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Abstract: Inorganic materials with layered perovskite structures have a wide range of physical and
chemical properties. Layered perovskites based on BaLanInnO3n+1 (n = 1, 2) were recently investigated
as protonic conductors. This work focused on the oxygen ion and proton transport (ionic conductivity
and mobility) in alkali-earth (Sr2+, Ba2+)-doped layered perovskites based on BaLa2In2O7. It is shown
that in the dry air conditions, the nature of conductivity is mixed oxygen–hole, despite the dopant
nature. Doping leads to the increase in the conductivity values by up to ~1.5 orders of magnitude. The
most proton-conductive BaLa1.7Ba0.3In2O6.85 and BaLa1.7Sr0.15In2O6.925 samples are characterized by
the conductivity values 1.2·10−4 S/cm and 0.7·10−4 S/cm at 500 ◦C under wet air, respectively. The
layered perovskites with Ruddlesden-Popper structure, containing two layers of perovskite blocks,
are the prospective proton-conducting materials and further material science searches among this
class of materials is relevant.

Keywords: layered perovskite; Ruddlesden-Popper structure; oxygen ion conductivity; proton
conductivity

1. Introduction

The layered perovskite family includes such classes of perovskite-related structures
as Ruddlesden-Popper (RP), Dion–Jacobson (DJ), and Aurivillius structures (Figure 1).
Compounds with a Ruddlesden-Popper structure have the general formula An+1BnO3n+1,
in which the rock salt layers AO alternate with perovskite blocks (ABO3)n. This type of
structure was described for the first time for the compositions Sr2TiO4 [1] and Sr2Ti2O7 [2]
by S.N. Ruddlesden and P. Popper in 1957–1958. Aurivillius phases are characterized by the
formula An−1Bi2BnO3n+3, which describes alternation of perovskite layers An−1BnO3n+1
with layers of a fluorite structure, formed by bismuth and oxygen ions [Bi2O2]2+. This
crystal structure was first described in 1949 by B. Aurivillius [3]. Dion–Jacobson phases can
be described by the formula A’An−1BnO3n+1. The structure of these compounds includes
perovskite blocks An−1BnO3n+1 separated by layers, in which only metal cations A’ are
presented. The mixed niobates of alkali and alkaline earth metals with such type of structure
were synthesized for the first time by M. Dion [4] and A.J. Jacobson [5,6] in the first half of
the 1980s.

The materials with layered perovskite-related structures have many various appli-
cations due to their different physical–chemical properties. They are known as pho-
tocatalysts [7–13], and include materials for solar hydrogen production [14–17], ferro-
electrics [18–22], and phosphors [22–28]. Some of RP and DJ materials are capable of
water molecule intercalation into the interlayer space. Ion exchange leads to the for-
mation of protonated forms of compositions, for example HxLn1−xTiO4·nH2O [29–32]
or H1−xLaxCa2−xNb3O10 [33,34]. Recently, the possibility of dissociative incorporation
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of water molecules into crystal lattice was proven for the RP compositions based on
AA′BO4 (A = Ba, Sr, A′ = La, Nd, B = In, Sc) and AA′2B2O7 (A = Ba, A′ = La, Nd, B = In).
The materials based on the monolayer perovskites BaNdInO4 [35–40], BaLaScO4 [41],
SrLaInO4 [42–46], and BaLaInO4 [47–52] were investigated as protonic conductors in the
temperature range of 300–500 ◦C. It is shown that doping of the cationic sublattices is a
successful way to improve the oxygen ion and proton transport [53]. Two-layer perovskites
BaLa2In2O7 [54] and BaNd2In2O7 [55] are also investigated as proton conductors. The
acceptor doping of the lanthanum sublattice of BaLa2In2O7 allows for an increase in the
ionic conductivity of the matrix composition [56]. In this work, the effect of acceptor dopant
(Sr2+, Ba2+) concentration on the ionic transport (O2−, H+) of BaLa2−xMxIn2O7−0.5x solid
solutions, including the effect on the oxygen and proton mobility, was found.
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Dion–Jacobson (A’An−1BnO3n+1), and Aurivillius (An−1Bi2BnO3n+3) (from left to right) with n = 2.

2. Results and Discussion
2.1. XRD and TG Investigations

The X-ray diffraction (XRD) analysis was applied to establish the homogeneity ranges
of the solid solutions BaLa2−xMxIn2O7−0.5x (M = Sr, Ba). The single-phase compositions
were obtained in the ranges 0 ≤ x ≤ 0.20 and 0 ≤ x ≤ 0.30 for the Sr- and Ba-doped
solid solutions, respectively (tetragonal symmetry, P42/mnm space group). The introduc-
tion of ions with bigger ionic radius (rLa3+ = 1.216 Å, rSr2+ = 1.31 Å, rBa2+ = 1.47 Å [57])
leads to the increase in the lattice parameters and unit cell volumes of doped composi-
tions (Tables 1 and 2). Figure 2a represents the example of a full-profile analysis for the
BaLa1.8Ba0.2In2O6.9 composition.
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Table 1. Lattice parameters, unit cell volume, and water uptake for BaLa2−xSrxIn2O7−0.5x.

Sample a, b (Å) c (Å) Vcell (Å3) Water Uptake (mol)

0 5.914(9) 20.846(5) 729.3365 0.17
0.05 5.915(2) 20.869(0) 730.1977 0.15
0.10 5.916(3) 20.870(4) 730.5183 0.18
0.15 5.916(4) 20.871(3) 730.5745 0.18
0.20 5.917(2) 20.872(1) 730.8001 0.19

Table 2. Lattice parameters, unit cell volume, and water uptake for BaLa2−xBaxIn2O7−0.5x.

Sample a, b (Å) c (Å) Vcell (Å3) Water Uptake (mol)

0 5.914(9) 20.846(5) 729.3365 0.17
0.05 5.915(1) 20.859(0) 729.8232 0.16
0.10 5.916(3) 20.870(4) 730.5183 0.17
0.15 5.920(4) 20.899(3) 732.5442 0.19
0.20 5.927(5) 20.940(1) 735.7357 0.20
0.25 5.941(5) 20.949(1) 739.5330 0.21
0.30 5.956(6) 20.954(9) 743.5025 0.22
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Figure 2. The XRD data for the anhydrous BaLa1.8Ba0.2In2O6.9 (a) and hydrated
BaLa1.8Ba0.2In2O6.9·0.2H2O (b) compositions.

The possibility for water uptake was investigated by the thermogravimetry (TG) method.
The amounts of water uptake for each composition are presented in the
Tables 1 and 2. As can be seen, water uptake for all undoped and doped compositions
is close, and it is in the range 0.15–0.22 mol water per formula unit. It should be added that
these values are comparable with water uptake for acceptor-doped classic perovskites. The TG
curve coupled with MS water signal for the hydrated composition BaLa1.8Ba0.2In2O6.9·0.2H2O
are presented in Figure 3.
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The dissociative incorporation of water for the classic perovskites ABO3−δ is due to
the interaction of oxygen vacancies V••o (appearing by the acceptor doping) or V×o (own
structural defects) with water molecules:

V••o + H2O + O×o ⇔ 2(OH)•o, (1)

V×o + H2O + 2O×o ⇔ 2(OH)•o + O′′i , (2)

where V••o is the oxygen vacancy, O×o is the oxygen atom in the regular position, (OH)•o
is the hydroxyl group in the oxygen sublattice, and O′′i is the oxygen atom in the intersti-
tial position.

Accordingly, the amount of water uptake must increase with increase in the oxygen
vacancy concentration in the crystal structure of a doped complex oxide:

2MO
La2O3→ 2M′La + 2O×o + V••o , (3)

where M′La:Sr or Ba atoms in La sites; V••o : oxygen vacancy; and O×o : oxygen atom in
a regular position. However, the water uptake for the monolayer perovskites based on
BaLaInO4 is much bigger than oxygen vacancy concentration, and it depends on the
space size between perovskite blocks in the structure [53]. In this case, the dissociative
intercalation of water can be described as the incorporation of hydroxyl groups into space
between perovskite blocks:

H2O + O×o ⇔ (OH)•o + (OH)′i, (4)

where (OH)•o is the hydroxyl group in the regular oxygen position and (OH)′i is the hy-
droxyl group located in the rock salt block. It is also shown that the water uptake for
the two-layer BaLa2In2O7 composition is lower compared to the monolayer BaLaInO4
composition (0.17 vs. 0.62 mol per formula unit, respectively) [55]. In other words, mono-
layer and two-layer barium–lanthanum indates have different hydration relationships.
The obtained results concerning water uptake for BaLa1−xMxIn2O7−x (M = Sr, Ba) also
prove this. Obviously, the presence in the structure of two octahedral layers of perovskite
blocks means less structural flexibility of the crystal lattice during hydration, and this
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factor is more significant than the increase in the lattice parameter and oxygen vacan-
cies concentration during doping. In contrast to the previously described hydrated solid
solutions based on BaLaInO4·nH2O, the investigated hydrated solid solutions based on
BaLa2−xMxIn2O7−0.5x·nH2O do not change the symmetry; these solid solutions are de-
scribed by the same P42/mnm space group as anhydrous BaLa2−xMxIn2O7−0.5x (M = Sr, Ba)
phases also (Figure 2b).

2.2. Electrical Conductivity Investigations

The general view of the temperature dependencies of conductivities is the same for
the all investigated compositions of BaLa2−xMxIn2O7−0.5x (M = Sr, Ba). As an example,
the temperature dependencies of conductivity obtained under different oxygen and water
partial pressure are presented in Figure 4 for the composition BaLa1.75Ba0.25In2O6.875.
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Figure 4. The temperature dependencies of conductivity for the composition BaLa1.75Ba0.25In2O6.875

under dry (filled symbols) and wet (open symbols) conditions.

As can be seen, the values obtained under low pO2 (~10−5 atm, Ar) and low pH2O
(3.5·10−5 atm, dry atmosphere) conditions are lower than under dry air (pO2 = 0.21 atm,
pH2O = 3.5·10−5 atm) conditions. The difference is about 0.5 order of magnitude over
the whole investigated temperature range. The effect of high water partial pressure
(pH2O = 2·10−2 atm, wet atmosphere) on the conductivity values is more significant at the
temperatures below ~500 ◦C. In this temperature region (300–500 ◦C), conductivity values
under wet conditions are higher that under dry conditions by about 0.4 order of magnitude
under air and 0.8 order under Ar. In addition, the conductivity values under wet air and
wet Ar are very close at T < 500 ◦C. Figure 5 represents the concentration dependencies of
conductivities for both solid solutions BaLa2−xMxIn2O7−0.5x (M = Sr, Ba) at 500 ◦C under
dry air. As can be seen, the maximum for the concentration dependencies of conductivities
is observed for both solid solutions. The difference in the conductivity values under dif-
ferent oxygen partial pressure (air and Ar) indicates the mixed ionic–electronic nature of
electrical conductivity (Figure 4). Consequently, the detailed analysis of the dependence of
conductivity on oxygen partial pressure is necessary.
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solid solutions BaLa2−xMxIn2O7−0.5x (M = Sr, Ba).

The σ−pO2 dependencies obtained under dry and wet conditions for the doped
compositions are presented in Figure 6. All dependencies for Sr and Ba compositions have
the same regularities, which are discussed below. It should be noted that the shape of
σ−pO2 dependencies for undoped and doped compositions are also similar [54].

Inorganics 2022, 10, x FOR PEER REVIEW 6 of 14 
 

 

 
Figure 5. The concentration dependencies of electrical conductivity at 500 °C under dry air for the 
solid solutions BaLa2−xMxIn2O7−0.5x (M = Sr, Ba). 

The σ−pO2 dependencies obtained under dry and wet conditions for the doped 
compositions are presented in Figure 6. All dependencies for Sr and Ba compositions have 
the same regularities, which are discussed below. It should be noted that the shape of 
σ−pO2 dependencies for undoped and doped compositions are also similar [54].  

  
(a) (b) 

Figure 6. The dependencies of the conductivity values vs. oxygen partial pressure for the 
compositions BaLa1.8Ba0.2In2O6.9 (a) and BaLa1.8Sr0.2In2O6.9 (b) under dry (filled symbols) and wet 
(open symbols) conditions and conductivity values from σ–103/T dependencies under wet air (filled 
black symbols) and wet Ar (open black symbols) conditions. 

Under dry air and oxidizing conditions (pO2 > 10−4 atm), the nature of conductivity is 
mixed ionic–hole, and the process of the appearance of holes can be written by the 
following equation: V୭•• + 1 2ൗ Oଶ ⇔ O୭× + 2h•, (5)

Figure 6. The dependencies of the conductivity values vs. oxygen partial pressure for the composi-
tions BaLa1.8Ba0.2In2O6.9 (a) and BaLa1.8Sr0.2In2O6.9 (b) under dry (filled symbols) and wet (open
symbols) conditions and conductivity values from σ–103/T dependencies under wet air (filled black
symbols) and wet Ar (open black symbols) conditions.

Under dry air and oxidizing conditions (pO2 > 10−4 atm), the nature of conductivity
is mixed ionic–hole, and the process of the appearance of holes can be written by the
following equation:

V••o + 1/2O2 ⇔ O×o + 2h•, (5)

where V••o is the oxygen vacancy, O×o is the oxygen atom in the regular position, and h•

is the hole. The area of predominant oxygen ionic conductivity is observed at pO2, lower
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than 10−4 atm. The conductivity values obtained under the Ar atmosphere are localized in
the electrolytic region (black open symbols in Figure 6), which allows us to consider the
values obtained in dry argon as oxygen ion conductivity values.

The concentration dependencies of oxygen ion conductivity obtained at different
temperatures are presented in Figure 7. As can be seen, these dependencies exhibit a
similar shape to the dependencies of total (mixed ionic–electronic) conductivities (Figure 5).
The maxima on the curves are recorded for the Sr-doped composition at x = 0.1 and for
Ba-doped compositions at x = 0.15–0.25. In the other words, doping by both Sr2+ and Ba2+

ions leads to an increase in the oxygen ionic conductivity values. The possible reasons are
the increase in the oxygen vacancies concentration and the expansion of space for ionic
transport (increase in the lattice parameters and unit cell volumes) during doping. At the
same time, the conductivity decreases in the area of high dopant concentrations. The most
possible cause may be an association of point defects and the formation of the clusters:

M′La + V••o →
(
M′La·V••o

)• or (6)

M′La +
(
M′La·V••o

)• → (
2M′La·V••o

)×, (7)
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The observed decrease in the oxygen vacancy mobility at the high dopant concen-
trations (Figure 8) proves this assumption. It should be noted that the similar effect of
decreasing the oxygen ion conductivity and mobility is observed for the Ba-doped solid
solution based on monolayer BaLaInO4 composition [47].
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The interaction of water molecules with the crystal lattice of layered perovskites based
on BaLa2In2O7 can be expressed by Equation (4) or by the following reaction:

BaLa2In2O7 +
x
2

H2O⇔ BaLa2In2O7+ x
2
(OH)x. (8)

Consequently, the hydrated forms of complex oxides can be written, for example, as
BaLa2In2O6.83(OH)0.34 (undoped composition). The effect of the water partial pressure
on conductivity is more pronounced in the electrolytic region (Figure 6). The increase in
the proton concentration during decreasing temperature leads to the decrease in the hole
concentration and, consequently, in the hole conductivity:

h• + 1/2H2O + O×o ⇔ 1/4O2 + (OH)•o. (9)

The predominance of protonic transport is achieved below ~450 ◦C. The good compa-
rability between conductivity values obtained under wet Ar (black open signs in Figure 6)
and values obtained from σ–pO2 dependencies at pO2 = 10−5 atm should be noted.

Proton conductivity values were calculated as the difference between the conductivity
values in wet and dry Ar, and its concentration dependencies for the solid solutions
BaLa2−xMxIn2O7−0.5x are presented in Figure 9. As can be seen, the proton conductivity
increases with increasing dopant concentration. However, the most significant increase is
observed in the area of “small” dopant concentrations (x ≤ 0.10 for Sr-doped and x ≤ 0.15 s
for Ba-doped solid solutions). The further increase in the dopant concentration leads to the
small increase in conductivity (Ba-doped solid solution) or results in no effect (Sr-doped
solid solution).
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The concentration dependencies of proton mobilities at 300 ◦C are presented in
Figure 10. As can be seen, the increase in the proton mobility is observed in the area
of “small” dopant concentration, and it can be associated with the increase in the oxygen
ion mobility in this area (Figure 8). The further increase in the dopant concentration leads
to the decrease in the proton concentration (Sr-doped solid solution) or to an insufficient
increase (Ba-doped solid solution). Obviously, the cluster formation occurs in the wet
atmosphere also:

M′La + (OH)•o → (M′La · (OH)•o)
×, (10)

and this process is more significant for the compositions with smaller dopant size M′La (that
is, for the Sr-doped compositions). It should be noted that the same effect of decreasing the
proton mobility under “high” dopant concentrations is observed for the Ba-doped solid
solution based on the monolayer BaLaInO4 composition [47].

Thus, the acceptor doping of two-layer perovskite BaLa2In2O7 is a successful way for
improving proton conductivity and obtaining novel high-conductive electrolytic materials.
The doping by the Sr2+- and Ba2+- ions on the La3+ sublattice leads to the increase in
the ion conductivity by up to ~1.5 orders of magnitude. The most proton-conductive
compositions BaLa1.7Ba0.3In2O6.85 and BaLa1.7Sr0.15In2O6.925 have close conductivity values
of 1.2 × 10−4 S/cm and 0.7 × 10−4 S/cm at 500 ◦C under wet air, respectively.
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3. Materials and Methods

Two-layer perovskites BaLa2−xMxIn2O7−0.5x (M = Sr, Ba) were prepared by the solid-
state method. The carbonates BaCO3 and SrCO3, and oxides In2O3 and In2O3 (99.99%
purity, REACHIM, Moscow, Russia) were initially dried, then weighed (analytical balance
(Sartorius AG, Göttingen, Germany)) and mixed in stoichiometric quantities. The agate
mortar was used for milling the powders. The calcination was performed at 800, 900, 1000,
1100, 1200, and 1300 ◦C. The time of each temperature treatment was 24 h.

The X-ray analysis was performed using a Bruker Advance D8 Cu Kα diffractometer
(Bruker, Billerica, MA, USA) with step of 0.01◦, scanning rate of 0.5◦/min.

The thermogravimetry (TG) and mass spectrometry (MS) analysis were performed
using STA 409 PC Netzsch Analyser connected with QMS 403 C Aëolos mass spectrometer
(Netzsch, Selb, Germany). The heating of initially hydrated samples was conducted in the
temperature range of 40–1100 ◦C, with the rate of 10 ◦C/min under a flow of dry Ar.

The measurements of electrical conductivity were performed by impedance spec-
troscopy method (impedance spectrometer Z-1000P, (Electrochemical Instruments (Elins),
Chernogolovka, Russia). The investigations were conducted from 1000 to 200 ◦C with
1◦/min cooling rate under dry air or dry Ar conditions. The dry gas (air or Ar) was pro-
duced by circulating the gas through P2O5 (pH2O = 3.5·10−5 atm). The wet gas (air or Ar)
was obtained by bubbling the gas at room temperature first through distilled water, and
then through saturated solution of KBr (pH2O = 2·10−2 atm). The humidity of the gas was
controlled by a Honeywell HIH-3610 H2O sensor (Honeywell, Freeport, TX, USA). The
dependencies of conductivities vs. partial oxygen pressures pO2 were obtained by using the
electrochemical method for producing different pO2 with oxygen pump from Y-stabilized
ZrO2 ceramic. The values of the resistance were recorded after 3–5 h of equilibrium.

4. Conclusions

It this paper, the members of the layered perovskites family with a two-layer Ruddlesden-
Popper structure were obtained, and theirs transport properties were investigated. It is
shown that doping of the lanthanum sublattice of BaLa2In2O7 by the ions Sr2+ and Ba2+

with bigger ionic radius leads to the increase in lattice parameters and unit cell volumes of
doped compositions. The possibility for dissociative incorporation of water molecules into
crystal lattice is proven. The water uptake is in the range of 0.15–0.22 mol water per formula
unit of complex oxide for all undoped and doped compositions. In the dry air conditions,
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the nature of conductivity is mixed oxygen–hole, regardless of the dopant nature (Sr2+,
Ba2+). Doping leads to the increase in the conductivity values by up to ~1.5 orders of
magnitude. The most proton-conductive BaLa1.7Ba0.3In2O6.85 and BaLa1.7Sr0.15In2O6.925
samples are characterized by the conductivity values of 1.2·10−4 S/cm and 0.7·10−4 S/cm
at 500 ◦C under wet air, respectively. The acceptor-doped layered perovskites based on
BaLa2In2O7 are prospective proton-conducting materials, and further material science
searches among this class of materials are relevant.
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