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Abstract: Reactions between Zn(II) nitrate, pentaiodobenzoic acid (HPIBA) and different pyridines
in dimethylformamide (DMF) result in the formation of the heteroleptic neutral complexes [Zn(3,5-
MePy)2PIBA2] (1) and [Zn(DMF)3(NO3)PIBA] (2). Both compounds were isolated in pure form, as
shown by the PXRD data. The features of specific non-covalent interactions involving halogen atoms
(halogen bonding) were examined by means of DFT calculations (QTAIM analysis and the estimation
of corresponding energies).
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1. Introduction

Complexes with halogen-polysubstituted organic (in particular, aromatic) ligands
constitute a not very large, but important and interesting, field of coordination chemistry.
The lion’s share of them are those containing perfluorinated substituents [1–8], mostly due
to their potential applications in luminescent materials [8–12] (it is commonly assumed
that the replacement of protons by F reduces quenching [13]). At the same time, the ligands
polysubstituted by other halogens are much less studied. Here, we give some examples
illustrating this current misbalance. Pentachlorobenzoic acid has been known about since
at least 1887 [14] and, since then, authors have published optimized protocols of its quan-
titative preparation [15]; however, its structure was only reported in 2018 [16], and there
is only one article on the corresponding structurally characterized complex [17]. Works
on ligands with heavier halogens (especially iodine) are rare, despite the fact that some of
these compounds—in particular, pentaiodobenzoic acid (HPIBA), known about for several
decades [18]—can be of interest in terms of design of contrast media for tomography (a
very interesting paper demonstrating the potential of this pathway was recently presented
by Lin et al. [19]).

A few years ago, we performed structural characterization of HPIBA and its several
salts, [20] noting that it features very strong (as shown by the DFT calculation) halogen
bonding (XB) [21–23]. We assumed that this feature must also persist in hypothetic PIBA
metal complexes. Soon after, we reported the first examples of such compounds (het-
eroleptic Cu(II) PIBA complexes [24]), and an analysis of the corresponding structural data
confirmed our hypothesis.

Continuing this work, we hereby present the first PIBA complexes of Zn(II)—[Zn(3,5-
MePy)2PIBA2] (1) and [Zn(DMF)3(NO3)PIBA] (2). Both of these compounds were charac-
terized using X-ray diffractometry and obtained as pure phases (as shown by the PXRD
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data). The features of non-covalent interactions in both crystal structures were investigated
by means of DFT calculations.

2. Materials and Methods

All reagents were obtained from commercial sources and used as purchased. HPIBA
was synthesized according to the previously published procedure [18].

2.1. Synthesis of 1

A total of 80 mg (0.106 mmol) of HPIBA was dissolved in 2 mL of DMF, followed
by addition of 24 µL (0.212 mmol) of 3,5-MePy and solution of 16 mg (0.053 mmol) of
Zn(NO3)2·6H2O in 1 mL of DMF. Slow diffusion of diethyl ether at r.t. (≈18 h) resulted in
formation of transparent pale-yellow crystals of 1. Yield, 79%. For C28H18I10N2O4Zn, calcd
%: C, 18.89; H, 1.02; and N, 1.57; found %: C, 19.01; H, 1.10; and N, 1.65. IR (4000–400 cm−1,
KBr): 1610 s, 1578 m, 1485 m, 1358 s, 1250 s, 1175 s, 1150 m, 1009 m, 859 m, 775 m and 695 s.

2.2. Synthesis of 2

A total of 120 mg (0.160 mmol) of HPIBA was dissolved in 2 mL of DMF, followed by
addition of 30 µL (0.32 mmol) of 3-ClPy or equimolar amount of some other substituted
pyridines (see Results and Discussion for details) and solution of 24 mg (0.08 mmol) of
Zn(NO3)2·6H2O in 1 mL of DMF. Slow diffusion of diethyl ether at r.t. (≈18 h) resulted in
formation of transparent pale-yellow crystals of 1. Yield, 84%. For C16H21I5N4O8Zn, calcd
%: C, 17.52; H, 1.93; and N, 5.11; found %: C, 17.69; H, 2.01; and N, 5.27.

2.3. X-ray Diffractometry

Crystallographic data and refinement details for 1 and 2 are given in Table 1. The
diffraction data were collected using a Bruker D8 Venture diffractometer with a CMOS
PHOTON III detector and IµS 3.0 source (Mo Kα radiation, λ = 0.71073 Å) at 150 K. The ϕ-
andω-scan techniques were employed. Absorption correction was applied via SADABS
(Bruker Apex3 software suite, Apex3, SADABS-2016/2 and SAINT, version 2018.7-2; Bruker
AXS Inc., Madison, WI, USA, 2017). Structures were solved via SHELXT [25] and refined
via full-matrix least-squares treatment against |F|2 in anisotropic approximation with
SHELX 2014/7 [26] in ShelXle program [27]. H-atoms were refined in the geometrically
calculated positions. The crystallographic data have been deposited in the Cambridge
Crystallographic Data Centre under the deposition codes CCDC 2203477-2203478. These
data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, accessed on
24 August 2022 or by emailing data_request@ccdc.cam.ac.uk.

Table 1. XRD experimental details.

(1) (2)

Chemical formula C28H18I10N2O4Zn C16H21I5N4O8Zn

Mr 1780.81 1097.24

Crystal system, space group Orthorhombic, Fdd2 Monoclinic, P21/n

α, β, γ (◦) 90, 90, 90 90, 94.011 (1), 90

V (Å3) 8048.2 (3) 2922.66 (10)

Z 8 4

µ (mm−1) 8.32 6.17

Tmin, Tmax 0.642, 0.746 0.616, 0.746

No. of measured, independent
and observed [I > 2σ(I)]

reflections
49,070, 6155, 6088 33,369, 5530, 5174

www.ccdc.cam.ac.uk/data_request/cif
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Table 1. Cont.

(1) (2)

Rint 0.029 0.030

θ values (◦) θmax = 30.5, θmin = 2.4 θmax = 25.7, θmin = 2.3

(sin θ/λ)max (Å−1) 0.715 0.610

Range of h, k, l h = −72→72, k = −14→14,
l = −21→21

h = −13→13, k = −11→11,
l = −32→32

R[F2 > 2σ(F2)], wR(F2), S 0.014, 0.036, 0.99 0.025, 0.058, 1.07

No. of reflections, parameters
and restraints 6155, 204, 1 5530, 307, 0

∆ρmax, ∆ρmin (e Å−3) 0.74, −0.84 1.97, −1.20

Absolute structure
Flack x determined using 2891

quotients
[(I+)−(I-)]/[(I+)+(I-)]

Absolute structure parameter 0.000 (7)

2.4. Powder X-ray Diffractometry

XRD analysis of polycrystals was performed using Shimadzu XRD-7000 diffractometer
(CuK alpha radiation, Ni filter, linear One Sight detector, 0.0143◦ 2θ step, 2s per step).
Plotting of PXRD patterns and data treatment were performed using X’Pert Plus software
(see Supplementary Materials).

2.5. Computational Details

See Supplementary Materials.

3. Results and Discussion

For designing the synthetic procedures for 1 and 2, we followed the same straight-
forward scheme—“source of Zn(II) + HPIBA + substituted pyridine”—expecting that the
latter would play the roles of both the base, for the deprotonation of HPIBA, and the
ligand, to complete the coordination environment of Zn. This idea worked well in the case
of 1, resulting in a pure phase, as shown by the PXRD data (see Supplementary Materi-
als, Figures S1 and S2). At the same time, we found that the use of several substituted
pyridines, namely 3-chloro, 2,5-diiodo, 2,6-dibromo, 2-iodo, 3-bromo, 2-bromo and 2-chloro
derivatives, results in the formation of pure 2 with minor variations in yields (the nature of
product was confirmed by means of element analysis and PXRD in all cases).

In 1, the coordination environment of Zn(II) is tetrahedral (Figure 1). It consists of
two 3,5-MePy ligands (Zn-N = 2.025 Å) and two PIBAs coordinated in monodentate mode
(Zn-O = 1.950 Å).

The 3D system of halogen bonds in the structure of 1 is rather sophisticated (Figure 2).
It involves O atoms of carboxylic groups in which each O interacts simultaneously with
two iodine atoms. All 3-I and 5-I substituents participate in the formation of XB; the
corresponding distances are 3.045 and 3.320 Å, which are much less than the sum of the
related Bondi’s van der Waals Radii (3.50 Å [28,29]; those are 87% and 94.8%, respectively).
Additionally, there are I–I contacts (3.829–3.908 Å) involving 2-, 4- and 5-I atoms of PIBA
ligands (Figure 3). This system of non-covalent interactions is very different from the one
found in the similar complex [24] of Cu(II) with the same ligands due to the fundamentally
different geometry of the coordination units.

Unlike in 1, Zn(II) features hexa-coordination in the structure of 2 (Figure 4).
There is one PIBA ligand (Zn-O = 2.018 Å), three DMF ligands (Zn-O = 2.034–2.084 Å)
and one nitrate ligand; the latter is coordinated in bidentate mode (Zn-O = 2.116 and
2.473 Å, respectively).
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Figure 1. Structure of 1 (thermal ellipsoids, 50% probability). Here, and below: Zn—black, N—deep
blue, C—grey, I—purple, O—red. H atoms are omitted for clarity.

Figure 2. The system of I–O interactions (dashed) in the structure of 1. Only N atoms of Py ligands
are shown.

Figure 3. The system of I–I interactions (dashed) in the structure of 1. Only N atoms of Py ligands
are shown.
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Figure 4. Structure of 2 (thermal ellipsoids, 50% probability).

Complex 2 also features multiple I–O halogen bonds, yielding a 3D structure (Figure 5).
These involve O atoms of carboxylate groups (2.997–3.181 Å) and of nitrate ligands
(3.079–3.129 Å, respectively). It must be noticed that XBs involving a nitrate anion or
ligand are rather rare; as shown by the CSD data, there are fewer than 10 of such exam-
ples [30–35]. I–I non-covalent interactions are absent in this structure. Comparing the XBs
in 1 and in relevant Cu(II) complexes which were reported by us recently [24], it can be
seen that the lengths of non-covalent interactions are rather similar, likely corresponding to
rather strong bonding.

Figure 5. The system of I–O interactions (dashed) in the structure of 2. Only O atoms of DMF ligands
are shown.

To investigate the nature of non-covalent interactions in the structures of 1 and 2,
we used the approach which was previously used by us [36–40] and demonstrated its
high efficiency: atomic coordinates were extracted from the XRD data and used for DFT
calculations without optimization, followed by topological analysis of the electron density
distribution (ωB97XD/DZP-DKH; see Supplementary Materials for details and visualiza-
tion (Figures S3 and S4). The results are summarized in Table 2. It can be seen that the
highest XB energies (5.1 kcal/mol) are comparable with those found in the structures of the
corresponding Cu(II) complexes [24] and PIBA salts [20]).

The balance between the Lagrangian kinetic energy G(r) and potential energy density
V(r) at the bond’s critical points (3, –1) reveals [41] that a covalent contribution in the
intermolecular interactions I–I and I–O in 1 and 2 is absent.
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Table 2. Values of the density of all electrons ρ(r), Laplacian of electron density∇2ρ(r) and appropriate
λ2 eigenvalues; energy density Hb, potential energy density V(r), and Lagrangian kinetic energy G(r);
and electron localization function ELF (a.u.) at the bond’s critical points (3, –1) for intermolecular
interactions in 1 and 2, and their estimated strength Eint (kcal/mol).

Contact Length ρ (r) ∇2ρ (r) −λ2 Hb −V (r) G (r) Eint *

1

I–I 3.908 0.007 0.029 0.007 0.002 0.004 0.006 1.7

I–I 3.829 0.009 0.033 0.009 0.001 0.006 0.007 2.6

I–O 3.321 0.008 0.035 0.008 0.002 0.005 0.007 2.1

I–O 3.045 0.015 0.054 0.015 0.001 0.011 0.012 4.7

2

I–O 3.181 0.011 0.047 0.011 0.002 0.008 0.010 3.4

I–O 3.129 0.012 0.047 0.012 0.001 0.009 0.010 3.8

I–O 3.079 0.014 0.053 0.014 0.002 0.010 0.012 4.3

I–O 2.997 0.017 0.060 0.017 0.002 0.012 0.014 5.1

* Eint = 0.88 (−V (r)) (this empirical correlation between the interaction energy and the potential energy density of
electrons at the bond’s critical points (3, –1) was specifically developed for non-covalent interactions involving
bromine atoms) [42].

4. Conclusions

Our results confirm that PIBA can indeed be utilized as a ligand, and its complexes
readily form halogen bonds in solid state. These findings can be applied for the preparation
of other carboxylate complexes (this is a very large family of coordination compounds
demonstrating fascinating structural diversity [43–48]); these could potentially be applica-
ble in the design of contrast agents. Corresponding experiments are underway.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/inorganics10100151/s1, Figures S1 and S2. Comparison of exper-
imental and calculated PXRD patterns for 1 and 2; Computational details; Figures S3 and S4. Contour
line diagrams of the Laplacian of electron density distribution, bond paths, and selected zero-flux
surfaces, visualization of electron localization function and reduced density gradient analyses for
intermolecular interactions I···I and I···O in 1 and 2; Table S1. Cartesian atomic coordinates for model
supramolecular associates.
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