], polygon-based methods [10] and layer-based methods [11]. However,
in these methods, complicated physical phenomena, such as occlusion, shading, reflection,
refraction, glossiness, and transparency, are hard to encode into the CGH [12]. These
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features are essential for photorealistic reconstruction. Although there are still some
methods based on point sources or polygons to achieve gloss surface reconstruction, it is
difficult to achieve real-time display [13,14].

The ray-optics-based algorithm records the light ray information of parallax images,
which are also called element images (EIs), captured from 3D objects, and these features can
be solved with the help of the multiple view-point rendering technique. Many researchers
have reported on encoding the parallax images to a hologram, resulting in methods such as
the diffraction calculation method [15], the orthographic projection image method [16], the
fast Fourier transform (FFT) method [17], the ray sampling method [18,19], the resolution
priority method [20], and so on.

The pinhole-type HS method [21,22] is also a fast calculation method to record the
light field information captured by a pinhole-type integral imaging (PII) system [23,24]
into a hologram. The method works by recording the diffraction patterns produced by the
pinholes, and reconstructing multi-depth images. In some cases, the calculation speed of
the pinhole-type HS is even faster than the FFT method [17]. During the reconstruction
process, the observer’s eye can sample light rays from the virtual pinholes. This means that
the spatial resolution of the reconstructed object is determined by the number of pinholes
or EIs. In order to improve the display quality, it is usually possible to increase the number
of pinholes while keeping each EI’s resolution unchanged, but this will bring additional
rendering costs and computational costs [22]. However, in the NED, considering issues
such as weight, heat and power consumption, the computing power is usually insufficient.
Therefore, the generation speed of pinhole-type HSs needs to be further improved.

In this paper, we propose two methods based on the characteristics of the human
eye in NEDs to accelerate the generation of the pinhole-type HS. In the first method, we
consider the relatively fixed position of the human eye in NEDs [25]. Since the pupil size
of a human eye is small, only part of the wavefront emitted from each pinhole can be
observed. This part of the wavefront usually corresponds to only a few pixels of each EI.
Therefore, the generation speed can be accelerated, since the number of pixels needed to
be rendered and calculated is greatly reduced. In the second method, the foveated region
rendering method is adopted to further enhance the calculation speed [26–29]. The human
eye has high resolution only in the foveated region, and low resolution in the peripheral
region. The foveated rendering technique usually reduces the resolution in the peripheral
area, shorting the generation time without degrading the perceived image quality. In this
paper, the pinhole plane is divided into a foveated region and several peripheral areas.
The number of pinholes in peripheral areas is appropriately decreased, which means the
number of corresponding EIs needed to be calculated is significantly reduced, and the
calculation speed is naturally improved. Simply, the first method can be adopted to reduce
the number of pixels of each EI, and the second method is used to decrease the number of
EIs. In fact, these two methods can be used in parallel: the total improvement is the product
of the two methods. For the sake of simplicity, this paper only compares the improvements
of the computing speed. Simulations demonstrate that the proposed methods can obviously
enhance the generation speed of pinhole-type HSs.

2. Materials and Methods
2.1. Pinhole Type HS

Figure 1a shows the principle of the recording process of pinhole-type HSs [21,22]. A
3D object is reconstructed by the pinhole-type integral imaging system [23,24], and the CGH
plane is adopted to record the object beam by simulating light propagation from pinholes to
CGH. Each pixel of the EI emits a beam of light passing through the corresponding pinhole.
The EI is projected onto the CGH with a magnification ratio M = L/g. Therefore, each
pinhole can be seen as a point light source emitting different pyramid-shaped light rays
in different directions. The intensity of each light ray is determined by the corresponding
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pixel of EI. To the center pinhole, the recorded complex amplitude U(x, y) on the CGH can
be expressed as the multiplication of the spherical wave phase u(x, y) and the projected EI:

U(x, y) = u(x, y)·proj[EI(x, y)],
u(x, y) = 1

R exp(i 2π
λ R).

(1)

where R is the distance between the center pinhole (xp, yp) and a coordinate (x, y) on the
CGH, EI(x,y) is the original EI, and proj[] is the projection operator of each EI. The projection
of each EI can be simply obtained by rotating it by 180 degrees and magnifying the rotated
image by interpolation or simple replication. For other pinholes, the recorded complex
amplitude can be obtained by shifting the spherical wave phase u(x,y) and multiplying
it with the corresponding projected EI. Then, the total diffraction pattern on the CGH
Utotal(x,y) can be obtained by adding them together:

Utotal(x, y) =
N/2

∑
m=−N/2

N/2

∑
n=−N/2

u(x − mp, y − np)·proj[EIm,n(x, y)] (2)

where m and n are the sequence numbers of EI in the direction of x and y, p is the pinhole
pitch, and N is the number of EI in one dimension.
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Figure 1. (a) Principle of recording stage of pinhole-type HS; (b) the observer’s eye samples one light
ray from each virtual pinhole in the display stage of “pinhole mode”.

During the process of reproduction, the pinhole-type HS will reconstruct the recorded
light rays, as well as the virtual pinhole array. As shown in Figure 1b, when the observer
sees through the hologram, he is actually seeing the 3D image through the reproduced
virtual pinhole array. It is a very similar situation to that of PII. That is, the observer’s eye
samples a beam of light rays from each virtual or real pinhole, so that the resolution is
determined by the pinhole number.

Assuming there are N × N multi-view images each with N0 × N0 pixels, the total
computational amount is M2 × N2 × N0

2, where M = L/g is the magnification ratio. It can
be seen from the formula that the calculation time is closely related to the number of EI and
the pixel number of each EI. The calculation speed of this method is already fast, in some
cases this method is even faster than the FFT-based method [17]. However, in the NED,
considering issues such as weight, heat and power consumption, the computing power is
usually insufficient. Therefore, the computing speed needs to be further improved.

2.2. Proposed Methods

Due to the limited computation power of a NED device, the algorithm of CGH need
to be improved. In this paper, we propose two methods based on the characteristics of the
human eye in NEDs to further accelerate the generation of the pinhole-type HS. In the first
method, we consider the relatively fixed position of the human eye in NEDs [25]. Since
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the pupil size of a human eye is small, only part of the wavefront emitted from one EI can
be observed. Therefore, the number of pixels of each EI needed to be calculated is greatly
reduced. In the second method, the foveated region rendering method is adopted to further
enhance the calculation speed [26–29]. Since the angular resolution of the human eye
linearly declines with the increasing visual eccentricity, we reduced the pinhole numbers
of the edge area. This means the number of EIs is naturally reduced. In a word, the
first method can reduce the number of pixels in each EI, and another method is used to
reduce the number of EIs. In addition, these two methods can be used in parallel to further
improve the calculation speed.

2.2.1. Calculation Acceleration Based on Visible Pixels

As mentioned in Section 2.1, in conventional pinhole-type holographic display, the
observer’s eye only samples one light ray from each virtual pinhole. However, to ensure
that the human eye can move freely in a large area, the wavefront emitted from each EI
should be completely calculated. Once the pinhole-type HS is adopted in a NED, the
situation is changed. Due to the relative fixed-eye position of the NED, only part of the
wavefront emitted from one EI can be observed. This part of wavefront is usually emitted
from several pixels of each EI. In other words, only part of the pixels of each EI can be
observed which can be called visible pixels.

Figure 2 shows the principle of the proposed method. A wavefront recording plane
near the pinhole array is set here to decrease the computation amount [21]. In NEDs, the
human eye is generally close the hologram. Thus, the human eye usually needs to observe
a virtual image through the hologram. Moreover, the range of human eye movement is
limited in a small viewing window. Through the limited viewing window, only part of the
pixels of each EI can be observed, which can be called visible pixels. This area of visible
pixels on each EI can be defined according to the projection relationship:

V =
g

R + Z + L
W (3)

where g is the gap between the EIA and the pinhole array, L is the distance between
the pinhole and the wavefront recording plane, Z is the distance between the wavefront
recording plane and the SLM, R is the eye relief which means the distance between the
SLM and the VW, V is the size of the visible region, and W is the size of VW. Thus, the ratio
of the visible area to EI can be easily obtained:

rv = V/p (4)

where p is the size of each EI. As the number of the visible pixels decreases, the computed
burden can be reduced. Thus, the computation account is rv

2M2N2N0
2 now after using the

proposed method. In theory, only the part of wavefront entering the pupil of an observing
eye is effective, which means only the wavefront of the pupil size needs to be calculated.
Usually, the pupil size of the human eye is 2 mm. Considering the rotation and shift of
human eye, a practical viewing window should be larger than the pupil size so that the eye
can still receive the wavefront when moving in the range. In this case, usually only a few
pixels need to be calculated for each EI and the time cost is greatly reduced.

In the proposed method, for each EI, the position of visible pixels is disparate. Thus, it
takes extra time to calculate the position of visible pixels. To reduce this part of computing
consumption, we used a look-up table method, as Figure 3 shows. For (i,j)-th EI, the
boundary position of the visible area can be simply calculated according to the geometric
relationship. During the calculating process of the hologram, we just need to take out the
corresponding visible pixels according to the position information of each EI. Although
this process still requires some additional time, it is insignificant compared to the overall
calculation speed increase.
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2.2.2. Calculation Acceleration Based on Foveated Region Rendering

In the second proposed method, the foveated region rendering technology was
adopted to improve the calculation speed. There are already several papers reporting
the acceleration of the generation of wave-based CGH using the foveated region rendering,
but we have not seen any reports on the application of this method to a ray-based CGH
method [26–29]. In this paper, we propose using the foveated region rendering to speed up
the generation of pinhole-type HS.

It is a common experience that one can obtain the sharp detail only in the viewing
direction, but the surrounding is less distinct. This is because of the variation in the
photoreceptor density at the retina. Visual acuity represents the ability of visual resolution,
which can be measured by a minimum angle of resolution (MAR) [26]. Based on that
measure, the visual acuity can be explained by linear model. Such a linear model can be
expressed by:

ω = m ∗ e + ω0 (5)



Photonics 2022, 9, 95 6 of 12

where ω is the MAR in degrees per cycle, e is the eccentricity angle, ω0 is the smallest
resolvable angle and represents the reciprocal of visual acuity at the fovea (e = 0), and m is
the MAR slope. Equation (5) can be depicted by the blue line in Figure 4a, which denotes
the angular resolution linearly declining with the increasing visual eccentricity.
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In a conventional PII-based holographic display, the observer’s eye samples light rays
from virtual pinholes. Sufficient pinholes are uniformly set to obtain a superior viewing
experience. The sampling interval of the reconstructed images observed by the human eye
depends on the interval between the pinholes, and the spatial resolution of reconstructed
images is determined by the pinhole number. However, according to the visual acuity of
the human eye, the edge area does not require high resolution. Therefore, we appropriately
reduced the number of pinholes in the edge area and increased the pinhole spacing to
improve the generation speed of our pinhole-type HS.

Figure 4 shows the principle of the proposed method, to account for (considering)
the visual acuity of the human eye, we separated the pinhole array into several regions.
Assuming that pinhole array is separated by I circular regions with radii r1, r2, . . . , and ri
(r0 = 0), the pinhole spacing in i-th region is increased to tn*p. Thus, the pinhole number of
i-th region is about:

ki =
π(ri

2 − ri−1
2)

(tn p)2 (6)

and the total pinhole number can be easily obtained:

ktotal =
I

∑
1

π
(
ri

2 − ri−1
2)

(tn p)2 (7)

where i is the sequence number of different regions. Thus, the calculation amount of
this method is M2 × ktotal × N0

2. This means the calculation speed can be improved by
ktotal/N2 times.

3. Results

Numerical simulation was performed to verify the proposed methods. Firstly, for
comparison, the simulation of the conventional pinhole-type HS was performed. For
simplicity, a 2D object was set and a virtual camera array was built to capture the EIA of
the 2D scene. The camera array consisted of 400 × 400 virtual pinhole cameras, and the
pitch and focal length were set as p = 0.05 mm and g = 0.2 mm. Figure 5a shows the original
object and Figure 5b shows the captured EIA which contained 10,000 × 10,000 pixels with
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2 µm pixel pitch. The recording hologram plane was set 0.2 mm distant from the pinhole
array to record the complex amplitude of the pinholes. The pixel number of the hologam
was 10000 × 10000, the pixel size was set as 2 µm, the size of hologram was 20 mm and
the wavelength was set as 532 nm. In this case, the magnification ratio was 1. The short
recording distance was to ensure the fast computing speed. The position of the human
eye was set 7 cm distant from the hologram. Thus, the field of view angle was calculated
as 2 × tan-1(10/70) ≈ 16◦. Figure 6 shows the reconstructed image of the conventional
pinhole-type HS. Using the MATLAB R2016b with an intel i7-8700 (3.2 GHz) and a memory
of 32 Gbytes, the generation time of the conventional pinhole-type HS generation was
about 2.17 s, while the conventional FFT-based HS generation took about 2.59 s, which
performed 400 × 400 FFT calculations.
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Figure 6. The reconstructed image of the conventional pinhole-type HS.

Then, the numerical simulation of the visible pixels method was performed. The eye
movement range was set as 4 mm and pupil size was set as 2 mm. From Equation (3),
only 3 × 3 pixels needed to be calculated. Figure 7 shows the reconstructed image of the
proposed method using visible pixels. It can be seen that the quality of the images of the
proposed method using visible pixels was almost the same as the original method, but the
calculation speed was greatly improved. The generation time was 337 ms, which meant
the calculation speed was increased by about 6.2 times. The PSNR and SSIM between the
original image and the reconstructed image of conventional pinhole type HS were 17.06 and
0.5575, respectively. The PSNR and SSIM between the original image and the reconstructed
image of the proposed visible pixle method were 15.9 and 0.5328, respectively. This proves
that the proposed visible pixels method can effectively accelerate the calculation speed of
CGH without too much image quality degeneration.
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Figure 7. The reconstructed image of the proposed visible pixels method.

Next, the simulation of the proposed method based on the foveated region rendering
was performed. For simplicity, the pinholes were divided into two regions. The angle
range of foveated region was set as 4◦; thus, the radii of the foveated region and peripheral
region were 0.25 cm and 1 cm, respectively. The pinhole spacing of these two regions
were 0.05 mm and 0.1 mm, respectively. Figure 8 shows the reconstructed image. We can
see that the center part of the image remains unchanged, and the image quality of the
peripheral region was slightly decreased. The PSNR and SSIM between the original image
and the reconstructed image of the foveated region rendering method were 10.9763 and
0.5297, respectively. As the sampling rate of the peripheral region reduced, some black
gaps could be seen after magnification, so the PSNR was decreased significantly; however,
because the overall structure of the image was not damaged, the SSIM was not significantly
decreased. The calculation time was 638 ms, and the speed-up ratio was 3.4 times, which
was consistent with the theoretical value.

Photonics 2022, 9, x FOR PEER REVIEW 8 of 12 
 

 

 

Figure 7. The reconstructed image of the proposed visible pixels method. 

Next, the simulation of the proposed method based on the foveated region rendering 

was performed. For simplicity, the pinholes were divided into two regions. The angle 

range of foveated region was set as 4°; thus, the radii of the foveated region and peripheral 

region were 0.25 cm and 1 cm, respectively. The pinhole spacing of these two regions were 

0.05 mm and 0.1 mm, respectively. Figure 8 shows the reconstructed image. We can see 

that the center part of the image remains unchanged, and the image quality of the periph-

eral region was slightly decreased. The PSNR and SSIM between the original image and 

the reconstructed image of the foveated region rendering method were 10.9763 and 

0.5297, respectively. As the sampling rate of the peripheral region reduced, some 

black gaps could be seen after magnification, so the PSNR was decreased significantly; 

however, because the overall structure of the image was not damaged, the SSIM was 

not significantly decreased. The calculation time was 638 ms, and the speed-up ratio was 

3.4 times, which was consistent with the theoretical value. 

 

Figure 8. The reconstructed image of the proposed foveated region rendering method. 

Finally, a simulation based on the simultaneous use of two methods. Figure 9 shows 

the result. The reconstructed image is also similar to Figure 8. The calculation time was 

about 102 ms, and the calculation time was reduced by about 20 times. This is a very fast 

speed. Since we just used one of the eight CPU threads, the calculation time can be further 

reduced to achieve real-time processing by using the eight CPU threads simultaneously. 

Using a better CPU or using the GPU acceleration methods could also further increase the 

calculation speed. 

Figure 8. The reconstructed image of the proposed foveated region rendering method.

Finally, a simulation based on the simultaneous use of two methods. Figure 9 shows
the result. The reconstructed image is also similar to Figure 8. The calculation time was
about 102 ms, and the calculation time was reduced by about 20 times. This is a very fast
speed. Since we just used one of the eight CPU threads, the calculation time can be further
reduced to achieve real-time processing by using the eight CPU threads simultaneously.
Using a better CPU or using the GPU acceleration methods could also further increase the
calculation speed.
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Figure 9. The reconstructed image of both the proposed visible pixels method and the foveated
region rendering method.

We further demonstrated the proposed methods of a 3D object. For simplicity, we
set a 3D scene containing two images at different planes, as Figure 10a,b show. These
two planes were set −2 mm and 2 mm distant from the pinhole plane. Figure 10c,d show
the reconstructed images of the conventional pinhole-type HS focus on the pattern and
letters, respectively. Figure 11 shows the reconstructed results of the proposed visible pixels
method. The reconstructed results were basically consistent with the traditional method,
the difference was that because the proposed method reduced the beam width, similar to
the Maxwellian-type holographic display [30,31], the depth-of-field range of each layer
was increased. This can be easily confirmed from the enlarged details of the red boxes and
the blue boxes. Figure 12 shows the reconstructed results of the foveated region rendering
method. We set the second layer of the letters as the peripheral region. From the enlarged
details in Figure 12, the quality of the central pattern remained unchanged and the image
quality of the peripheral letters was slightly decreased. The simulations prove that the
proposed methods are effective for 3D objects. It is worth noting that no matter how many
layers there are in a 3D scene, the calculation amount of the proposed methods is the same,
since the computational complexity is only related to the total number of pixels that need
to be calculated on the captured EIA.
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Figure 10. The original images that were set at (a) −2 mm and (b) 2 mm distant from the pinhole
plane. The reconstructed images of the conventional pinhole-type HS focus on the (c) pattern and
(d) letters.
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4. Discussion

The time costs of different methods are compared in Table 1. It can be seen that the
calculation speed of the pinhole-type HS was indeed faster than the FFT method. With
the visible pixels method, the generation time was 337 ms, which meant the calculation
speed was increased by about 6.2 times. With the foveated region rendering method,
the calculation time was 638 ms and speed-up ratio was 3.4 times. When these two
methods were used in parallel, the total improvement was the product of the two methods.
With both methods in parallel, the calculation time was about 102 ms. In fact, we only
showed the improvement of the hologram computation time in this paper. The proposed
methods can also speed up parallax image rendering, since both the number of parallax
images and the number of pixels of each parallax image are greatly reduced. Therefore,
the proposed methods are beneficial to promote the practical application of holographic
near-eye displays.

Table 1. Time cost of the different method.

The
Method

FFT-Based
Method

Pinhole-
Type
HS

Visible
Pixels

Method

Foveated
Region

Rendering
Method

Visible Pixels
Method and

Foveated Region
Rendering Method

Time Cost
(ms) 2590 2170 337 638 102

5. Conclusions

In summary, we proposed two methods based on the characteristics of the human eye
in a NED to further accelerate the generation of the pinhole-type HS. In the first method,
we considered the relatively fixed position of the human eye in a NED. Since the pupil size
of a human eye is small, only part of the wavefront emitted from each EI can be observed.
Therefore, the number of pixels of each EI needed to be calculated was greatly reduced. In
the second method, the foveated region rendering method was adopted to further enhance
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the calculation speed. Since the angular resolution of the human eye linearly declined with
the increasing visual eccentricity, we reduced the pinhole’s number in the edge area. This
meant the number of EIs naturally reduced. Simulations demonstrated that the generation
speed of a pinhole-type HS with 10000 × 10000 pixels can be enhanced by about 20 times
with the proposed two methods.
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