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Abstract: Anti-reflective coating (ARC) layers on silicon (Si) solar cells usually play a vital role in
the amount of light absorbed into the cell and protect the device from environmental degradation.
This paper reports on the thickness optimization of hafnium oxide (HfO2) as an ARC layer for
high-performance Si solar cells with PC1D simulation analysis. The deposition of the HfO2 ARC layer
on Si cells was carried out with a low-cost sol-gel process followed by spin coating. The thickness
of the ARC layer was controlled by varying the spinning speed. The HfO2 ARC with a thickness
of 70 nm possessed the lowest average reflectance of 6.33% by covering wavelengths ranging from
400–1000 nm. The different thicknesses of HfO2 ARC layers were used as input parameters in a
simulation study to explore the photovoltaic characteristics of Si solar cells. The simulation findings
showed that, at 70 nm thickness, Si solar cells had an exceptional external quantum efficiency (EQE)
of 98% and a maximum power conversion efficiency (PCE) of 21.15%. The thicknesses of HfO2 ARC
considerably impacted the photovoltaic (PV) characteristics of Si solar cells, leading to achieving
high-performance solar cells.

Keywords: silicon solar cell; HfO2; antireflection layer; PC1D simulation; photovoltaic characteristics

1. Introduction

The anti-reflective coating (ARC) layer on a solar cell helps the cell absorb more light
and protects it from environmental damage [1,2]. In the absence of the ARC layer, the
cells are naturally dark grey, but the color of the solar cells can be adjusted by altering
the thickness of the ARC layer [3,4]. The major impediment to reaching high efficiency is
optical losses from the front surface of the solar cell [5]. A thin layer of dielectric material
called an ARC layer is applied to the illuminated surface of the solar cell to reduce optical
losses caused by reflection and improve light transmission. This increases the current
generation and the efficiency of the solar cell as a whole. The production of c-Si solar cells
has utilized several ARC materials, including MgF2, a-SiNx, Si3N4, SiO2, SiO, SiO2-TiO2,
Ta2O5, TiO2, ZnS, and so on [6,7]. Even though various materials are already employed,
researchers continue searching for new and efficient ARC materials to improve the efficacy
of solar cells.
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In 2020, the report of the European Commission included hafnium (Hf) as a criti-
cal material. The oxide of Hf, like hafnium oxide (HfO2), includes its broad bandgap
of ~5.6–5.8 eV and exhibits fabulous optical applications because it presents promising
transmittance, weak reflective properties, good thermal stability (melting point is about
2780 ◦C), and a high induced laser damage threshold [8,9]. Because of its superior physi-
cal characteristics, such as strong corrosion resistance, great durability, scratch resistance,
and good surface roughness, HfO2 has attracted great attention from researchers world-
wide [10,11]. Other studies on the structural, morphological, and electrical characteristics
of HfO2 thin films are also reported in the literature [12,13]. Due to its large range of
dielectric constant, good mechanical characteristics, high bulk modulus, strong chemical
stability, and high neutron absorption cross-section [14,15], it is a material that shows great
potential for solar cell applications. Hafnium oxide (HfO2) is regarded as a viable material
for several semiconductor industries as well as the energy sector because it is a stable
known refractory material.

HfO2 and its derivatives have also enabled significant performance gains in a wide
variety of energy storage, photovoltaic, high-power, and high-temperature devices, and
so on [16]. The use of HfO2 is advantageous because it enhances the stability of solar
cells by preventing further accumulation of native oxide [17]. HfO2 usually poses a large
refractive index in the range of 1.85–2.1 and transferable absorption behavior. Due to
their high transparency, HfO2 thin films can be employed as antireflective coatings for IR
optical devices, space cameras, and night vision equipment [18]. The excellent properties
of HfO2 films have been reported regarding the effect of deposition angle (in the case of
sputtered films), antireflection potential, deposition substrate temperature, morphological
characteristics, annealing effect on film characterizations, and so on [19]. HfO2, although
a well-known optical material, has been investigated for its efficient uses in capacitors,
sensors, ferroelectric materials, and so on [20]. HfO2 shows transparency in UV to mid-IR
wavelengths. It is relatively uncommon in the literature for solution-based spin coating
methods to be used to investigate HfO2 thin films for solar cell applications. The range
of applications for such coatings is increased by its hydrophobic feature, which works in
conjunction with its suitable optical properties [21,22]. Therefore, for future advancements
in solar cells, it is crucial to get knowledge about such an appealing material prepared with
a straightforward and affordable spin coating technique.

To study the optoelectrical characteristics of the solar cells, a variety of simulation
tools are available, including Silvaco TCAD, AFROS-HET, Setfos, PC1D, OPAL2, AMPS-1D
SCAP-1D, and so on [23]. Due to its quick computation time and simple user interface,
PC1D simulation is frequently employed to mimic the properties of Si solar cells [24]. With
a minimal reflectance of 0.3% at a wavelength of 580 nm, Kanmaz et al. deposited HfO2 as
an AR layer on the silicon substrate which produced an average reflectance of 11.32% [25].
Nb2O5, as ARC was deposited on Si substrate by Shah et al., and the PC1D software, was
used to predict the results, which showed the maximum PCE of over 17% with over 95%
EQE [26]. After HfO2 was deposited, the average efficiency of the heterojunction with
intrinsic thin-layer (HIT) solar cell increased from 18.21% to 20.75% according to Lee et al.,
who simulated the results using the online solver OPAL2 from PV Lighthouse [27].

In this study, a spin coating approach is used to deposit a sol-gel-derived precursor
of HfO2 on Si solar cells at various spinning rates, and the thickness of the ARC layer
is tuned by assessing the reflectance through ultraviolet diffuse reflectance spectroscopy
(UV-DRS). Furthermore, the PC1D simulation software was applied for the characterization
of PV properties and the simulated results have shown that the highest PCE of 21.15% and
more than 98% EQE at 70 nm thickness of the ARC layer, which might be efficient for c-Si
solar cells.
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2. Experimental Details
2.1. Texturing of the Surface of the Silicon Wafer

An aqueous alkaline texturing solution (45% KOH + 4.4% hoplatex (TX-11) in DI
water) was used to create the texture on a p-type c-Si wafer (16 cm2, 120 µm (thick), sheet
resistance ~1–3 Ω/cm2). The c-Si wafer was given a homogeneous texture by immersing
it in etching solutions for 20 min at 80 ◦C, followed by a thorough wash in deionized
(DI) water with sonication for 10 min. To generate the phosphorus layer (as an n-type
layer) over the p-type c-Si wafer, the cleaned, textured c-Si wafers were put horizontally
into a diffusion furnace. For this, a phosphorus supply from the POCl3 gas source was
immediately added to the furnace at 700–800 ◦C for 50 min. The n-p-n structure, which
was made by the diffusion of phosphorous on both sides of a Si wafer having a sheet
resistance of 70 Ω/�, was used. Finally, a 5% hydrofluoric acid (HF) solution treatment
was employed to remove phosphorous silicate glass (PSG) from the surface of the p-n
junction structure.

2.2. Preparation of Precursor and Deposition of ARC Layer

Before being dried in an oven, the textured Si wafer was first extensively cleaned with
acetone and DI water under sonication for 15 min. The HfO2 precursor [1,25] was prepared
by mixing 0.5 mg of hafnium (IV) chloride (HfCl4) in a 10 mL mixed solution of toluene
and ethanol (5 mL of toluene + 5 mL ethanol). The resultant mixture was stirred for 2 h and
kept for aging for 24 h at 298 K to stabilize the temperature before spin coating [1]. Before
ARC layer deposition, a seed layer was formed on the top surface of a silicon wafer for
the effective deposition of AR materials. A seed layer is needed for a nucleation process
and the beginning of an induced preferential direction growth. A seed layer is also used
to accommodate the lattice parameter between the substrate and the subsequent thin film
for improving the adhesion [28]. To deposit the seed layer, 30% hydrogen peroxide (H2O2)
solution was coated on the surface of a pre-cleaned textured Si wafer by spin coating at
2000 rpm for 30 s and was finally dried at 60 ◦C in an oven for 1 h.

A straightforward spin coating technique was employed to coat the HfO2 ARC layer
on a Si wafer. By adjusting the spin coating rpm speeds (1000, 2000, and 3000 rpm) for
30 s, it was possible to control the thickness of the HfO2 layer that covered the textured
Si wafer. The layer was then baked for 10 min at 60 ◦C to dry it off. The deposited HfO2
films were then further heated in air at 500 ◦C for 10 min at a temperature ramping rate
of 5 ◦C/min to eliminate impurities from the coated surfaces [25]. Figure 1 depicts the
conceptual framework for constructing the proposed HfO2 ARC layer-based Si solar cell.
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2.3. Characterizations

Analytical, spectroscopic, and PV measurements were used to characterize the fab-
ricated HfO2 ARC layer on silicon wafers. Field emission scanning electron microscopy
(FE-SEM) (Hitachi 4800, Hitachi, Tokyo, Japan) was used to examine microstructure and
surface morphology. XRD and photoluminescence (PL) spectroscopy were used to con-
firm the deposition of HfO2. The optical characteristics were examined by UV diffused
reflectance spectroscopy (UV-DRS; Shimadzu MPC-3100, Shimadzu, Kyoto, Japan) using
the wavelength range (400–1200 nm). By utilizing a 904 nm laser, the lifetimes including
both surface and bulk lifetime of HfO2 coated c-Si wafers were determined. The HfO2
thicknesses and reflectance were used as input parameters in the PC1D simulation to
determine the precise PV properties.

2.4. PC1D Simulating Tool

The University of New South Wales (UNSW) team developed the PC1D simulation
software, which can be used to investigate the optoelectrical properties of solar cells [29].
The PC1D computer application is a popular numerical modeling program for c-Si solar
cell simulation. Using a finite-element numerical method, it determines the linked non-
linear equations for carrier generation, recombination, and transport in semiconductor
devices [30]. High computation rates, a large list of material and physical parameters, and
a simple user interface are all advantages of using PC1D [31]. It offers a wide range of
analysis possibilities in both the time and geographical domains [32]. The batch mode of
PC1D enables users to swiftly undertake optimization studies for a single parameter rather
than often adjusting the parameters. For each input parameter in the batch mode, the range,
the number of different values, and the kind of variations (logarithmic or linear) must all be
specified [31–33]. This software contains several library files for semiconductor materials,
such as AlGaAs, a-Si, c-Si, Ge, GaAs, GIN, and InP, to name a few [34,35]. This simulation
software was used to examine the optoelectrical properties of solar cells using important
parameters such as semiconductor bandgap, device area, reflectance value, device thick-
ness, dielectric constant, carrier density, etc. as input parameters. The PC1D simulator’s
internal model was chosen from other factors, and Table 1 lists all of the input parameters
for the tool.

Table 1. Simulation parameters used in PC1D tool for HfO2 ARC layer-based c-Si solar cell.

Parameters Value

Device area 100 cm2

Front surface texture depth 3 µm
The thickness of the Si solar cell 150 µm

Dielectric constant 11.9
Energy bandgap 1.124 eV

Background doping p-type 5 × 1016 cm−3

First front diffusion n-type 3 × 1018 cm−3

Refractive index 3.42
Excitation mode Transient

Temperature 25 ◦C
Other parameters An internal model of PC1D

Primary light source AM 1.5D spectrum
Bulk recombination 10 µs
Constant intensity 0.1 W/cm2

3. Result and Discussion
3.1. Crystallinity and Morphological Features

The XRD method was used to study the structural properties of the obtained HfO2
thin films. As illustrated in Figure 2a, the diffraction peaks of HfO2 are located at 31.95◦

(111) and 61.78◦ (311) in which the peak intensity at 32.95◦ is the strongest for the film
deposited [36]. Additionally, the peak of Si is observed at 68.78◦, indicating that the HfO2
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layer was properly deposited on the Si wafer. With an emission peak at 432.9 nm, PL
spectroscopy further supported the deposition of HfO2 on the Si wafer. It also attributed
the Si-O emission near the surface to the surface state, or quantum-limited effect (QLE), as
seen in Figure 2b [37].
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A FESEM analysis was used to quantify the thickness of the HfO2 ARC layer on
the textured Si wafer using the cross-sectional view as shown in Figure 3. At spinning
speeds of 1000, 2000, and 3000 rpm, the observed thicknesses of HfO2 films were 80 nm,
70 nm, and 60 nm, respectively. Interestingly, at 2000 rpm, the HfO2 thickness of 70 nm
on the textured c-Si wafer was improved and exhibits excellent optical, structural, and
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photovoltaic capabilities. The FE-SEM images revealed the uniform deposition of the HfO2
layer over the surface of the Si wafer (Figure 3d). For further evaluation of photovoltaic
capabilities, the experimentally determined HfO2 layer thickness was used as one of the
input parameters in the PC1D simulation tool.
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(d) 2000 on the c-Si substrate.

3.2. Optical Properties

The bulk lifetime can be determined by comprehending the recombination mecha-
nisms in semiconductors including doped and undoped materials. The effective lifetime
(τeff) of the minority carrier is often calculated by combining the lifetimes of the recombina-
tion mechanisms like band-to-band (radiative) recombination, Auger recombination, and
Shockley–Read–Hall (SRH) via traps within the energy gap. The silicon solar cell’s surface
and interior recombination lifetimes can be used to calculate τeff, as shown in the below
equation [38];

1
τe f f

=
1
τb

+
S f ront + Sback

W
(1)

Sfront & Sback stand for the simplified version of the recombination generating over the
front and back sides of the wafer, where W is the thickness of the silicon wafer. A possible
way to estimate the surface lifetimes on the surface and bulk is with the lifetime mapping
measurement of the c-Si wafer. Only bulk lifetime is taken into account because the front
surface of the Si wafer may be passivated after HfO2 ARC deposition.

To understand the surface bulk charge carrier lifetime, the lifetime mapping images of
the HfO2 ARC layer on a textured Si wafer with varied thicknesses have been examined [39].
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In general, during the scanning of the Si wafer, the color changes define the minority carrier
lifetimes. The HfO2 ARC layer on Si solar cells may be best applied at a thickness of 70 nm
because it has the lowest surface lifetime value when compared to other thicknesses. As
illustrated in Figure 4b, with an ARC layer-based Si wafer of 70 nm thickness, a reduction in
the bulk lifetime from 1.6788 µs to 1.4289 µs is seen and manifests the lesser charge carriers,
which may be advantageous for enhancing the optical characteristics. When compared to
other samples, the HfO2 ARC layer on a Si solar cell has a surface cumulative distribution
of lifetime that is optimized at 1.5538 µs, which results in a short lifespan for bulk charge
carriers on Si wafers as seen in Figure 4b1. The optical behavior of ARC surfaces might be
affected by the lifespan of charge carriers and their distribution.
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surface of the HfO2 layer deposited at spinning rate rpm (a,a1) 1000 (b,b1) 2000 (c,c1) 3000 for c-Si
solar cell.

To assess the reflectance at various HfO2 ARC layer thicknesses on the surface of the
Si substrate, UV-DRS spectroscopy has been used. As shown in Figure 5a, the reflectance
analysis findings showed that the average reflectance was 22.61% for bare silicon, 10.51%
for textural silicon, and 7.44%, 6.33%, and 8.35% for the thickness of HfO2 layers 80, 70, and
60 nm, respectively, produced at 1000, 2000, and 3000 rpm. The reflectance values of the
various ARC layer thicknesses that were measured during the experiment are strikingly
close to the findings of simulations, which are depicted in Figure 6.

HfO2 ARC with 70 nm thickness at 2000 rpm showing minimum reflectance has been
used to optimize the thickness of the HfO2 ARC layer. Due to this fact, ARC thickness is an
odd integer multiple of the quarter wavelength which relates to the propagation inside the
coating medium for a given frequency, and ARC thickness more effectively maintains the
constructive interference condition [40]. Using reflectance data, the refractive indices and
extinction coefficients for all of the HfO2 ARC layers on the Si substrate were calculated [41].
According to Figure 5b, the HfO2 layer, which has a thickness of 70 nm, has the maximum
refractive index (n = 2.3), which is also advantageous for effective Si solar cells. Table 2
contains the values for the HfO2 layer thicknesses deposited on the Si substrate at the
spinning rate. Therefore, a low reflectance HfO2 ARC material-based solar cell is ideal for
producing effective solar cells.
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Table 2. Photovoltaic parameters of HfO2 ARC-based c-Si solar cell.

Thickness of
ARC Layer (nm)

Average Reflectance Refractive Index Isc
(A)

Voc
(V)

Pmax
(W)

FF
(%)

Efficiency
(%)Experimental Simulation ExperimentalSimulation

Bare Si 22.61 36.12 1.52 – 2.28 0.642 1.22 69.80 12.27
Texture Si 10.51 – 1.88 – – – – – –

50 – 15.76 – 2.70 3.28 0.705 1.965 84.66 19.65
60 7.44 11.27 2.14 2.28 3.48 0.707 2.085 84.64 20.85
70 6.33 9.45 2.30 2.95 3.52 0.707 2.115 84.67 21.15
80 8.35 11.80 2.04 1.70 3.46 0.707 2.072 84.66 20.72
90 – 14.85 – 1.52 3.33 0.706 2.995 84.64 19.95

To further define the photovoltaic parameters, it is important to have an accurate
model, which explains the uniform distribution of surface resistance or sheet resistance
over the substrate [42]. By assisting the dispersed series resistance interconnecting gridlines
and so affecting the overall series resistance of a solar cell, the sheet resistance of Si
substrate can affect the Isc, FF, and consequently the efficiency of a solar cell. Thus, the
sheet resistance should be optimized to achieve an excellent ohmic contact [43]. The sheet
resistance increases with decreases in the thickness of HfO2 layers on the silicon substrate as
shown in Figure 7a. The maximum sheet resistance ~144.78 Ω/� is recorded at a thickness
of 70 nm (deposited at 2000 rpm), which is also beneficial to develop efficient solar cells.
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The transmittance is a crucial optical property for silicon solar cells, a higher transmit-
tance is needed for applications in optical devices to reduce light intensities. The number of
nanoparticles on the thin films is increased with reduced particle size causing light intensity
loss at these boundaries and absorption of light increases [44]. The HfO2 film deposited on
the silicon wafer has a transmittance of more than 80% at a large wavelength range and a
decrease in transmittance as the wavelength of light increases as shown in Figure 7b. Addi-
tionally, the measured absorbance value is ~0.2 in the range of 500–800 nm of optimized
thicknesses at 70 nm of ARC layer compensates with the value of transmittance as shown
in Figure 8. These optical properties are appropriate for high-performance and efficient c-Si
solar cells.
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3.3. Photovoltaic Properties

The characteristics of solar cells such as Isc, Voc, PCE, FF, and Pmax increase as the
ARC layer thickness increases, up to 70 nm, and then starts to decrease (Figure 9). This is
because, at 70 nm, the thickness of ARC more effectively maintains the state of constructive
interference [45]. It is not feasible to penetrate light into the surface of a solar cell because
light rays reflecting off the ARC’s top and bottom surfaces have similar paths, with a path
difference of less than λ/4 [46]. Because ARC holds the condition of destructive interference
more effectively, the reflectivity declines linearly after more than 70 nm of ARC thickness.
The condition of destructive interference is perfectly achieved and exhibits the lowest
reflectance at an ARC layer thickness of 70 nm. The top values of Isc = 3.52 A, Voc = 0.707 V,
PCE = 21.15%, FF = 84.67%, and Pmax = 2.11 W have been observed at optimized ARC
thickness of 70 nm as shown in Figure 9a–c.

The concentration of light affects electrical parameters such as Isc, Voc, Pmax, PCE,
and FF of the c-Si solar cell [47]. Figure 10 presented that the PV parameters like Isc,
Voc, Pmax, PCE, and FF increase with the increase of illumination light intensity. The
maximum value of I = 3.52 A and P = 3.2 W have been observed at standard conditions
i.e., the light intensity of 0.1 W/cm2 as shown in Figure 10a. The top values of Isc = 3.52 A,
Voc = 0.708 V, Pmax = 2.11 W, and PCE = 21.15% have been observed at standard condition
(Light Intensity = 0.1 W/cm2) as shown in Figure 10b,c.
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The development of efficient solar cells highly depends on the I-V curve. The maxi-
mum I = 3.52 A, and Pmax = 2.11 W has been observed at an ideal thickness of 70 nm HfO2
ARC layer, as illustrated in Figure 11a. This is in contrast to other ARC layer thicknesses
in c-Si solar cells. The largest photocurrent that solar cells might produce has now been
created due to an increase in photon absorption efficiency. The EQE is a measurement of
the ratio of incident photons to photo-generated carriers as a function of wavelength [48].
The EQE of ARC-based Si solar cells has been demonstrated to increase gradually with
bare (no ARC layer) silicon, as displayed in Figure 11b.
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As illustrated in Figure 11b, different ARC layer thicknesses from 50 nm to 90 nm
were used to study the performance of ARC layer-based solar cells in terms of EQE. For
ARC layer-based c-Si solar cells, the greatest EQE at optimum thickness at 70 nm provided
nearly 98% at the range of wavelength 300–1000 nm. Among all ARC layer thicknesses,
the HfO2 ARC layer-based solar cell exhibits the best EQE with a 70 nm thickness. Table 2
provides an overview of the experimental and simulation PV characteristics of silicon solar
cells based on ARC technology. Table 3 summarizes the electrical characteristics of reported
ARC material-based solar cells. HfO2 ARC-based solar cells performed better than others
did when these electrical properties were compared, and they may be ideal for producing
the proposed solar cells. The parameters of the HfO2 ARC-based solar cell predicted by the
PC1D modeling program are validated by this comparative investigation of the proposed
solar cell.
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Table 3. A summary of reported PV parameters of HfO2 ARC layer-based c-Si solar cell.

Types of
Solar Cell

Isc
(A)

Voc
(V)

FF
(%)

Efficiency
(%) References

Graphene/HfO2/Si 3.34 0.450 56.0 9.10 [49]
HfO2/Si 3.85 0.723 74.5 20.75 [27]
HfO2/Si 3.85 0.720 73.6 20.50 [27]
HfO2/Si 3.63 0.730 67.1 15.54 [50]
HfO2/Si 3.52 0.707 84.67 21.15 This work

4. Conclusions

In summary, HfO2 ARC with different thicknesses was deposited by a cost-effective
sol-gel process followed by spin coating to investigate the PV features of HfO2 ARC-
based silicon solar cells. An approach based on simulation was employed to examine the
optoelectrical properties of the HfO2 ARC layer-based c-Si solar cell. With an HfO2 ARC
thickness of 70 nm, the lowest average reflectance of the average reflectance of ~6.33%
was achieved which is lowered to other ARC thicknesses. To describe the PV parameters
of c-Si solar cells, several ARC thicknesses were used as input parameters. The topmost
PCE of 21.15% according to the simulated results is seen at an ARC layer thickness of
70 nm. It was discovered that the HfO2 ARC layer’s optimal thickness (70 nm) had the
maximum performance, Isc, and EQE, which was 98%. The use of low-cost HfO2 ARC
layer-based high-performance Si solar cells would be made possible by a simulation study
on the optimization of ARC thicknesses for Si solar cells.
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