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Abstract: Cooling of a macroscopic mechanical resonator to extremely low temperatures is a necessary
condition to observe a variety of macroscopic quantum phenomena. Here, we study the stochastic
feedback cooling of a mechanical resonator in an optomechanical system with a degenerate optical
parametric amplifier (OPA). In the bad-cavity limit, we find that the OPA can enhance the cooling of
the movable mirror in the stochastic feedback cooling scheme. The movable mirror can be cooled
from 132 mK to 0.033 mK, which is lower than that without the OPA by a factor of about 5.

Keywords: optomechanical system; stochastic feedback cooling scheme; degenerate optical paramet-
ric amplifier; cooling of a movable mirror

1. Introduction

Currently, mechanical modes interacting with optical modes is one of the most studied
quantum optical systems. Generally, a macroscopic mechanical resonator is inevitably
coupled to the surrounding thermal environment; the unavoidable thermal noise acting
on the resonator from the environment masks its quantum mechanical behaviors. Hence,
cooling of micromechanical resonators towards the quantum ground state is the first step
in order to observe quantum effects of the macroscopic mechanical oscillators [1], such
as superpositions of macroscopic quantum states [2,3], mechanical squeezing [4,5], and
mechanical entanglement [6,7]. Moreover, the ground state cooling of mechanical oscillators
plays important roles in ultra-high precision measurements and the study of the quantum–
classical boundary of the mechanical oscillator [1]. Over the past few decades, there has
been considerable progress towards the realization of ground state cooling of mechanical
resonators, which is implemented through either passive feedback cooling [8–23] or active
feedback cooling [24–33]. In the passive feedback cooling scheme, the thermal noise of the
mechanical oscillator is suppressed by the radiation pressure force from the cavity field in
an optical cavity. It is possible to achieve ground state cooling of mechanical resonators in
the resolved sideband regime, where the resonant frequency of the mechanical resonator
exceeds the cavity linewidth [8,9]. In the active feedback cooling scheme, a damping
feedback force is applied to the mechanical oscillator to reduce the influence of its thermal
fluctuations. In the unresolved sideband regime, it has been shown that the active feedback
cooling scheme can reduce the temperature of the mechanical oscillator by a factor of
40 [24], and the active feedback cooling schemes can cool the mechanical oscillator from
293 K to 135 mK [25], from 2.2 K to 2.9 mK [26], from 295 K to 6.9 mK [27], from 297 K
to 1.5 mK [28], from 4.4 K to 1.1 mK [30], from 10 K to 0.037 mK [31], and from 296 K to
1.2 mK [32]. Besides, the active feedback cooling scheme can cool the mechanical oscillator
from 300 K to 350 mK in the resolved sideband regime [29].

Moreover, a degenerate optical parametric amplifier (OPA) can be used to produce
the squeezed light through the process of the degenerate parametric down conversion [34].
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It has been pointed out that putting a degenerate optical parametric amplifier (OPA)
into a Fabry–Perot optical cavity can improve the passive cooling of the mechanical res-
onator [21–23,35], aid observation of the normal-mode splitting in the spectra of the mov-
able mirror and the outgoing light from the cavity [36], prepare a mechanical mirror in
a squeezed state [37], produce the tripartite stationary entanglement [38], improve the
precision of a position measurement of the mechanical oscillator [39], and enhance the
effective interaction strength between the optical and mechanical modes originally in the
weak-coupling regime into the single-photon strong-coupling regime [40].

The stochastic feedback cooling scheme is one of the active feedback cooling schemes [33].
It has been shown that the stochastic feedback cooling scheme can cool the oscillating
mirror close to its quantum ground state in the bad-cavity limit [33]. In this paper, we
present how a degenerate OPA within a Fabry–Perot optical cavity with a movable mirror
at one end affects the stochastic feedback cooling of the moving mirror. In the presence
of the OPA, using a low pumping power of 0.1 mW, we find that the movable mirror can
reach the minimum effective mean excitation number of about 2.5, which is about 5-times
below that without the OPA.

The article is organized as follows. In Section 2, we introduce the model, derive the
quantum Langevin equations, give the steady-state mean values, and linearize the quantum
Langevin equations. In Section 3, we introduce the stochastic feedback cooling scheme,
derive the stability conditions, obtain the effective mechanical frequency and the effective
mechanical damping rate, and find the variances of the position and momentum of the
movable mirror in the stationary state. In Section 4, we discuss the influence of the OPA on
the feedback cooling of the oscillating mirror. In Section 5, we conclude with a summary of
the results obtained.

2. Model

We consider a Fabry–Perot cavity with length L formed by one fixed partially transmit-
ting mirror and one movable perfectly reflecting mirror, as shown in Figure 1. The cavity
contains a degenerate OPA. The cavity field is driven by an external laser at frequency ωl .
Then, the intracavity photons exert a radiation pressure force on the movable mirror due to
momentum transfers. Meanwhile, a thermal Langevin force acts on the movable mirror
due to the coupling of the movable mirror to a thermal bath in equilibrium at temperature
T. Under the action of the two forces, the movable mirror makes small oscillations around
its equilibrium position. The small displacement q of the movable mirror changes the
cavity length, shifts the resonance frequency of the cavity field, and changes the intracavity
photon number. This in turn modifies the radiation pressure force acting on the oscillator,
so that the optical and mechanical modes are coupled to each other. The movable mirror
with effective mass m and resonant frequency ωm is treated quantum mechanically. In the
degenerate OPA, a pump field at frequency 2ωl interacts with a second-order nonlinear
optical crystal so that a signal field at frequency ω1 and an idler field at frequency ω2 are
generated, and ω1 = ω2 = ωl .

In the adiabatic limit, the resonant frequency ωm of the oscillating mirror is much less
than the free spectral range c

2L of the optical cavity (c = 3× 108 m/s); it is reasonable to
assume that there is only a single cavity mode at frequency ωc in the cavity [41,42]. The
adiabatic approximation implies that the mechanical frequency ωm is much smaller than
ωc, so the moving mirror is moving so slow that we can neglect several effects including the
retardation effect, the Casimir effect, and the Doppler effect [43,44]. If we write the position
operator q and momentum operator p of the movable mirror in terms of the dimensionless
position operator Q and dimensionless momentum operator P of the movable mirror with

commutation relation [Q, P] = i
2 , q =

√
2h̄

mωm
Q, and p =

√
2h̄mωmP, the Hamiltonian of

the coupled system in the rotating frame at the laser frequency ωl can be written as

H = h̄(ωc −ωl)c†c− 2h̄G0c†cQ + h̄ωm(Q2 + P2)

+ih̄ε(c† − c) + ih̄G(eiθc†2 − e−iθc2). (1)
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Figure 1. Sketch of the studied optomechanical system with a feedback loop. An external laser is
sent into the optical cavity containing a degenerate OPA. With the help of a beam splitter and a 100%
reflecting mirror, the laser also provides the local oscillator for the homodyne measurement of the
outgoing light from the cavity. After detecting the cavity output by homodyne measurement, a part
of the result of the homodyne measurement is fed back to control the motion of the oscillating mirror.
The OPA is driven by coherent light (not shown). BS: 50:50 beamsplitter, PD: photodetector.

Here, c (c†) is the bosonic annihilation (creation) operator of the cavity mode satisfying

[c, c†] = 1. G0 = ωc
L

√
h̄

2mωm
is the coupling constant characterizing the strength of the

interaction between the optical and mechanical modes. ε is the amplitude of the driving
laser and is dependent on the power ℘ of the input laser by ε =

√
κ℘
h̄ωl

, in which κ is the

cavity decay rate due to the transmission of the fixed mirror. G denotes the parametric gain
of the OPA and is determined by the amplitude of the pump field driving the OPA, and θ is
the phase of the pump field driving the OPA.

According to the Heisenberg motion equation and taking into account the quantum
and thermal noises, the quantum Langevin equations describing the coupled system read

Q̇(t) = ωmP(t),

Ṗ(t) = G0c†(t)c(t)−ωmQ(t)− γmP(t) + ξ(t),

ċ(t) = −[κ
2
+ i(ωc −ωl)]c(t) + 2iG0c(t)Q(t) + ε + 2Geiθc†(t) +

√
κcin(t). (2)

Here, γm is the mechanical damping rate. ξ(t) is the Brownian noise operator of the
movable mirror [43]; it has zero mean value 〈ξ(t)〉 = 0, and its two-time correlation
function is

〈ξ(t)ξ(t′)〉 = 1
4π

γm

ωm

∫ +∞

−∞
ωe−iω(t−t′)

[
1 + coth

(
h̄ω

2kBT

)]
dω, (3)

where kB is the Boltzmann constant. In the high-temperature limit kBT � h̄ω, one has
coth(h̄ω/2kBT) ≈ 2kBT/(h̄ω). Moreover, cin(t) is the input vacuum noise operator coming
from the electromagnetic field outside the cavity. Its properties are

〈cin(t)〉 = 0,

〈cin(t)c†
in(t
′)〉 = δ(t− t′). (4)
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The steady-state mean values of the system operators can be obtained from Equation (2) by
setting their left-hand sides to zero. They are

Qs =
G0|cs|2

ωm
,

Ps = 0,

cs =
κ
2 − i∆ + 2Geiθ

κ2

4 + ∆2 − 4G2
ε, (5)

where ∆ is the effective cavity detuning in the presence of the radiation pressure defined by
∆ = ωc −ωl − 2G0Qs. The detuning ∆ can be controlled by tuning the frequency ωl of the
driving field. Qs denotes the steady-state position of the movable mirror under the action
of the radiation pressure force. Furthermore, cs represents the steady-state intracavity field
amplitude. It is noted that the intracavity photon number |cs|2 increases with increasing
the parametric gain G of the OPA.

Restricting our attention to the strong driving regime and assuming that the intracavity
photon number |cs|2 satisfies the condition |cs|2 � 1, we linearize the nonlinear Equation (2)
by letting Q(t) = Qs + δQ(t), P(t) = Ps + δP(t), and c(t) = cs + δc(t), where δQ(t), δP(t),
and δc(t) are the small fluctuation operators with zero expectation values around the
steady-state mean values Qs, Ps, and cs, respectively. Here, we drop the δ denoting the
small fluctuation for notational convenience. Hence, the linearized quantum Langevin
equations for the fluctuation operators Q(t), P(t), and c(t) are given by

Q̇(t) = ωmP(t),

Ṗ(t) = G(c(t) + c†(t))−ωmQ(t)− γmP(t) + ξ(t),

ċ(t) = −(κ

2
+ i∆)c(t) + 2iGQ(t) + 2Geiθc†(t) +

√
κcin(t), (6)

where we take cs to be real and positive and G = G0cs is the effective optomechanical
coupling strength.

In the following, we consider the case that the driving field is resonant with the cavity
field, i.e., ∆ = 0. We introduce the amplitude and phase quadrature fluctuation operators
x(t) = 1

2 [c(t) + c†(t)] and y(t) = 1
2i [c(t)− c†(t)] and the input vacuum noise quadratures

xin(t) = cin(t) + c†
in(t) and yin(t) = 1

i (cin(t)− c†
in(t)); Equation (6) can be rewritten as

Q̇(t) = ωmP(t),

Ṗ(t) = 2Gx(t)−ωmQ(t)− γmP(t) + ξ(t),

ẋ(t) = −(κ

2
− 2G cos θ)x(t) + 2G sin θy(t) +

√
κ

2
xin(t),

ẏ(t) = −(κ

2
+ 2G cos θ)y(t) + 2G sin θx(t) + 2GQ(t) +

√
κ

2
yin(t). (7)

3. The Feedback in the Stochastic Cooling Scheme

In the bad-cavity limit κ � ωm and in the weakly optomechanical coupling regime
κ � G in which the photons leak out of the cavity much faster than the optomechanical
interaction, the cavity field follows the mechanical motion adiabatically. From Equation (7),
one has

x(t) ' A
√

κ

2
xin(t) + 2GBQ(t) + B

√
κ

2
yin(t),

y(t) ' B
√

κ

2
xin(t) + 2GVQ(t) + V

√
κ

2
yin(t), (8)



Photonics 2022, 9, 264 5 of 13

where A =
κ
2+2G cos θ

κ2
4 −4G2

, B = 2G sin θ
κ2
4 −4G2

, V =
κ
2−2G cos θ

κ2
4 −4G2

. In the absence of the OPA (G = 0),

A = 2
κ , B = 0, V = 2

κ , only the phase quadrature y(t) of the cavity field is dependent on
the position Q(t) of the movable mirror [33]. In the presence of the OPA (G 6= 0), both
intracavity quadratures x(t) and y(t) are related to the position Q(t) of the movable mirror.
Then, the transmitted light from the cavity can be monitored continuously in real time
via phase-sensitive homodyne detection. Before detection, the transmitted field from the
cavity is mixed at a 50:50 beam splitter with a very intense coherent local oscillator, whose
frequency is the same as that of the external laser driving the cavity. We can change the
relative phase between the local oscillator and the transmitted light from the cavity so that
the difference between the intensities measured by the two photodetectors (the output
homodyne photocurrent) is the output phase quadrature yout(t). It varies linearly with the
intracavity phase quadrature y(t) by

yout(t) = 2η
√

κy(t)−√ηyη
in(t), (9)

where η is the homodyne detection efficiency, ranging from 0 to 1, and yη
in(t) is a generalized

phase quadrature of the input noise, which can be written in terms of a generalized input
noise yη

in(t) = 1
i (cη(t) − c†

η(t)). The quantum noise cη(t) has zero mean value, and its
nonzero correlation function is:

〈cη(t)c†
η(t
′)〉 = δ(t− t′). (10)

In addition, the noise cη(t) is correlated with the input vacuum noise cin(t), and their
nonzero correlation functions [45] are

〈cin(t)c†
η(t
′)〉 = 〈cη(t)c†

in(t
′)〉 = √ηδ(t− t′), (11)

which depend on the detection efficiency η. For the perfect homodyne detection η = 1, the
noise cη(t) is identical to the input vacuum noise cin(t) (cη(t) = cin(t)). For η = 0, cη(t)
and cin(t) are mutually uncorrelated. Hence, the output homodyne photocurrent yout(t)
provides information about the mechanical position Q(t).

This output homodyne photocurrent yout(t) is sent both to a spectrum analyzer and to
the feedback loop. Thus, a part of the output homodyne photocurrent yout(t) is sent back to
the moving mirror to counteract the thermal vibration of the moving mirror and effectively
provide cooling of the moving mirror. The feedback loop introduces an additional term
proportional to the output homodyne photocurrent yout(t− τ) in the quantum Langevin
equations for any system operator O(t) [45]:

Ȯ f b(t) = i
√

κ

η
yout(t− τ)[gscP(t), O(t)], (12)

where τ is the feedback loop delay time and gsc is a dimensionless feedback gain factor, and
it is negative. We find that only the dynamics of the position operator Q(t) is affected by
the feedback loop; an extra term in Q̇(t) due to the feedback is Q̇ f b(t) = 1

2

√
κ

η yout(t− τ)gsc.
It is assumed that the feedback delay time τ is much smaller than the cavity decay time
κ−1, the feedback delay time is negligible τ → 0, and Q̇ f b(t) reduces to

Q̇ f b(t) =
1
2

√
κ

η
yout(t)gsc. (13)
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The quantum Langevin equations including feedback become

Q̇(t) = ωmP(t) + gscκy(t)− gsc

2

√
κ

η
yη

in(t),

Ṗ(t) = 2Gx(t)−ωmQ(t)− γmP(t) + ξ(t),

ẋ(t) = −(κ

2
− 2G cos θ)x(t) + 2G sin θy(t) +

√
κ

2
xin(t),

ẏ(t) = −(κ

2
+ 2G cos θ)y(t) + 2G sin θx(t) + 2GQ(t) +

√
κ

2
yin(t). (14)

Equation (14) can be written as the matrix form:

u̇(t) = Mu(t) + n(t), (15)

where u(t) is the column vector of the fluctuations and n(t) is the column vector of the
noise sources. For the sake of simplicity, their transposes are

u(t)T = (Q(t), P(t), x(t), y(t)),

n(t)T = (− gsc
2

√
κ
η yη

in(t), ξ(t),
√

κ
2 xin(t),

√
κ

2 yin(t));
(16)

and the matrix M is given by

M =


0 ωm 0 gscκ
−ωm −γm 2G 0

0 0 2G cos θ − κ
2 2G sin θ

2G 0 2G sin θ −(2G cos θ + κ
2 )

. (17)

The solutions to Equation (15) are stable only if all the eigenvalues of the matrix M have
negative real parts. Applying the Routh–Hurwitz criterion [46], one finds the stability
conditions of the system:

S1 = κ

(
κ2

4
− 4G2 + κγm

)
+ γm(κγm + ω2

m)− 2gscκG(κ

2
+ 2G cos θ) > 0,

S2 =
[
γm

(κ2

4
− 4G2

)
+ ω2

mκ − 2gscκG
(

γm +
κ

2
− 2G cos θ

)]
S1

−(κ + γm)
2S3 > 0,

S3 = ω2
m

(
κ2

4
− 4G2

)
− 8ωmG2G sin θ − 2gscκγmG

(κ

2
− 2G cos θ

)
> 0. (18)

In the special case where θ = 0 and gsc = 0, the stability conditions are simplified greatly to

G <
κ

4
. (19)

Using Equation (8), we adiabatically eliminate the cavity mode; Equation (14) reduces to

Q̇(t) = ωmP(t) +
1
2

gscκ3/2Bxin(t) + 2gscκGVQ(t)

+
1
2

gscκ3/2Vyin(t)−
gsc

2

√
κ

η
yη

in(t),

Ṗ(t) = (4G2B−ωm)Q(t)− γmP(t) + GA
√

κxin(t)

+GB
√

κyin(t) + ξ(t). (20)
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From Equation (20), we obtain the differential equation for the displacement operator Q(t):

Q̈(t) + (1 + g)γmQ̇(t) + [ωm(ωm − 4G2B) + gγ2
m]Q(t)

= ωm[ξ(t) + Frad(t) + Ff b(t)], (21)

where g = −2gscκGV/γm is the effective feedback gain, and it is a dimensionless parameter;
Frad(t) = G

√
κ[Axin(t) + Byin(t)] is the radiation pressure force on the moving mirror;

Ff b(t) = 1
2ωm

gscκ3/2{B[γmxin(t) + ẋin(t)] + V[γmyin(t) + ẏin(t)]} − 1
2ωm

gsc
√

κ
η [γmyη

in(t) +

ẏη
in(t)] represents the feedback force acting on the movable mirror. It is seen that the

effective resonance frequency and the effective damping rate of the movable mirror are
given by

ω
e f f
m =

√
ωm(ωm − 4G2B) + gγ2

m,

γ
e f f
m = (1 + g)γm. (22)

Hence, the OPA in the cavity induces a modification in the effective mechanical resonance
frequency ω

e f f
m and the effective damping rate γ

e f f
m since g, G, and B depend on G and θ.

For Equation (20), we take the Fourier transform defined as O(t) = 1
2π

∫ +∞
−∞ o(ω)eiωtdω,

solve it in the frequency domain, and obtain the expressions for the position and momentum
fluctuations of the movable mirror:

Q(ω) = E1(ω)xin(ω) + E2(ω)yin(ω) + E3(ω)yη
in(ω) + E4(ω)ξ(ω),

P(ω) = U1(ω)xin(ω) + U2(ω)yin(ω) + U3(ω)yη
in(ω) + U4(ω)ξ(ω), (23)

where

E1(ω) = χ(ω)

√
κ

ωm

[
ωmGA + (γm + iω)

(
− gγmB

4GV

)]
,

E2(ω) = χ(ω)

√
κ

ωm

[
ωmGB + (γm + iω)

(
− gγm

4G

)]
,

E3(ω) = χ(ω)
γm + iω

ωm

gγm

4GV
√

κη
,

E4(ω) = χ(ω),

U1(ω) = χ(ω)

√
κ

ωm

[
(4G2B−ωm)

(
− gγmB

4GV

)
+ (gγm + iω)GA

]
,

U2(ω) = χ(ω)

√
κ

ωm

[
(4G2B−ωm)

(
− gγm

4G

)
+ (gγm + iω)GB

]
,

U3(ω) = χ(ω)
4G2B−ωm

ωm

gγm

4GV
√

κη
,

U4(ω) = χ(ω)
gγm + iω

ωm
,

χ(ω) =
ωm

(gγm + iω)(γm + iω)−ωm(4G2B−ωm)
. (24)

Here, χ(ω) is the mechanical susceptibility of the oscillating mirror, which describes the
response of the movable mirror in the presence of the OPA in the stochastic feedback
cooling scheme. In Equation (23), for the first two terms in Q(ω) and P(ω), the part
proportional to the parameter g originates from the feedback loop; the remaining part is
from the radiation pressure; the third term related to yη

in(ω) comes from the feedback loop;
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the fourth term related to ξ(ω) arises from the thermal noise of the movable mirror. The
spectra of fluctuations in position and momentum of the movable mirror are defined by

SZ(ω) =
1

4π

∫ +∞

−∞
dΩ e−i(ω+Ω)t[〈Z(ω)Z(Ω)〉+ 〈Z(Ω)Z(ω)〉], (25)

where Z = Q, P. With the help of the nonzero correlation functions of the system noises in
the frequency domain,

〈xin(ω)xin(Ω)〉 = 〈yin(ω)yin(Ω)〉 = 2πδ(ω + Ω),

〈xin(ω)yin(Ω)〉 = −〈yin(ω)xin(Ω)〉 = 2iπδ(ω + Ω),

〈xη
in(ω)xη

in(Ω)〉 = 〈yη
in(ω)yη

in(Ω)〉 = 2πδ(ω + Ω),

〈xin(ω)yη
in(Ω)〉 = −〈yη

in(ω)xin(Ω)〉 = 2i
√

ηπδ(ω + Ω),

〈yin(ω)yη
in(Ω)〉 = 〈yη

in(ω)yin(Ω)〉 = 2
√

ηπδ(ω + Ω),

〈ξ(ω)ξ(Ω)〉 = π
γm

ωm
ω

[
1 + coth

(
h̄ω

2kBT

)]
δ(ω + Ω), (26)

we obtain the position spectrum and momentum spectrum of the movable mirror:

SQ(ω) = E1(ω)E1(−ω) + E2(ω)E2(−ω) +
√

ηE2(−ω)E3(ω)

+
√

ηE2(ω)E3(−ω) + E3(ω)E3(−ω) + E4(ω)E4(−ω)γmnth,

SP(ω) = U1(ω)U1(−ω) + U2(ω)U2(−ω) +
√

ηU2(−ω)U3(ω)

+
√

ηU2(ω)U3(−ω) + U3(ω)U3(−ω) + U4(ω)U4(−ω)γmnth, (27)

where nth = kBT
h̄ωm

. The stationary variances 〈Q2〉 and 〈P2〉 in the position and the momen-
tum of the movable mirror can be calculated by

〈Z2〉 =
1

2π

∫ +∞

−∞
dω SZ(ω), Z = Q, P. (28)

Moreover, we introduce the parameter r = 〈Q2〉
〈P2〉 to show the relative importance of fluctua-

tions in the position and momentum of the movable mirror.

4. The Feedback Cooling of the Movable Mirror

In this section, we evaluate the effectiveness of the OPA at cooling the resonator under
the stochastic feedback control. In order to demonstrate the cooling of the movable mirror,
it is necessary to examine the effective mean vibrational number ne f f in the vibrating mirror,
which can be deduced from the variances 〈Q2〉 and 〈P2〉 of the oscillator in the steady-state:

h̄ωm[〈Q2〉+ 〈P2〉] = h̄ωm(ne f f +
1
2
). (29)

The effective mean vibrational number is then given by

ne f f = 〈Q2〉+ 〈P2〉 − 1
2

. (30)

When the movable mirror is cooled to its quantum ground state, ne f f = 0, 〈Q2〉 = 〈P2〉 = 1
4 .

The values of the parameters were chosen from the recent experiment [13]: the laser
wavelength λ = 2πc/ωl = 1064 nm, the cavity length L = 25 mm, the effective mass of the
movable mirror m = 15 ng, the mechanical frequency ωm/(2π) = 275 kHz, the mechanical
quality factor Q = ωm/γm = 2.1× 104, the mechanical damping rate γm/(2π) = 13.1 Hz,
the cavity decay rate κ/(2π) = 3× 107 Hz, the finesse of the cavity Fc = πc

κL = 200, the
feedback gain gsc = −0.25, and the detection efficiency η = 0.8; the system is operated
under the stability Condition (18). We take the initial thermal phonon number of the
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movable mirror nth = kBT/(h̄ωm) = 104, and the corresponding initial temperature of the
movable mirror is T=132 mK.

The effective mean excitation number ne f f of the cooled mirror is plotted in Figure 2
as a function of the driving power ℘ for different values of the parametric gain G when
the parametric phase is θ = 0. Note that the effective optomechanical coupling strength G
increases with increasing the laser power ℘ and the parametric gain G. For ℘ = 0.1 mW
and G = 0.18κ, the effective optomechanical coupling strength is G = 0.0064κ; thus, the
condition G � κ of the adiabatic approximation is satisfied. For a given laser power ℘, ne f f
is reduced with increasing parametric gain G. For a given parametric gain G, it is seen that
ne f f is decreased with increasing laser power ℘. When ℘ = 0.1 mW, for G = 0, 0.05κ, 0.18κ,
the effective mean excitation numbers ne f f are 12.8, 7.6, and 2.5, respectively, and the
corresponding temperatures of the movable mirror are about 0.169 mK, 0.100 mK, and
0.033 mK, respectively. Thus, in the presence of the OPA with G = 0.18κ, the cooling of the
movable mirror can be improved by a factor of about 5 compared to that in the absence of
the OPA.

0.00 0.02 0.04 0.06 0.08 0.10
P HmWL

10

20

30

40

50

60

70

neff

Figure 2. Plot of the effective mean vibrational number ne f f in the movable mirror as a function
of the power ℘ of the driving laser for different parametric gains G = 0 (blue dotted), 0.05 κ (red
dashed), and 0.18 κ (black solid) when the parametric phase is θ = 0.

The effective mean excitation number ne f f of the cooled mirror is plotted in Figure 3
as a function of the parametric phase θ/π for different values of the parametric gain G
when the input laser power ℘ is 0.1 mW. In the absence of the OPA (G = 0), ne f f is not
changed with the parametric phase θ, ne f f = 12.8. In the presence of the OPA (G 6= 0), ne f f
is changed with the parametric phase θ. For a fixed value of the nonzero parametric gain G,
ne f f takes the maximum value when θ = π and takes the minimum value when θ = 0, 2π.
The maximum value of ne f f is larger than that without the OPA (G = 0), and the minimum
value of ne f f is less than that without the OPA (G = 0). With an increase of the parametric
gain G, the maximum value of ne f f at θ = π is increased. When G = 0.05 κ, 0.18 κ, the
maximum values of ne f f at θ = π are 22.6, 158.9, respectively. As the parametric gain G is
increased, the minimum value of ne f f at θ = 0, 2π is decreased. When G = 0.05 κ, 0.18 κ,
the minimum values of ne f f at θ = 0, 2π are 7.6, 2.5, respectively, which agree with the
results in Figure 2.
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Figure 3. Plot of the effective mean vibrational number ne f f in the movable mirror as a function of
the parametric phase θ/π for different parametric gains G = 0 (blue dotted), 0.05 κ (red dashed), and
0.18 κ (black solid) when the input laser power ℘ is 0.1 mW.

In addition, the effective mean excitation number ne f f of the movable mirror against
the parametric gain G for the driving power ℘ = 0.1 mW and the parametric phase θ = 0
is shown in Figure 4. We find that ne f f almost decreases monotonically with increasing
parametric gain G. Without the OPA (G = 0) in the cavity, the effective mean excitation
number is ne f f = 12.8. With the OPA (G = 0.18κ) in the cavity, the effective mean excitation
number is decreased down to ne f f = 2.5. These results are consistent with those shown
in Figure 2. The inset in Figure 4 gives the variation of the parameter r as a function
of the parametric gain G for the laser power ℘ = 0.1 mW and the parametric phase
θ = 0. We observe that the parameter r is always less than unity, and when the parametric
gain G is increased, the parameter r is decreased, implying that the position fluctuations
are suppressed over the momentum fluctuations; this suppression is increased with the
parametric gain G. Therefore, the effect of an OPA inside a cavity on the parameter r in
the active feedback cooling scheme is different from that in the passive feedback cooling
scheme [35], in which the parametric gain G makes the parameter r larger than unity,
implying that the momentum fluctuations are suppressed over the position fluctuations.
The reason that the ratio r is not equal to unity is that we are dealing with a driven
system and the potential energy and the kinetic energy of the movable mirror are not equal
(h̄ωm〈Q2〉 6= h̄ωm〈P2〉) [35].
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r

Figure 4. Plot of the effective mean vibrational number ne f f in the movable mirror as a function of the
parametric gain G normalized to κ. Inset: the parameter r against the parametric gain G normalized
to κ. Parameters: ℘ = 0.1 mW, θ = 0.

Furthermore, the normalized resonance frequency shift [ω
e f f
m

ωm
− 1]× 104 and the nor-

malized effective damping rate γ
e f f
m /γm of the oscillator as a function of the parametric
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gain G for the driving power ℘ = 0.1 mW and the parametric phase θ = 0 are shown in
Figure 5. When the parametric gain G becomes larger, the effective resonant frequency ω

e f f
m

of the oscillator is almost equal to ωm, but the effective damping rate γ
e f f
m of the oscillator

is significantly increased, resulting in the decrease of the effective mean excitation number
ne f f of the movable mirror, as shown in Figure 4.

0.00 0.05 0.10 0.15
G�Κ
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@HΩ
m

eff �ΩmL-1D´10
4

0.00 0.05 0.10 0.15
G�Κ

5000

6000

7000

8000

9000

Γ
m

eff �Γm

Figure 5. Variations of the effective mechanical frequency ω
e f f
m (top) and the effective mechanical

damping rate γ
e f f
m (bottom) as a function of the parametric gain G normalized to κ. Parameters:

℘ = 0.1 mW, θ = 0.

5. Conclusions

In conclusion, we investigated the stochastic feedback cooling scheme in an optome-
chanical system consisting of a degenerate OPA within a Fabry–Perot optical cavity. We
found that the OPA in a cavity can upgrade the feedback cooling performance due to
the fact that it significantly increases the effective damping rate of the movable mirror.
Thus, the combination of a stochastic feedback cooling scheme with a degenerate OPA
provides an alternative way to achieve quantum ground state cooling of macroscopic
mechanical oscillators. Future work will extend these studies to cool multiple mechanical
oscillators [47].
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