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Abstract: We have considered the tight focusing of light with linear polarization. Using the Richards–
Wolf formalism, it is shown that before and after the focal plane, there are regions in which the
polarization is circular (elliptical). When passing through the focal plane, the direction of rotation
of the polarization vector is reversed. If before the focus in a certain area there was a left circular
polarization, then directly in the focus in this area there will be a linear polarization, and after the
focus in a similar area there will be a right circular polarization. This effect allows linearly polarized
light to be used to rotate dielectric microparticles with little absorption around their center of mass.

Keywords: polarization conversion; tight focusing; Richards–Wolf formula; Stokes vector; spin
angular momentum

1. Introduction

Sharp focusing of laser radiation is understood as the focusing of light by lenses with
a high numerical aperture, and it is no longer possible to neglect the vector nature of the
light wave. In this case, to calculate the light field at the focus, it is necessary to take into
account all the components of the strength of the electric (or magnetic) field of the light
wave. The classical formulas for calculating the light field in a sharp focus were obtained
by Richards and Wolf in [1].

At present, a large number of works have been devoted to the sharp focusing of light.
However, most of the works have been devoted to studying the behavior of the intensity at
the focus, for example, obtaining focal spots of various shapes [2–7]. Much less work has
been presented on the study of other characteristics of the light field, such as the energy
flux (Poynting vector) [8–10], spin or orbital angular momentum [11–14]. We also note that
the main attention of researchers has focused on the study of the behavior of light directly
in focus; less attention has been paid to the behavior of light at some distance from the
plane of sharp focus.

In this paper, the sharp focusing of linearly polarized light is considered. It is shown
that, at a distance from the focal plane, regions arise in which the polarization ceases to be
linear. In this case, when passing through the plane of focus, the direction of polarization
in these regions changes to the opposite—in regions with right circular polarization, the
direction changes to left circular and vice versa.
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2. Theoretical background

In [1], expressions were obtained for the projections of the electric field strength
vector at the focus of the aplanatic system. The Jones vector for an initial field with linear
polarization directed along the y-axis has the form:

Elin = A(θ)

(
0
1

)
(1)

and the projections of the vector of the electric field strength and magnetic field strength
near the focus for the initial field (1) have the form:

Ex = −iI2,2 sin 2ϕ,
Ey = −i(I0,0 − I2,2 cos 2ϕ),
Ez = −2I1,1 sinϕ,
Hx = i(I0,0 + I2,2 cos 2ϕ),
Hy = iI2,2 sin 2ϕ,
Hz = 2I1,1 cosϕ,

(2)

where

Iν,µ =

(
π f
λ

) θ0∫
0

sinν+1
(
θ

2

)
cos3−ν

(
θ

2

)
cos1/2(θ)A(θ)eikz cosθ Jµ(x)dθ, (3)

where λ is the wavelength of light, f is the focal length of the aplanatic system, x = krsin θ,
Jµ (x) is the Bessel function of the first kind, and NA = sin θ0 is the numerical aperture. The
angle ϕ in Equation (2) is the conventional polar (or azimuthal) angle in the transverse
planes, including the focal plane. A positive angle value increases counterclockwise from
the horizontal x-axis. In the initial plane, the light field has only linear polarization directed
along the vertical y-axis, and the Jones vector (1) does not depend on the polar angle ϕ. In
Equations (2) and (3), angle θ is the tilt angle of the rays to the optical axis, θ0 is the maximal
tilt angle, determining the numerical aperture NA, z is the direction of the optical axis, z = 0
is the focal plane, k is the wavenumber of light, (x, y) are the Cartesian coordinates in the
cross-sections of the light beam converging into the focus (x is the horizontal axis, y is the
vertical axis). The initial amplitude function A (θ) (suppose it is a real function) can be
constant (plane wave) or in the form of a Gaussian beam. From (2), one can obtained the
intensity distributions of each component of the electric vector.

Ix = I2
2,2 sin2(2ϕ),

Iy = I2
0,0 + I2

2,2 cos2(2ϕ)− 2I0,0 I2,2 cos(2ϕ),
Iz = 4I2

1,1 sin2(ϕ).
(4)

We note that Equations (1)–(4) differ from the equations obtained in [1], since the initial
field (1) is polarized along the y-axis, whereas in [1] the initial field was polarized along the
x-axis. Although the initial light field (1) has only one component Ey, Maxwell’s equations
indicate that, upon light propagation, all three components of the E-field appear. If the light
field propagates at a small angle to the optical axis, then the other two field components
(Ex and Ez) are small and can be neglected. At tight focusing, the light propagates at large
angles to the optical axis, so that all three components of the E-field (2) have a comparable
value [15,16]. It can be seen from (4) that the intensity distribution Ix of the horizontal
projection of the electric vector in the plane of focus has the form of four local maxima
(light spots), the centers of which are located on a circle centered on the optical axis and
lying on the rays emanating from the center at angles ϕ = π/4, 3π/4, 5π/4 and 7π/4.

The intensity distribution Iy has the form of an almost circular spot with a maximum
on the optical axis Iy = I2

0,0. The difference from the round shape of the spot arises from
the fact that the distribution of intensity Iy along the vertical axis (ϕ = π/2) is greater
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(Iy = (I0,0 + I2,2)
2) than along the horizontal axis (ϕ = 0, Iy = (I0,0 − I2,2)

2). The intensity
distribution (4) at the focus of the longitudinal component of the electric vector Iz has the
form of two light spots, the centers of which lie on the vertical axis. This type of intensity
distribution of electric vector individual components leads to the fact that the distribution
of the total intensity at the focus has the form of an ellipse elongated along the vertical axis:

I = Ix + Iy + Iz = I2
0,0 + I2

2,2 + 2I2
1,1 − 2

(
I2
1,1 + I0,0 I2,2

)
cos(2ϕ). (5)

Let us find the longitudinal component of the spin angular momentum (SAM) vector
near the field focus (1) using the formula [17]:

S =

(
c2ε0

2ω

)
Im(E∗ × E) (6)

where c is the speed of light in vacuum,ω is the angular frequency of the monochromatic light,
ε0 is the vacuum permittivity, Im is the imaginary part of the number, × is the sign of vector
multiplication, * is the sign of complex conjugation. Below, we omit the constant [(c2ε0)/(2ω)]
for brevity. We note that sometimes, due to the electric–magnetic democracy, Equation (6)
is written with two terms rather than one: [c2/(2ω)] Im[ε0(E∗ × E) + µ0(H∗ ×H)], with µ0
being the vacuum permeability (c2ε0=µ0

−1). However, immediately from the expression for
the Poynting vector, only one term is obtained either for the E-vector or for the H-vector [17].
In addition, due to their different constants, both terms will give different contribution to
the components of the SAM vector. Thus, Expression (6) is correct. Substituting from (2)
into (6), we will assume that integrals (3) are complex, since z is different from zero. We get:

Sz = 2Im
(
E∗x Ey

)
= 2 sin(2ϕ)Im

(
I∗2,2(I0,0 − cos(2ϕ)I2,2)

)
(7)

Certainly, near the tight focus, all 6 components of the E- and H-vectors (2) are signifi-
cant, and none of these components can be neglected. Therefore, similarly to Equation (7),
we can write expressions for the components Sx and Sy:

Sx = 2Im
(

E∗y Ez

)
= 4 sin(ϕ)Re

(
I1,1

(
cos(2ϕ)I∗2,2 − I∗0,0

))
,

Sy = 2Im(E∗z Ex) = 4 sin(ϕ) sin(2ϕ)Re
(

I∗1,1 I2,2

)
.

(8)

Let us single out the real and imaginary parts of the integrals included in (7)
I0,0 = R0 + iI0, I2,2 = R2 + iI2. Then, instead of (7), we write:

Sz = 2 sin(2ϕ)(I0R2 − I2R0) (9)

The integrals R0, R2 in (9) include the comultiplier cos (kzcosθ) ≈ 1 at kz << 1, and
the integrals I0 , I2 include the comultiplier sin(kz cos θ) ≈ kz sin θ at kz << 1. With this in
mind, instead of (9), we write:

Sz ≈ 2kz sin(2ϕ)
(

I0R2 − I2R0
)

(10)

In (10), the following notations are used:

R0 = I0,0(z = 0), R2 = I2,2(z = 0),
I0 = I0,0(z = 0), I2 = I2,2(z = 0),

Iν,µ =
(

π f
λ

) θ0∫
0

sinν+1
(

θ
2

)
cos3−ν

(
θ
2

)
cos3/2(θ)A(θ)eikz cos θ Jµ(x)dθ.

(11)

Let, on a circle of some radius, the expression in parentheses in (10) be greater than
zero I0R2 − I2R0 > 0, and since sin (2ϕ) in (10) is positive in quadrants 1 and 3, and
negative in 2 and 4, then before the focus (z < 0) the longitudinal component SAM Sz in
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(10) will be positive in quadrants 2 and 4, and negative in 1 and 3. Moreover, since the
sign of the entire expression after the focus (z > 0) changes to the opposite, the longitudinal
component of SAM Sz in (9) is positive in quadrants 1 and 3, and negative in 2 and 4. This
means that before the focus in the quadrants 2 and 4, the polarization vector rotates coun-
terclockwise (right circular or elliptical polarization), and after the focus in these quadrants,
the polarization vector rotates clockwise (left circular or elliptical polarization). Recall that
in the plane of focus, the light at each point only has linear polarization, since at z = 0 the
longitudinal component of the SAM Sz in (10) is equal to zero. The defocusing magnitude
z in Equation (10) affects the size of the areas in the transverse plane, where polarization
is not linear. At a distance z nearly equal to λ, the size of the circular polarization area is
maximal (for NA = 0.95 it is approximately λ/2). As z tends to zero (i.e., in the focus), the
size of the area with circular polarization decreases to zero.

Note also that the longitudinal component of the SAM is exactly equal to the third
component of the Stokes vector:

Sz = 2Im
(
E∗x Ey

)
= s3, (12)

which shows the presence of circular and elliptical polarization in the light field. In the
next section, the presented theoretical predictions will be confirmed by simulation.

We note that the change in the rotation direction of the polarization vector to the
opposite beyond the focal plane, as follows from Equation (10), can be explained by the
angular momentum (AM) conservation law. Since polarization in the initial plane and in
the focal plane is locally linear, Sz = 0. Therefore, if there are areas with left-handed circular
polarization before the focus, then beyond the focus, circular polarization in these areas
should become right-handed. However, the presence of such areas near the focus does not
follow from the AM conservation.

3. Simulation by Richards–Wolf Formula

In this work, using the Richards–Wolf formulas, the focusing of a linearly polarized
plane wave (wavelength 633 nm) was simulated by choosing a lens with NA = 0.95. The
field near the tight focus was calculated using the integrals [1]:

U(ρ,ψ, z) = − i f
λ

θ0∫
0

2π∫
0

B(θ,ϕ)T(θ)P(θ,ϕ)×

× exp{ik[ρ sin θ cos(ϕ−ψ) + z cos θ]} sin θ dθ dϕ,
(13)

where U (ρ, ψ, z) is the strength of the electric or magnetic field, B (θ, ϕ) is the electric or
magnetic field at the input of the wide-aperture system in coordinates of the exit pupil
(θ is the polar angle, ϕ is the azimuthal angle), T (θ) is the lens apodization function, f is
the focal length, k = 2π/λ is the wavenumber, λ is the wavelength (in the simulation it
was considered equal to 633 nm) and αmax is the maximum polar angle determined by
the numerical aperture of the lens (NA = sin θ0); P (θ, ϕ) is the polarization vector, for the
strength of the electric and magnetic fields has the form:

P(θ,ϕ) =

 1 + cos2ϕ(cos θ− 1)
sinϕ cosϕ(cos θ− 1)
− sin θ cosϕ

a(θ,ϕ) +

 sinϕ cosϕ(cos θ− 1)
1 + sin2ϕ(cos θ− 1)
− sin θ sinϕ

b(θ,ϕ), (14)

where a (θ, ϕ) and b (θ, j) are functions describing the polarization state of the x- and
y-components intensities of the focused beam. In contrast to Equations (2) and (3), we gave
Equations (13) and (14) in a general form to show that further modeling is carried out by
the general Equations (13) and (14) and that the simulation results confirm the theoretical
conclusions, following from Equations (11) and (12). After calculating the components of
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the electric field, the behavior of the components of the Stokes vector near the sharp focus
were determined. The Stokes vector components were calculated using the formulas:

s0 = ExE∗x + EyE∗y ,
s1 = ExE∗x − EyE∗y ,
s2 = 2Re

(
E∗x Ey

)
,

s3 = 2Im
(
E∗x Ey

)
.

(15)

Similarly to Equations (7)–(9), the substitution of Equation (2) into Equation (15) allows
us to obtain explicit expressions for the Stokes components s1 and s2 near the focus. For
instance, a simpler expression is derived for s2 at kz << 1:

s2 ≈ 2 sin(2ϕ)R2
(

R0 − R2 cos(2ϕ)
)

(16)

At small kz << 1, the second Stokes component (16) does not depend on z and therefore
does not change sign when passing through the focus (z = 0). Below, this is confirmed by
simulation. Similarly, the first Stokes component s1 in Equation (15), expressed via the
components of the E-vector (2), is also independent of z near the focus.

To estimate the relative contribution of individual polarization components, it is
convenient to use the Stokes vector components normalized to the transverse intensity:
(S1, S2, S3) = (s1/s0, s2/s0, s3/s0). It is known that when focusing light of linear polar-
ization at the focus, all three components of the electric field strength are observed [18].
Figure 1 illustrates the distribution of the total intensity and its individual components
in the focus of an aplanatic lens with NA = 0.95, when focusing a plane wave with a
wavelength of 633 nm and polarization along the y-axis. To estimate the effect of defo-
cusing, Figure 2 shows the same distributions of the total intensity and of the individual
intensity components as in Figure 1, but at a distance λ from the focal plane. The intensity
distributions have the same shape at the same distance before and after the focus.

Figure 1. Distribution of the total intensity Ix + Iy + Iz (a) and individual components of the intensity
Ix (b), Iy (c), Iz (d) in the plane of focus.
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Figure 2. Distribution of the total intensity Ix + Iy + Iz (a) and individual components of the intensity
Ix (b), Iy (c), Iz (d) at a distance λ after the focus.

Figure 1 shows that the initial component makes the main contribution to the focal
spot formation, but the longitudinal component of the intensity also begins to make a
significant contribution. The component perpendicular to the input polarization is rather
small but present, while the light at the focus is still linearly polarized. Note that the
distributions of the total intensity at the focus and the intensity of individual components in
Figure 1 confirm the theoretical predictions that follow from Equations (4) and (5). Figure 2
indicates that a small shift from the focal plane (by a distance λ) leads to a decrease of the
maximum intensity five times.

The distribution of the components of the Stokes vector (s1, s2, s3) and the normalized
components of the Stokes vector (S1, S2, S3) at the distance z = λ after the focus is shown in
Figures 3 and 4, respectively.

Figure 3. Distribution of the Stokes vector components s1 (a), s2 (b) and s3 (c) at a distance λ after
the focus.
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Figure 4. Distribution of the components of the normalized Stokes vector S1 (a), S2 (b) and S3 (c) at a
distance λ after the focus.

From Figures 3 and 4, it can be seen that the polarization after focus is predominantly
linear. In the center of the focal spot in Figure 3a, a minimum is observed, which indicates
that the polarization at the focus is directed along the y axis. This is also confirmed by
Figure 4a: for a wave fully polarized along the y-axis S1 = −1. From Figure 4a, it can be
seen that the polarization does not change its direction at the focus and along the x and
y axes, but along the straight lines located at an angle of ± 45◦ to the axes, the deviation
from the initial polarization turns out to be maximum. From Figures 3 and 4, it is also seen
that the diverging beam contains regions with circular polarization. Recall that there are no
such regions at the focus itself—the light is linearly polarized. From Figure 4c it is seen that
the contribution of the circular polarization in such regions is quite noticeable—for S3 = ±1,
the polarization is completely circular, but there, in some regions, S3 reaches values of ±0.8.

Figures 5 and 6 similarly show the distribution of the Stokes vector and normalized
Stokes vector at a distance of one wavelength in front of the focus.

Figure 5. Stokes vector components s1 (a), s2 (b), and s3 (c) at a distance λ before the focal plane.

Figure 6. Distribution of the components of the normalized Stokes vector S1 (a), S2 (b) and S3 (c) at a
distance λ before the focal plane.
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A comparison of Figures 4–6 shows that the first two components of the Stokes vector
describing the linear polarization have not changed, and the third has changed its sign to
the opposite. After passing the plane of the focus, the direction of the circular (elliptical)
polarization is reversed—for example, in the first quadrant, the light in front of the focus
plane had a left circular polarization, and after focus, a right polarization. Before the focus,
the right circular (elliptical) polarization appears in the second and fourth quadrants and
the left circular polarization appears in the first and third quadrants (Figure 6c). It agrees
with the theoretical prediction based on Expression (10), and the change in the direction of
rotation of the polarization vector in these quadrants after passing through the focus also
follows from (10).

Below, we show how the distribution of S3 changes with the distance from the focal
plane. Figure 7 shows the intensity distribution (Figure 7a) and the longitudinal Stokes
component S3 (Figure 7b) in the longitudinal plane yz along the z-axis, rotated by an angle
φ = 45◦ (i.e., passing through the S3 maximum in Figure 6).

Figure 7. Distributions of the intensity (a) and of the third Stokes component (b) in the longitudinal
plane yz along the z-axis (by an angle 45 degrees).

Figure 7 demonstrates that in the focal plane, the light field is linearly polarized.
However, directly beyond the focal plane, areas with an elliptical polarization are generated
(red areas in Figure 7). It is also interesting that as we move away from the focus, the
direction of rotation of the polarization vectors changes to the opposite (blue areas in
Figure 7). Figure 7b also shows how the size of the area with elliptical polarization changes
with the distance z.

4. Modeling the Formation of Circular Polarization Using the FDTD Method

To check the correctness of the calculations by the Richards–Wolf formulas, an ad-
ditional simulation was performed using the FDTD method. The focusing of a linearly
polarized plane wave (λ = 633 nm) by a Fresnel zone plate with a focal length of f = 500 nm
and a diameter of 7.9 µm was considered. The numerical aperture of such a lens is
NA = 0.99. The focusing was simulated using the FDTD method implemented in FullWave
software. Note that the FDTD method implemented in FullWave makes it possible to
calculate the values of the electromagnetic field components at individual moments of time.
To calculate the complex amplitude on the basis of individual instantaneous values of the
field amplitudes, the method proposed in [19] was used. Figure 8 shows the distribution
of the components of the normalized Stokes vector at a distance of one wavelength after
the focus.

From Figure 8, it can be seen that simulating using the FDTD method confirms the
results obtained using the Richards–Wolf formulas. In particular, Figure 8a shows that light
is predominantly linearly polarized along the y-axis, and Figure 8c shows that quadrants 1
and 3 contain a right-handed circular polarization, and quadrants 2 and 4 a left-handed
circular polarization.

Comparison of Figures 4 and 8 indicates that although the structures of both patterns
are similar, there are also significant differences. This is because the simulations by the
Richards–Wolf method [1] and by the FDTD method [19] were carried out under different
conditions. In the latter case, the tight focusing of light was simulated by passing the
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light field through a real Fresnel zone plate with a focal length equal to the wavelength
(f = λ) and with a numerical aperture NA = 0.99. At the same time, the Richards–Wolf
formalism adequately describes the light field at the focus of an ideal spherical lens if f >> λ.
Thus, the Richards–Wolf formalism approximately describes the behavior of light near the
focus, whereas the FDTD method, based on a rigorous solution of the Maxwell equations,
adequately describes the behavior of light at the focus near the surface of the focusing zone
plate. Therefore, modeling by the FDTD method expands the boundaries of the discovered
optical phenomenon: a generation of local areas with circular (elliptical) polarization near
the tight focus of light with initially linear polarization.

Figure 8. Components of the Stokes vector S1 (a), S2 (b) and S3 (c) when calculating using FullWAVE
software at a distance of 0.65 µm after the actual focus.

5. Reducing the Contribution of Circular Polarization with Decreasing Numerical
Aperture of the Lens

Let us now consider the contribution of reducing the numerical aperture of the lens to
NA = 0.6 (corresponding to a standard 40× aplanatic lens). The result is shown in Figure 9.
Figure 9 shows that the maximum S3 has decreased by two times. Moreover, from Figure 9a,
it can be seen that the relative contribution of the linear polarization (along the y axis)
increased significantly: the maximum in Figure 4 was equal to −0.5, and in Figure 9a to
−0.92. Recall that for S1 = ±1, the polarization is completely linear.

Figure 9. Distribution of the components of the normalized Stokes vector S1 (a), S2 (b) and S3 (c) for
a lens with a numerical aperture NA = 0.6.

6. Calculation of the Moment of Forces Acting on a Dielectric Microparticle near the
Focus

Let us calculate a force and a torque, acting onto a microbead from the light field. The
force F and the torque M relative to an arbitrary point A, are equal to [20,21].

F = −
∮
S

(σ·n)dS (17)
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M =
∮
S

[r× (σ·n)]dS (18)

where r is the radius-vector from the point A (x,y,z) to the point of integration on the surface
S, n is an external normal vector to the surface S, A is the point relative to which the torque
M is calculated and σ is the Maxwell stress tensor, the components of which in the CGS
system can be written as [22]

σik =
1

4π

(
|E|2 + |H|2

2
δik − EiEk − Hi Hk

)
(19)

where Ei, Hi are the electric and magnetic field components and δik is the Kronecker symbol
(δi=k = 1, δi 6=k = 0).

Shown in Figure 10 is a simulation result of the torque and force calculation acting on
the spherical microbead.

Figure 10. Intensity pattern (a) and a spherical bead with radius R = 0.3 µm. The position of the bead
is Xp = 0.3 µm, Yp = 0.3 µm. Shown at the right are a schematic position of the bead (b) and directions
of the positive torques values along the x, y and z axis (c).

Calculations show, that for the position of the particle Xp = 0.3 µm, Yp = 0.3 µm
the force projections are Fx = 2.79 pN, Fy = 3.7 pN and Fz = 8.78 pN. The torque pro-
jections are Mx = 2.81·10−19 Nm, My = −5.55·10−19 Nm and Mz = 1.73·10−19 Nm. If we
shift the bead at the position Xp = 0.3 µm, Yp = −0.3 µm, then the result force projections
become Fx = 2.66 pN, Fy = –3.58 pN and Fz = 8.9 pN, and the torque projections become
Mx = −3.0·10−19 Nm, My = −5.9·10−19 Nm and Mz = −1.5·10−19 Nm. Figure 10 shows
that in the first quadrant, the axial torque is positive (Mz = 1.73·10−19 Nm), and in the
fourth quadrant the torque is negative (Mz = −1.5·10−19 Nm). This proves that the longi-
tudinal projection of the CAM is positive in the first quadrant and negative in the fourth
(Figures 8 and 9).

7. Conclusions

In this work, theoretically, using the Richards–Wolf formalism and using two different
modeling methods, it was shown that with the sharp focusing of light with a linear polar-
ization in the planes before and after the focus, there were regions that arose in pairs in even
and odd quadrants, and in these regions, light was circularly or elliptically polarized (for
example, even to the right and odd to the left). Moreover, after passing through the focus
in these areas, the direction of rotation of the polarization vector changes to the opposite
(in even quadrants, it becomes left-handed, and in odd quadrants, it becomes right-handed
circular or elliptical polarization). This result allows the use of linearly polarized light to
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rotate microparticles (the size of the circularly polarized region is about 0.3 µm by 0.3 µm)
around its center of mass.

We note that a similar result has been obtained in [23]. It has been shown that
certain structures allow the generation before the focus and beyond the focus of two
conjugate optical vortices with opposite-sign topological charges and with longitudinal
axial polarization. In our work, we have not used any additional structures.
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