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Abstract: A titanium (Ti) commercial cathode material and high purity Ar and O2 were used in the
cathodic arc physical vapor deposition (arc-PVD) process. The TiOx coating was deposited on the
three sets of Raschig rings using decreasing ratios of Ar/O2:440/60, 400/100 and 300/100. The cross
sections of the TiOx PVD coating were analyzed using field emission scanning electron microscopy
(FE-SEM), X-ray energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). A homogeneous
layer of Ti with small O content was observed, and the data suggest that a thin TiOx oxide film
was deposited. For this reason, a thermal treatment was applied to the coating to oxidize it and
form the rutile phase of TiO2 in the coating, which was demonstrated by grazing incidence XRD.
In addition, the TiOx coatings absorb radiation, which was observed by diffuse reflectance band
gap energy measurement. Silver (Ag) was added by the photo-reduction method, using UVC light
to activate the TiO2 coating, and the band gap energy was analyzed by diffuse reflectance. The
photocatalytic activities of the films were evaluated by degradation of the model dye rhodamine B
and in the removal of fecal coliforms using two matrices, water from a secondary treatment effluent,
and synthetic water.

Keywords: films; physical vapor deposition; rhodamine B; degradation; photo-catalysis; fecal coliforms

1. Introduction

Titanium dioxide (TiO2) is a wide bandgap semiconductor available in the form of
three crystalline polymorphs: rutile (tetragonal), anatase (tetragonal), and brookite (or-
thorhombic). TiO2 is a widely studied material due to its very attractive physical properties,
such as long-term stability, oxidative ability, wide indirect band gap [1], low cost and low
biological toxicity. These qualities make it a promising material for photoelectric applica-
tions, such as semiconductor electrodes in solar cells [2], photo-catalysis [3], sensors [4],
adsorption [5], biosensors [6–8], cancer therapy [9,10], and UV detectors [11,12].

Thin film materials are practical and attracted extensive interdisciplinary research
interests between physics, chemistry, and electronics [13,14]. A functional material in the
form of a porous film solidly bonded to cheap substrates (steel or polymers) allows it to
function effectively and practically, this is important particularly for large-scale industrial
applications. Numerous applications involve, for example, optical films for dye-sensitized
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solar cells [15], as electrodes in electrochemistry [16], photo-electrocatalysis [17], and photo-
catalysis [18], and many others [19].

A large number of processing techniques were developed for the deposition of TiO2
films. TiO2 thick films are fabricated by a colloidal processing route (e.g., electrophoretic
deposition) [20,21] and hydrothermal methods [22,23]. Sol-gel processing is also used to
fabricate TiO2 thin films [24–26], however, it presents film cracking and peeling [27], and
there is also a thickness limitation for each layer (~1 µm). Several vapor processing tech-
niques, (i.e., sputtering [28,29]), chemical vapor deposition [30–32], spray pyrolysis [33,34],
and physical vapor deposition (PVD) [35,36]), were applied to fabricate TiO2 thin films.

The PVD refers to the processes of deposition of thin films and nanostructures through
evaporation of solid precursors in their vapor phase by physical approaches, followed
by condensation of the vapor phase on substrates. The whole process consists of three
stages: (1) evaporation of the solid source, (2) vapor phase transport from the source to the
substrates, and (3) vapor condensation on the substrates [37]. Common PVD techniques
include laser ablation [38,39], sputtering [40,41], and cathodic arc [42–45]. In the PVD
techniques the structure of TiO2 films and their properties depend on the deposition
method and on the substrate temperatures during film growth and the energy of the
ions involved.

In the last two decades, great progress was achieved in various applications of TiO2,
however, within the TiO2 structure the photo-excited electrons and holes rapidly recom-
bine, thus diminishing the effectiveness of photo-catalysis [46]. Several approaches were
proposed to amend these difficulties; one of the effective modifications is the doping with
noble metals in TiO2, where hetero-structures and new interfaces are formed that improve
the photo-catalytic efficiency. Localized surface plasmon resonance (LSPR) on noble metal
surfaces, which arises from the collective oscillations of electrons near them, enhances the
interaction between catalysts and light, and is explained as the mechanism responsible for
affecting the photo-catalytic efficiency [47]. So far, Pt [48], Au [49], Ag [50], and Cu [51],
were added to TiO2. Among the metals, Ag is widely used because it is comparatively
cheap, showing a suitable work function.

In particular, heterogeneous catalysis using TiO2 as a photocatalyst is an attractive
method for the decomposition of various undesirable pollutants [52,53]. As persistent
organic pollutants (POPs) are a group of highly toxic chemicals for humans and the en-
vironment, several governments in the world signed the Stockholm Convention, which
came into force in 2004 and established the elimination of twelve priority POPs [54]. Some
examples of these POP-type compounds are pesticides, herbicides, toxic dyes used in
the textile industry, and organochlorine insecticides, among others. Organic dyes require
special attention, as they are shown to be highly water soluble, toxic, carcinogenic, and
mutagenic to humans, animals, and aquatic life [55]. The textile industry in its process
uses dyes with complex and persistent structures, such as rhodamine B (RhB), which is
a cationic dye of the xanthene class, highly soluble in water, and widely used as a textile
dye and in food products. It is also a well-known fluorescent tracer and biomarker [56–59].
Due to its wide use, its degradation mechanism was studied previously; the degradation
products are known [60,61] and can be easily followed by spectrophotometry.

The concentration of toxic materials and infectious microorganisms in the natural re-
sources of drinking water is constantly increasing, causing severe environmental pollution.
The traditional chemical methods for the disinfection of drinking water have limitations
due to their costs for undeveloped nations. Furthermore, a generation of harmful disinfec-
tion byproducts associated with the chemical disinfection processes, such as chlorination,
is a source of rising concern [62]. Table 1 shows some works on dye degradation and
disinfection by photocatalysis using TiO2 and TiO2 with Ag.
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Table 1. Research on dye degradation and disinfection by photocatalysis.

Photocatalyst Pollutant Pollutant
Concentration

Reaction Time and
Type of Irradiation Results

Ag-doped TiO2 thin
films using a modified

sol-gel method and
photo-chemical
deposition [24]

Rhodamine B (RhB)

10 mL of RhB solution
with initial

concentration of
10−4 mol−1

90 min, UV lamp
(400 W)

Degradation efficiency
from 38% to 90%.

Fe- or Ag-doped TiO2
–MWCNT

nanocomposite thin
films by sol–gel drop
coating method [63]

Methylene blue (MB)

200 mL of MB solution
with initial

concentration of
5 × 10−6 M

240 min, visible-light
(200 W)

Degradation efficiency
from 40.39% to 58.27%.

kap = 0.002 and
0.003 min−1

Ag/TiO2 films by
hybrid sol-gel
method [64]

Methyl orange (MO)

100 mL of MO solution
with initial

concentration of
5 × 10−5 mol/L

60 min, UV lamp
(1000 W) Kap = 0.0014 min−1

Synthesis of Ag/TiO2
nanocomposites
immobilized by
Dip-coating on

borosilicate glass [65]

Methyl orange (MO)

125 mL of MO solution
with initial

concentration of
10 ppm at a fixed pH

(7.0)

5.5 h, UV lamp (100 W)
Degradation efficiency
from 59.5% to 75.8%.

kap = 0.003 min−1

Ag–TiO2 composite
thin films deposited on
glass slides by sol–gel

spin coating
technique [66]

Escherichia coli

10 mL E. coli solution
with initial

concentration of
4.46 × 108 CFU/mL

80 s, UV-C lamp (15 W) Bacterial elimination
94%

Atomic layer deposited
anatase-TiO2 thin films

on rutile-TiO2
nanotubes [67]

Escherichia coli ∼106 CFU mL−1 120 min, UV-A lamp Bacterial elimination
40%

For such reasons in this research, a series of TiO2 coatings was synthesized by the
cathodic arc-PVD deposition method on commercial borosilicate Raschig rings (Morelia,
Mexico). The effect of the O flow during deposition on the TiOx characteristics was analyzed.
A thermal treatment is explored to increase the amount of oxygen on the surface of the
coating, and Ag was added into the film by the photo-reduction method under UVC
light. The photo-catalytic activity of these TiOx PVD functional coatings is evaluated in
model reactions.

2. Results
2.1. Characterization of the TiOx Arc-PVD Coatings in the As-Coated State
2.1.1. X-ray Diffraction (XRD)

Crystalline phase identification was performed by comparing the 2θ angular positions
obtained in the XRD patterns with the diffraction standards from the database, using the
PANalytical X’Pert HighScore program. For phase identification, the arc-PVD TiOx coatings
were also deposited in silicon (Si) oriented in the (100) direction. Figure 1a displays the
diffraction pattern of the Si wafer, while the diffraction patterns in Figure 1b correspond
to the TiOx coatings with Ar/O2 flow ratios of 300/100, 400/100 and 440/60. The TiOx
coatings display a reflection peak at 2θ ≈ 38◦, and it is observed that the peak intensity
decreases as the O2-flow increases. However, no signs of any oxidation were detected after
the XRD analysis of the TiOx in the as-coated state.
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Figure 1. X-ray diffraction patterns of (a) silicon substrate and (b) TiOx arc-PVD coatings deposited
using different Ar/O2 flow ratios.

The diffraction patterns display peaks of pure Ti α-phase, which has a compact
hexagonal structure (ICCD File 00-044-1294). Table 2 shows the crystallographic planes of
Ti α with their corresponding 2θ angle, which is in agreement with the diffraction peaks of
the TiOx coatings.

Table 2. Crystalline planes corresponding to Ti in α-phase.

Ti α

2θ Angle hkl Plane Intensity [a.u.]

35.094 (100) 315.3
38.422 (002) 36,126.04
40.171 (101) 1690.58
53.005 (102) 20.89
77.37 (201) 20.24

82.292 (004) 1033.52

2.1.2. Scanning Electron Microscopy (SEM)

Figure 2 shows images obtained by FE-SEM of the cross sections of the arc-PVD TiOx
coatings with different Ar/O2 flow ratio. Each of the micrographs shows the relatively
homogeneous TiOx coatings deposited on the Si substrates. The thickness of each coating
was measured by the SEM, giving a thickness of ~ 1.33 µm for the flow of 440 Ar/60 O2,
~1.18 µm for 400 Ar/100 O2, and ~1.20 µm for 300 Ar/100 O2. There is a slight decrease
in the deposition rate upon the raise of O2 during deposition. This is explained by the
increased oxidation of the Ti-target material with O, which makes the evaporation process
difficult, thus slightly decreasing the deposition rate. The images show a uniform granular
surface and the presence of some macro- or micro-droplets of various sizes, which are
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typical of the arc deposition method. These coating features might be deposited at the
beginning of the process, thus affecting the whole local morphology of the further TiOx
layer; see left SEM-image in Figure 2c.

Inorganics 2022, 10, x FOR PEER REVIEW 5 of 21 
 

 

surface and the presence of some macro- or micro-droplets of various sizes, which are 

typical of the arc deposition method. These coating features might be deposited at the 

beginning of the process, thus affecting the whole local morphology of the further TiOx 

layer; see left SEM-image in Figure 2c. 

 

Figure 2. FE-SEM micrographs of the cross sections of the arc-PVD TiOx coating with Ar and O2 

flow ratios of (a) 300/100, (b) 400/100, and (c) 440/60. 

2.1.3. X-ray Energy Dispersive Spectroscopy (EDS) 

The semi-quantitative elemental composition profile was obtained in depth by means 

of a line scan of the cross section of the TiOx coatings using the energy dispersive X-ray 

spectroscopy (EDS) technique with an Oxford Instruments X-ray detector (Abingdon, 

United Kingdom) and AZtec software (Oxford Instruments, Abingdon, United Kingdom). 

Figure 3 shows the micrograph with the composition profile of Ti and O along the coating; 

the dark region on the right belongs to the Si substrate. The O content is very low at the 

interface with the Si substrate and rises towards the top surface of the coating. The Ti 

content is relatively constant along the TiOx coatings. 

Figure 2. FE-SEM micrographs of the cross sections of the arc-PVD TiOx coating with Ar and O2 flow
ratios of (a) 300/100, (b) 400/100, and (c) 440/60.

2.1.3. X-ray Energy Dispersive Spectroscopy (EDS)

The semi-quantitative elemental composition profile was obtained in depth by means
of a line scan of the cross section of the TiOx coatings using the energy dispersive X-ray
spectroscopy (EDS) technique with an Oxford Instruments X-ray detector (Abingdon,
United Kingdom) and AZtec software (Oxford Instruments, Abingdon, United Kingdom).
Figure 3 shows the micrograph with the composition profile of Ti and O along the coating;
the dark region on the right belongs to the Si substrate. The O content is very low at the
interface with the Si substrate and rises towards the top surface of the coating. The Ti
content is relatively constant along the TiOx coatings.
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Figure 3. Linear elemental scan EDS analysis of the arc-PVD TiOx coating.

2.1.4. EDS Mapping

The combination and superimposition of the EDS elemental maps on an informative
electronic color image brings the benefits of automatic semi-qualitative analysis in two
dimensions to identify the chemical elements and show their distributions in the PVD
coatings as a function of the different Ar/O2 flow ratios. The chemical maps of the TiOx
coatings are shown in Figure 4a–c. The O K map in Figure 4c displays the major O content
in the coating deposited using 300/100 Ar/O2 flow ratio. Further analysis was focused on
this coating, this is considering that the plasma was stable enough during the deposition of
the TiOx with the 300/100 Ar/O2 flow ratio.
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Figure 4. EDS mapping of the arc-PVD TiOx coatings deposited with (a) 440 Ar/60 O2, (b) 400 Ar/100
O2, and (c) 300 Ar/100 O2.
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2.1.5. EDS Spectra of the Coating with Fluxes of 300 Ar /100 O2

Each EDS spectrum in Figure 5 indicates the content of the elements present at that
position in the arc-PVD TiOx coating. The spectrum 7 corresponds to the entire field of the
SEM-image displayed in Figure 5.
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Figure 5. Micrograph showing the location of the EDS spectra from 1 to 6 in the TiOx coating
deposited using a 300/100 Ar/O2 flow ratio.

The TiOx coatings with Ar/O2 flow ratios of 440/60 and 400/100 displayed relatively
low O contents. The semi-quantitative elemental compositional analysis of the TiOx coating
using a 300 Ar/100 O2 flow ratio is shown in Table 3. It is observed that the presence of Ti
predominates in all the spectra. Important to remark is that the coating strategy considers
the deposit of a thin Ti metallic bond layer at the interface with the borosilicate rings. This is
not clearly demonstrated by the EDS analysis due to the thickness of Ti, which is expected
to be only a few tens of nanometers. However, this is in agreement with the information
indicating the presence of pure metallic Ti observed by the XRD evaluation discussed in the
next section. At the top surface of the coating (spectrum 1) the concentration of Ti decreases,
while the O concentration increases, so it is assumed that on the top layers of the graded
coating the chemical composition will approach the formula TiOx.

Table 3. Chemical composition estimated via the EDS spectra of TiOx arc-PVD coatings deposited
using 300/100 Ar/O2 flow ratio.

Spectrum
% Weight % Atomic

O Ti O Ti

1 12.17 87.83 29.32 70.68
2 6.86 93.14 18.07 81.93
3 4.58 95.42 12.56 87.44
4 3.66 96.34 10.21 89.79
5 4.89 95.11 13.34 86.66
6 5.99 94.01 16.01 83.99
7 9.28 90.72 23.44 76.56

2.2. Characterization of Thin Film by PVD and Heat Treatment
2.2.1. X-ray Diffraction (XRD)

Only Ti metallic was identified in the TiOx coatings in the as-coated state and for this
reason a heat treatment at 500 ◦C/2 h in static lab air was carried out. Figure 6 shows the
diffractograms of the TiOx coatings deposited by applying different Ar/O2 flow ratios and
treated at 500 ◦C. The rutile TiO2 phase is built upon this treatment, which is indexed by
the ICCD File 01-078-1510. Pure Ti in α phase (ICCD File 00-044-1294) was also detected.
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The peak at ≈ 70◦ corresponds to the Si substrate. Since it was not possible to identify the
phases present by XRD of normal incidence or Bragg–Brentano, we proceeded to perform
XRD with grazing incidence to the PVD coatings with heat treatment at 500◦C for 2 h on
silicon plates.
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of hexagonal-Ti and rutile-TiO2.

2.2.2. Diffuse Reflectance

The UV-vis diffuse reflectance spectra of the PVD coatings on the Si plates with
different flow ratios of Ar/O2 and subjected to heat treatment at 500 ◦C for 2 h are shown
in Figure 7 where the absorption region for the 300 Ar/100 O2 coating ranges from 200 nm
to 300 nm and high absorption from 300 nm to 800 nm in the visible region, for the 400
Ar/100 O2 coating the absorption region is from 200 nm to 400 nm and for the 440 Ar/60
O2 coating the absorption is observed in the region from 200 nm to ≈ 425 nm.
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In order to correlate the reflectance spectrum to the energy band gap (Eg) of the TiOx
coatings, the Kubelka–Munk function was used. Then, to obtain the band gap, the Tauc’s
graphical procedure was applied, in which the Kubelka–Munk function and the photon
energy, h
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expressed in eV, are related. This graph is shown in Figure 8, where the Eg is
observed for each TiOx coating obtained from the intersection of the tangent line with the
horizontal axis.
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The Eg values of each coating indicate the energy required for the transfer of electrons
from the valence band to the conduction band to take place. The Eg is related to the
wavelength λ (nm) with the following equation:

Eg =
hc
λ

=
1240

λ
(1)

where h is Planck’s constant and c is the speed of light. From the above equation, it follows
that the longer the wavelength of maximum absorption λ (nm), the narrower the bandgap
Eg (eV).

The Eg of the coatings with 400 Ar/100 O2 is 3.15 eV, corresponding to a maximum
absorption wavelength of 394 nm, for 300 Ar/100 O2 the Eg is 3.67 eV corresponding
to 338 nm, so these films are expected to be activated under ultraviolet type A (UVA)
radiation ranging from 315 nm to 400 nm, while the 440 Ar/60 O2 coating its Eg is 2.92 eV,
corresponding to 425 nm, and these are activated under visible light from 400 to 700 nm.
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2.3. The Effect of Ag Deposited by Photo-Reduction on the TiOx Arc-PVD Coatings
2.3.1. X-ray Diffraction (XRD)

Figure 9 shows the XRD diffractogram of the rings coated using this Ar/O2 flow
ratio = 300/100 after undergoing the heat treatment and Ag photo-reduction. The XRD
patterns are compared to the XRD data from Ag, Ti α, and 300/100 rings in relative intensity.
The peak with the highest intensity, which is found at ≈ 38◦, may belong to Ag and also the
Ti α phase since it is a characteristic peak. The small diffraction peaks that are attributed
to Ag with cubic structure (ICCD File 00-001-1167) prove the presence of Ag in the coated
rings after photo-reduction.
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Figure 9. XRD diffractogram of the arc-PVD 400 Ar/100 O2 and 300 Ar/100 O2 TiOx coating with
heat treatment and photo-reduction of Ag with patterns in relative intensity of Ag and Tiα.

2.3.2. Diffuse Reflectance

The UV-vis diffuse reflectance spectra of the TiOx arc-PVD coatings deposited using
different Ar/O2 flow ratios subjected to heat treatment and Ag photo-reduction are shown
in Figure 10. The estimated absorption region for the 300 Ar/100 O2 coating with Ag ranges
from 350 nm to 800 nm and for the 400 Ar/100 O2 coating with Ag are two absorption
regions; the first one from 240 nm to 350 nm and the second of higher absorbance observed
from 400 nm to 650 nm.
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Figure 10. Kubelka–Munk absorbance function F(R) vs wavelength for heat-treated TiOx catalysts
coated with Ag.

Figure 11 shows that the Eg for the 300 Ar/100 O2 catalytic coating with Ag is
2.75 eV, corresponding to a maximum absorption wavelength of ≈451 nm, and for the
400 Ar/100 O2 coatings with Ag its Eg is equal to 2.53 eV, corresponding to an absorption
wavelength of 490 nm. The results indicate that the incorporation of silver in TiO2 coatings
caused a reduction in the Eg, which induced a shift towards the visible region for the
photo-excitation of the catalytic Ag-TiO2 surface. Therefore, an electronic transition from
the Ag+ energy levels to the Titania conduction band is considered to be the main reason
for this reduction in the bandgap energy and the shift of the absorption response to the
visible light region.
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Figure 11. Tauc diagrams to calculate Eg of rings with TiOx catalytic coatings deposited using Ar-O2

flow ratio 300/100 and 400/100.

2.4. Degradation of Rhodamine B Dye by the Ag-TiOx Photo-Catalysts

For catalytic testing, a reactor with a 2 l volume filled with 8 rings coated with Ag-TiOx
catalyst and a concentration of 0.5 ppm of rhodamine B was applied. The photo-catalyst Ag-
TiOx deposited with 400 Ar/100 O2 degraded ~68.18%, and the catalytic coating deposited
with 300 Ar/100 O2 decomposed ~68.02%. The coated rings in the darkness showed no
change in rhodamine B concentration over time, and the lamp on without the catalytic rings
(photolysis) degraded only 15% of the dye. The amount of 0.066 g of TiO2 in the anatase
phase of the Sigma Aldrich (Burlington, MA, United States) brand in powder form, which
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is equivalent to the mass of the coating of eight rings degraded 86% in a time of 75 min
(Figure 12).
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Figure 12. Change in rhodamine B concentration (2 L at 0.5 ppm RhB) with respect to time using
different catalysts configurations. Arc-PVD Ag-TiOx coating (circle and square), anatase-phase TiO2

powder catalyst (triangle), photolysis (inverted triangle), and adsorption (rhombohedra).

2.5. Determination of Reaction Kinetic Constants

To further explain the behavior of the rhodamine B degradation process, the kinetics of
this reaction was determined with the experimental data presented in the last section. The
criterion to calculate the reaction order was the one that best fit a straight line or that had
the best linear correlation. In this sense, the degradation of rhodamine B fits the kinetics of
a reaction with a pseudo first order. Table 4 shows the kinetic equations for this reaction,
where C0 is the initial dye concentration, C is the dye concentration at a given time, kap is
the first order apparent rate constant, and t is the time in min.

Table 4. Kinetic parameters for rhodamine B degradation reaction.

Reaction Order Reaction Speed
(kap)

Integration of
kap

Line Graph to
Determine kap

Half Life Time
(t1/2)

First
order − d[C]

dt = k[C] [C] = [C0]e−kt ln[C]vs t ln(2)
k

Table 5 shows the kinetic constants calculated for the Ag-TiOx photo-catalyst deposited
using 300/100 Ar/O2 (0.0038 min−1) and for the Ag-TiOx photo-catalytic coating deposited
using 400/100 Ar/O2 (0.0041 min−1). These reaction constants kap are still extremely low
(~14.5 smaller) compared to the rhodamine degradation on the TiO2 powder catalysts in
suspension (0.0595 min−1). Important to highlight is the specific surface area exposed
in both catalytic systems. Catalysts in powder form offer great surface area, while PVD
coatings are extremely dense with low specific surface areas. The advantages of fixed
photo-catalysts would be the ease to separate the treated fluid from the solid catalyst.
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Table 5. Kinetic data of the photo-catalytic degradation of rhodamine B over Ag-TiOx catalyst
deposited by arc-PVD.

Photocatalyst C/C0 kap (min−1) Half Life Time (t1/2)
(min) R2

TiOx coating 400 Ar /100 O2 0.318 0.0041 169.06 0.9937
TiOx coating 300 Ar/100 O2 0.319 0.0038 182.4 0.9951

Powder-TiO2 0.04 0.0595 11.64 0.9904

Kinetic constants of published results cannot be directly compared because they are all
calculated using different reaction conditions, such as type of illumination, concentration
of TiO2 and rhodamine B, reactor design, catalyst immobilization method, and coating
substrate. All these parameters are factors that have an effect on the kinetics of rhodamine
degradation. For instance, [68] obtained a kap value of 0. 00627 min−1 in the degradation
of rhodamine B on a TiO2 catalyst supported on a porous ceramic substrate. This kap is
34.6% higher than the best kap obtained in the fixed supported Ag-TiOx photo-catalyst
discussed here.

2.6. Disinfection of Secondary Treatment Effluent by the Fixed Ag-TiOx Photo-Catalysts

Two liters of water from the secondary treatment effluent of the GEA environmental
treatment plant were used. The initial concentration varied since one experiment per day
was carried out and the daily conditions of the treatment plant changed during its operation.

Table 6 shows that the initial and final concentrations of fecal coliforms in each ex-
periment, as well as the percentage of elimination of fecal coliforms for eight rings coated
with TiOx using 300 Ar/100 O2 coating was 83.69% equivalent to a logarithmic reduction
of 0.79; similarly, the elimination of fecal coliforms on the TiOx coating deposited using
400 Ar/100 O2 was 90.32% equivalent to 1.01 Ulog reduction in 4 h with UV-A irradiation.
A dark study was carried out to establish the effect of the immobilized catalyst as well as
the reactor operating conditions on the viability of fecal coliforms. As can be observed, the
bacterial concentration remained constant for 4 h. On the other hand, it is known that an
adsorption effect can occur between the microorganism and catalyst (TiO2) in suspension
that favors microbial inactivation [69,70]. However, the results obtained show that there
is no significant catalyst–microorganism adsorption phenomenon in the system, since the
initial and final fecal coliform concentration after 4 h of treatment in darkness was similar.

Table 6. Concentration of fecal coliforms in NMP/100 mL and Ulog in secondary effluent water from
the GEA Ambiental plant using Ag-TiOx arc-PVD coatings on rings.

NMP/100 mL

Ag-TiOx Coatings

Time 300 Ar/100 O2 400 Ar/100 O2 Photolysis Rings in the dark

0 46,000 9300 400 400
4 h 7500 900 400 400

% removal 83.69 90.32 0 0

logarithmic units

0 4.66 3.96 2.60 2.60
4 h 3.87 2.95 2.60 2.60

Ulog reduction 0.79 1.01 0 0

2.7. Disinfection of Synthetic Water by the Fixed Ag-TiOx Photo-Catalysts

Synthetic water was used to analyze the bacterial elimination at high concentrations
of fecal coliforms. In the disinfection experiments, a volume of 2 L during 4 h was selected.
Table 7 shows that for eight coated rings with de TiOx using 300 Ar/100 O2, there was a
percentage of elimination of fecal coliforms of 86% equivalent to 0.86 logarithmic reduction
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units, for the TiOx coating deposited using 400 Ar/100 O2 of 78.18% or 0.66 Ulog reduction,
while for photolysis and the rings in darkness there was no elimination at all.

Table 7. Concentration of fecal coliforms in NMP/100 mL and Ulog in synthetic water using Ag-TiOx

arc-PVD coatings on rings.

NMP/100 mL

Ag-TiOx Coatings

Time 300 Ar/100 O2 400 Ar/100 O2 Photolysis Rings in the dark

0 150,000 11,000,000 24,000,000 11,000,000
4 h 21,000 2,400,000 24,000,000 11,000,000

% removal 86 78.18 0 0

logarithmic units

0 5.17 7.04 7.38 7.04
4 h 4.32 6.38 7.38 7.04

Ulog Reduction 0.85 0.66 0 0

3. Materials and Methods
3.1. Synthesis of Thin Films by PVD on Borosilicate Raschig Rings

Commercial borosilicate Raschig rings with Ø = 10 mm, length = 50 mm, and wall
thickness = 1.5 mm were used as substrates for TiOx deposition. First, the substrate rings
were cleaned in an ultrasonic, using Elmasonic X-tra equipment (Singen, Germany) with an
operating frequency of 45 KHz in ethanol for 15 min at room temperature. Then, they were
dried and fixed in a 3-axis rotating planetary system for coating deposition, see left image
in Figure 1. The rotating planetary system was introduced inside the coating chamber
of the DOMINO mini semi-industrial equipment from OERLIKON (Bergisch Gladbach,
Germany), where the TiOx coating was deposited applying the cathodic arc method, see
the coated Rasching rings in the middle and right images in Figure 13.
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deposition (middle and right).

Firstly, the rings are heated at ~450 ◦C using a 9 kW heating system and applying a
continuous vacuum. The heating provides cleaning by evaporating residual moisture from
the surface of the borosilicate rings. Before the coating step, the rings’ surface was cleaned
with Ar+ ions produced through the arc enhanced glow discharge (AEGD) process. During
the coating of the TiOx, a reaction takes place between the metallic Ti ions generated by
erosion of the cathode material and the O ions. High purity gases are used for this process,
oxygen (O2) with a purity of 99.998%, and Ar with a purity of 99.999%. The Ar and O2 flow
rates were varied for each set of rings, and three sets of Ar/O2 ratios (440/60, 400/100, and
300/100) were selected and 11 Raschig rings were deposited during each coating run. The
deposition time was maintained for 2 h by applying 80 V bias at a frequency of 20/80 KHz
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and a current of 150 A. Lastly, the coated samples were cooled inside the PVD chamber for
~90 min.

The ring sets were characterized by field emission scanning electron microscopy (FE-
SEM) for surface analysis, thickness, and morphology of the TiOx films, X-ray energy
dispersive spectrometry (EDS) for elemental analysis, and low angle X-ray diffraction
(XRD) to identify crystalline phases in the coating. For this purpose, the XRD data were
taken in a Rigaku diffractometer and by applying the parallel beam (PB) mode using Cu
Kα radiation with a wavelength of 1.540593 Å, angleω = 1◦, an angular range from 20◦ to
90◦, and a step size of 0.02◦.

3.2. Heat Treatment after PVD Coating

The Raschig rings coated with the TiOx systems were heat-treated in a Thermo Scien-
tific Lindberg Blue M furnace (Waltham, MA, USA) at 500 ◦C for 2 h. Using a heating ramp
of 10 ◦C/min, this treatment was performed under standard conditions and air atmosphere.
The heat treatment was performed in order to increase the O content on the surface of the
coating according to [71,72]. Subsequently, the grazing incidence X-ray diffraction XRD
method was applied to analyze the degree of oxidation and diffuse reflectance analysis was
performed. Figure 14 shows the rings after heat treatment.
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3.3. Doping of the TiOx with Silver

Silver (Ag) was added to the TiOx coating to activate it, and for this purpose, the photo-
chemical reduction or photo-deposition methodology was applied, where the Ti/TiO2-
coated rings were immersed twice for 5 min in a 1.7 wt. % AgNO3 aqueous solution
with CAS number 7761-88-8. Subsequently, they were irradiated with a UVC source
(λ = 254 nm) for 2 h to activate the impregnated Ag [24,73]. X-ray diffraction (XRD) and
diffuse reflectance analysis were performed after this doping process.

Ag, is used, which is the most promising metal, serving as a conduction band electron
attractor, increasing the hole-electron separation, and facilitating electron excitation by
the creation of a local electric field [74,75]. In this way, e−/h+ recombination is avoided.
This property is due to the high reduction potential of the Ag+ ion (Ag+/ Ag0) producing
metallic Ag on the TiO2 surface.

3.4. Dye Degradation Experiments

The photocatalytic activity of each set of rings coated with the Ag-doped TiO2 was
evaluated in the degradation of rhodamine B (RhB) with CAS number 81-88-9. Firstly,
the calibration curve of the rhodamine B dye was performed, taking as reference the
wavelength of maximum absorption of the dye of 554 nm. The photocatalytic degradation
reactions were carried out in the photocatalytic reactor where its geometry corresponds to a
cylinder 90 cm long, with a diameter of 3 1/2 ” made of polyvinyl chloride (PVC) and with
a stainless steel reflecting surface. Inside the reactor there is a 20 W TecnoLite F20T8BLB
UV-A lamp of short wavelength between 315 and 400 nm, which is inside a quartz tube of
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DExt = 3.2 cm, a wall thickness of 0.2 cm, and a length of 91.5 cm. The rings are attached to
nylon threads from the top cover and are located in the free space between the quartz tube
and the stainless steel surface, and the bottom is air inlet through an Elite 799 pump. The
reactor operates in batch mode, with a volume of 2 l of a 0.5 ppm rhodamine B solution. In
a typical photo-catalytic experiment, the aqueous solution was loaded into the reactor, left
in the dark with stirring for 30 min to equilibrate, and then the UV-A lamp was turned on.
Aliquots were taken at specific time intervals and analyzed using a BIOBASE BK-UV1800
spectrophotometer (Jinan, China). The obtained data were plotted to determine the reaction
order. Subsequently, kinetic parameters, such as reaction rate, constant and half-life time,
were calculated; this was done in order to evaluate the photo-catalytic efficiency of each
set of TiO2-coated rings. In the reaction system, the following experimental arrangement
was carried out in the degradation of rhodamine B: (a) use of immobilized TiO2 in the dark,
(b) use of UV light lamp without immobilized TiO2 “photolysis”, (c) use of immobilized
TiO2 with UV light lamp “photocatalysis”, and (d) degradation in the dark without catalyst.

3.5. Disinfection Experiments

The coated Ag-doped TiO2 rings were evaluated in the elimination of fecal coliforms.
For these, two water matrices were used: one from the secondary treatment effluent (before
chlorination process) of the wastewater treatment plant of GEA Ambiental, Morelia, Mexico,
and synthetic water prepared in the laboratory.

For the preparation of synthetic water, a sample was taken from the secondary treat-
ment effluent of the GEA Ambiental plant and bacterial growth was performed in Mac-
Conkey broth medium. After incubation for 24–48 h at 35 ◦C, bacterial cells were transferred
to 50 mL conical polypropylene centrifuge tubes with flat caps and collected by centrifuga-
tion at 4000 rpm for 5 min at room temperature. The supernatant was discarded and the
sediment was resuspended in sterile phosphate solution or 0.9% NaCl normal saline. This
solution is called microbial stock solution [76]. To obtain the synthetic water to be used in
photocatalytic disinfection, ~ 20 mL of the microbial stock solution is resuspended in 2 L of
sterile distilled water and mixed with magnetic stirring.

In a typical experiment, the inoculated aqueous solution was loaded into the reactor,
left in the dark with stirring for 30 min to equilibrate, and then exposed to UV-A radiation.
An aliquot was extracted at the beginning and end of the process, which was after 4 h.
In order to evaluate the percentage of elimination of fecal coliforms, both aliquots were
analyzed by means of the microbiological test of the most probable number in multiple
tubes (MPN) for fecal coliforms following the Mexican standard NMX-AA-042-SCFI-2015.

The following tests are performed in the reactor in the elimination of fecal coliforms:
(a) use of immobilized TiO2 in darkness, (b) use of UV light lamp without immobilized
TiO2 “photolysis”, (c) use of immobilized TiO2 with UV light lamp “photocatalysis” and
(d) degradation in the darkness without catalyst.

4. Conclusions

Heterogeneous photocatalysis stands out among advanced oxidation processes (AOPs)
as a promising and effective biocidal technique, with titanium dioxide (TiO2) being the
most common catalyst employed for the purification of aqueous matrices. However, one
of the main obstacles to putting it into practice is the separation of photocatalysts and the
design of photocatalytic reactors, as most of the synthesized photocatalysts are in the form
of powders. Alternatively, TiO2 can be fixed on a solid support, eliminating the need to add
a catalyst separation process. In this case, it should be noted that the process offers lower
efficiencies due to the smaller surface area of catalysts exposed to light and molecules to
be removed.

The Ag-TiOx photocatalyst deposited with 400 Ar/100 O2 degraded ~68.18%, and
the catalytic coating deposited with 300 Ar/100 O2 degraded ~68.02% of the rhodamine B
dye at a concentration of 0.5 ppm in 2 L volume. In the disinfection, the TiOx 300 Ar/100
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O2 coating had a fecal coliform removal of 83.69% and the TiOx 400 Ar/100 O2 coating
removed 90.32%.

The results obtained cannot be directly compared with others because each of them
used different reaction conditions, such as type of illumination, concentration of TiO2 and
rhodamine B, reactor design, catalyst immobilization method, and coating substrate. All
these parameters are factors that have an effect on the kinetics of rhodamine B degradation
and bacterial killing. However, they are positive results on rhodamine B degradation for
TiOx-Ag thin films if the results obtained for TiO2-Ag thin films synthesized with a sol-gel
method deposited by dip coating on the Ag substrates and photo-chemical deposition
shown in Table 1 are known.

1. Targeting the application of fixed photo-catalysts, TiOx coatings were deposited by
cathodic arc physical vapor deposition on borosilicate Raschig rings. The deposit
was designed for O grading using flow ratios of 440 Ar/60 O2, 400 Ar/100 O2, and
300 Ar/100 O2 in a semi-industrial coater unit. The arc-PVD plasma was stable in all
Ar/O2 mixtures.

2. In the as-coated state, the TiOx catalysts are composed of pure Ti in the α phases. The
EDS analysis showed that O and Ti varies in the depth of the coating, suggesting
the formation of a system with a low amount of O producing a nonstoichiometric
oxide (TiOx). A heat treatment was needed in order to increase the amount of O in the
coating and build the crystalline TiO2 rutile phase.

3. After the thermal treatment, the analysis by UV vis diffuse reflectance spectroscopy
indicated that the TiOx catalytic coatings using 400 Ar/100 O2 and 300 Ar/100 O2
are activated under UVA radiation, while the coating 440 Ar/60 O2 absorbs in the
visible spectrum.

4. Silver, confirmed by XRD, was added by the UVC photo-reduction method in the
TiOx photo-catalysts deposited using 400 Ar/100 O2 and 300 Ar/100 O2 sccm sets.
In this Ag-TiOx photo-catalyst, a decrease in the bandgap energy was observed, thus
showing moderate photo-catalytic activity in the degradation of rhodamine B at
0.5 ppm and the removal of fecal coliforms from a secondary treatment effluent and
synthetic water.
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