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Abstract: A simple method is presented for incorporating various catalytic metals into the pores
of SBA-15 using vapor-phase infiltration. The precursors used in Atomic Layer Deposition (ALD)
for Pt, Pd, Rh, Ru, and Ni were exposed to an evacuated SBA-15, resulting in monolayer films of
the adsorbed precursors inside the mesopores. The metal particles that formed after removal of the
precursor ligands remained in the pores and had particle sizes ranging from 3.8 nm for Pt to 5.2 nm for
Ni, as determined by Transmission Electron Microscopy (TEM), XRD, and CO chemisorption. Metal
loadings for saturation exposures ranged from 5.1-wt% for Ni to 9.1-wt% for Pt; however, uniform
deposition was demonstrated for lower loadings of Pd by decreasing the amount of precursor. To
determine the effect of the surface composition of the mesopores, Pd particles were also added to
SBA-15 that was coated with a 0.2-nm film of ZrO2.

Keywords: mesoporous silica; metal nanoparticle; atomic layer deposition (ALD); SBA-15; Pt; Pd;
Rh; Ru; Ni

1. Introduction

Mesoporous materials, such as SBA-15, are of interest as catalyst supports for tran-
sition metals due to their high surface areas and well-defined pore structures [1,2]. The
mesoporous structure may prevent sintering of the supported metal nanoparticles due
to the spatial isolation of the particles [3–5], may enhance selectivity for some reactions
due to the molecular-sieving effect of the uniform pores [6,7], and may even suppress cata-
lyst coking in some cases [8–10]. An interesting example that demonstrates the potential
importance of having the catalyst particles within the mesopores comes from the work
of Agirrezabal-Telleria et al., who studied ethene dimerization over Ni within Al-MCM-
41 [8,9]. Coking was completely suppressed when the pressure was raised above that at
which the ethene condensed in the pores due to the solvation of liquid-like ethene.

However, as demonstrated in several recent reviews [3,11], preparing catalysts in
which the metal particles are all within the mesopores is challenging. Conventional in-
cipient wetness approaches usually do not work because the impregnated metal salts are
drawn out of the pores when the solvent is removed during the drying process. Alternative
preparation methods broadly fall into three categories. In the first and most common
method, deposition–precipitation, the metal is precipitated out of a supersaturated precur-
sor solution within the pores prior to removal of the solvent [12,13]. The most common
way of doing this involves changing the pH of the infiltrated solution, causing precipitation
of the metal salts in the form of hydroxides [14]. A second method involves functionalizing
the surface of the mesopores, then grafting the particles or precursors onto those sur-
faces [15,16]. Finally, one can synthesize the mesoporous material in a solution containing
the catalyst nanoparticles so that the porous structure forms around the particles [17]. There
are variations on these methods and some of these are described elsewhere [3,11,18–20].
Although successful methods for incorporating catalyst nanoparticles in the mesopores
exist, these methods require multiple steps over a range of conditions and can be different
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for each metal. A generally applicable method for efficiently incorporating metal particles
in mesoporous materials is desirable.

We will show in this work that a wide range of metals, including Pt, Pd, Rh, Ru, and
Ni, can be easily and quickly incorporated into SBA-15 by vapor-phase infiltration of metal
precursors, using ideas from Atomic Layer Deposition (ALD). Depositing metals by this
method on supports without mesopores has been reported previously [21–23]. In ALD, the
vapor from a compound containing the metal of interest is allowed to react with a surface.
After removing the excess precursor, the monolayer-covered surface is oxidized to remove
the precursor ligands. Although the process can be repeated to increase the coverage, the
metal loading associated with a monolayer of the precursor is usually sufficient.

2. Results and Discussion

A list of all the samples prepared in this study, along with a few key properties,
is shown in Table 1. Except for the samples designated Pd/SBA-15(med) and Pd/SBA-
15(low), all the samples received saturation exposures of the metal precursors. The metal
loadings in this table are reported as both weight percent and metal atoms per area. The
metal coverages in atoms/m2 are the growth rates that would be obtained in one cycle
of an ALD process. For unmodified SBA-15, the metal growth rates varied from a low
of 3.6 × 1017/m2 for Pt to a high of 5.4 × 1017/m2 for Ni. These values are similar to
the growth rates per cycle reported for a wide range of ALD precursors [24–29] and are
close to the coverages expected for monolayers of the precursors on SBA-15. Interestingly,
the area-specific Pd coverage was somewhat higher on Pd/ZrO2/SBA-15 compared to
Pd/SBA-15. Whether this is due to a change in the concentration of adsorption sites on
ZrO2 or the morphology of the ZrO2 film is uncertain.

Table 1. Properties of SBA-15 and metal on SBA-15 synthesized by vapor-phase infiltration and WI.

Sample Metal Loading
(%)

Metal Coverage
(Metal Atoms/m2)

Surface
Area (m2/g)

Pore Volume
(cm3/g)

SBA-15 - - 785 0.81
Pd/SBA-15 5.9 4.3 × 1017 719 0.69
Pt/SBA-15 9.1 3.6 × 1017 637 0.63
Ru/SBA-15 6.7 5.1 × 1017 748 0.69
Rh/SBA-15 6.0 4.5 × 1017 703 0.77
Ni/SBA-15 4.1 5.4 × 1017 694 0.79

Pd/SBA-15(med) 3.8 2.8 × 1017 686 0.67
Pd/SBA-15(low) 1.9 1.4 × 1017 660 0.66

Pd/ZrO2/SBA-15 Pd: 5.1
ZrO2: 45.6 1.2 × 1018 224 0.30

WI-Pd/SBA-15 1.0 - 563 0.62

The TEM images of Pd/SBA-15, Pt/SBA-15, Ru/SBA-15, Rh/SBA-15, and Ni/SBA-15
in Figure 1 demonstrate that the metal particles were uniformly distributed inside the
mesopores of the SBA-15 in each case. The particle-size distributions, shown as insets in
each of the micrographs, indicated average particle sizes of 4.9 nm for Pd, 3.8 nm for Pt,
4.3 nm for Ru, 5.0 nm for Rh, and 5.2 nm for Ni. These values are all less than the pore
size of the SBA-15, determined from the isotherms to be 9.1 nm. The TEM results for the
Pd-containing sample prepared by wet impregnation, WI-Pd/SBA-15, were dramatically
different. Even though the Pd loading on the WI-Pd/SBA-15 was only 1-wt%, Figure 2
shows that most of the metal was in the form of large particles on the external surface of
the SBA-15. We were not able to find any Pd particles within the mesopores of the sample.

A comparison of the TEM images of Pd/SBA-15(low) and Pd/SBA-15 in Figure 3
provides insight into how the metal particles form from the adsorbed precursors. The
Pd particles in these two samples are similar in size, but the particles are farther apart
in Pd/SBA-15(low). The similarity in the Pd particle size for different Pd loadings is
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further demonstrated by the fact that the Pd dispersions, measured by CO adsorption, were
essentially the same on the Pd/SBA-15, Pd/SBA-15(med), and SBA-15(low) as shown in
Figure 4. The implications of these results are twofold. First, it demonstrates that, even with
low loadings, we were able to adsorb the Pd precursor uniformly over the sample, since
even for the Pd/SBA-15(low), the Pd particles were uniformly distributed over the entire
SBA-15 sample and throughout the entire length of the mesopores. Second, formation of
the metal particles must involve migration of the metal atoms within the mesopores and
is likely limited by the size of the pore. Otherwise, one would expect the particle size to
change with the loading, since the migration distance must be significantly different in
these three samples.
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It is also informative to consider the effect of the metal particles on the surface areas
and pore morphologies. Table 1 shows that both the surface areas and pore volumes
exhibited a modest decrease following the vapor-phase deposition of the metals. While the
surface area of a given amount of SBA-15 is not expected to change with the addition of a
small amount of metal, the surface area per gram of sample will change with the added
mass. Because the densities of the metals are high, the volume of the metals is negligible
compared to the volume of the pores. The surface area and pore volume decreased much
more dramatically in the Pd/ZrO2/SBA-15 due to the high coverage of ZrO2.

However, closer examination of the isotherms in Figure 5 shows that the metal particles
within the mesopores did affect the pore size distributions. This is most easily seen from
the hysteresis loops in Figure 5a. For SBA-15, the loop existed over a narrow range of
pressures and corresponded to an average pore size of 9.1 nm. Data for each of the metal-
containing samples, with the possible exception of Ni/SBA-15, showed the loop extending
to lower pressures. This corresponded to a decrease and slight broadening of the pore-size
distribution. Since the total volume of the metal particles was not large, the effect on the
pore size was relatively small, resulting in average pore sizes of 8.4 nm for Pd/SBA-15,
8.6 nm for Pt/SBA-15, 8.3 nm for Ru/SBA-15, 8.9 nm for Rh/SBA-15, and 8.9 nm for
Ni/SBA-15.
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X-Ray Diffraction (XRD) patterns of the Pd/SBA-15, Pt/SBA-15, Ru/SBA-15, Rh/SBA-
15, and Ni/SBA-15 are reported in Figure 6 and were acquired to further characterize the
metal particles. The SBA-15 showed no diffraction peaks at the angles shown because
of the silica walls that made up the mesopores were amorphous. The peaks associated
with the metal nanoparticles were visible for the Pd/SBA-15, Pt/SBA-15, and Rh/SBA-15
samples; but the peaks were broad, consistent with the small size of the particles. Based
on the full width at half maximum and the Scherrer equation, the particles sizes for these
three samples were 3.3 nm, 3.0 nm, and 4.8 nm, respectively. We were not able to observe
the diffraction peaks for either Ru/SBA-15 or Ni/SBA-15.

The metal dispersions and particle sizes were also estimated from the chemisorption
measurements performed at 298 K, assuming a stoichiometry of one CO per surface metal
site. The results are shown in Table 2. The dispersions for Pd/SBA-15, Pt/SBA-15, and
Rh/SBA-15 were between 21% and 25% respectively; the particle sizes calculated from these
values agreed reasonably well with the values obtained from TEM and XRD. The dispersion
values for Pd/SBA-15(low) and Pd/SBA-15(med) were similar to that of Pd/SBA-15, as
discussed earlier; and the dispersion of the sample prepared by wet impregnation, WI-
Pd/SBA-15, was very low, in agreement with the TEM data showing large metal particles.
The dispersion obtained for Ru/SBA-15 was somewhat lower at 11%; we were not able to
adsorb CO on Ni/SBA-15, possibly because of incomplete reduction.
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Table 2. Dispersions and average particles size of metal on SBA-15 synthesized by ALD and WI.

Sample
Dispersion

Estimated from CO
Chemisorption (%)

Particle Size 1

(nm)
Particle Size 2

(nm)
Particle Size 3

(nm)

Pd/SBA-15 25.2 4.4 3.3 4.9
Pt/SBA-15 24.1 4.7 3.0 3.8
Ru/SBA-15 11.3 11.4 n.m. 4.3
Rh/SBA-15 21.2 5.1 4.8 5.0
Ni/SBA-15 n.m. n.m. n.m. 5.2

Pd/SBA-15(med) 24.8 4.5 3.2 5.2
Pd/SBA-15(low) 27.9 4.0 2.8 5.0

Pd/ZrO2/SBA-15 32.1 3.5 n.m. 3.3
WI-Pd/SBA-15 3.2 34.8 n.m. 60

1 Estimated from the dispersions with D = 6 vm/am
dva

. D, Vm, am, dva, represent the dispersion, volume of an
atom, surface area of an atom, and average particle diameter, respectively. 2 Estimated from the full width at half
maximum of the XRD peaks with the Scherrer equation. 3 Estimated from the TEM images. n.m.: not measurable.

Diffuse Reflectance Infrared Fourier Transform Spectra (DRIFTS) for the CO adsorption
on the Pd/SBA-15, Pt/SBA-15, Ru/SBA-15, and Rh/SBA-15 are shown in Figure 7 and
were again consistent with the metal particle sizes in the range from 3 to 5 nm. The spectra
of the adsorbed CO showed both linear- and bridged-bonded CO on each of the metals,
with the exception that Ru showed only the linear-bonded form. The presence of the
bridge-bonded CO demonstrated that the spectra were not that of isolated metal atoms.
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The triangles and squares represent the linear- and bridged-bonded CO on the metals, respectively.

Silica is generally considered to be a weakly interacting support for most metal cata-
lysts, and achieving and maintaining good dispersions with silica supports can sometimes
be challenging [30]. To determine whether better dispersions might be achieved if the
composition of the mesoporous walls were made of a different material, we deposited
Pd onto SBA-15 that had been coated with 0.2 nm of ZrO2 using ALD. The preparation
of ZrO2/SBA-15 has been described in detail elsewhere [24]. The thickness of the film
was determined from the mass of ZrO2 added (48 wt%), assuming the ZrO2 uniformly
covered the SBA-15 pores with its bulk density. Previous work also revealed that the
pores of ZrO2/SBA-15 were uniformly covered with ZrO2, using temperature-programmed
desorption of 2-propanol and the fact that ZrO2 is more acidic than silica [24]. A saturation
exposure of ZrO2/SBA-15 to the Pd precursor resulted in a sample that had 5.1-wt% Pd,
corresponding to a metal coverage of 1.2 × 1018 metal atoms/m2. As discussed earlier, the
higher Pd coverage on the Pd/ZrO2/SBA-15 compared to the Pd/SBA-15 may be due to a
higher adsorption-site density.

Representative TEM and scanning transmission electron microscopy (STEM) images
with energy dispersive X-ray spectra (EDS) maps of Pd/ZrO2/SBA-15 are reported in
Figure 8. As in the case of Pd/SBA-15, the images show that the Pd nanoparticles in this
sample were again aligned with the mesopores and of a similar size, 3.3 nm. The STEM
image with EDS maps shows that the ZrO2 and Pd nanoparticles were uniformly dispersed
in the mesopores. Interestingly, the CO chemisorption measurements indicated that that
the dispersion was slightly higher on this sample compared to the Pd/SBA, 15.32% versus
25%, even though the surface concentration of Pd was higher on the Pd/ZrO2/SBA-15.

What we have demonstrated in this study is that vapor-phase infiltration provides a
simple and highly flexible method for incorporating metal nanoparticles into mesoporous
materials. Most of the metal added by simple wet-impregnation remained external to the
mesopores but the vapor-phase infiltration resulted in a uniform distribution of the metal
nanoparticles. While other methods have been developed for incorporating nanoparticles
into the pores [3,11], most are either metal-specific or require multiple steps over a range of
conditions. We successfully applied the vapor-phase infiltration to the addition of Pd, Pt,
Ru, Rh, and Ni into SBA-15; extrapolation of the approach to other metals (e.g., Co [31],
Fe [32]) and oxide (e.g., MnOx [33]) catalysts would be a next step.
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Obtaining high metal loadings by vapor-phase infiltration is relatively easy. Indeed,
additional adsorption cycles could be used to increase the loading well above that achieved
in the present study. Obtaining lower metal loadings may be more difficult in some cases,
although we found that uniform distributions of Pd could be obtained using less of this
specific precursor. Other precursors may adsorb chromatographically, either in the mouth
of the mesopores or in the bed of powder. This issue would likely need to be addressed on
a case-by-case basis.

3. Experimental Techniques

SBA-15 was synthesized following the procedure described in the literature [24,34].
First, 4.0 g of Pluronic P-123 (Sigma-Aldrich, St. Louis, MO, USA) was dissolved, with
stirring, in a solution consisting of 120 g of 2 M HCl and 30 g of deionized water at 298 K
for 20 h. Following dropwise addition of 8.5 g of tetraethoxysilane (TEOS, Sigma-Aldrich,
99%) at 308 K, the resulting liquid was maintained at the same temperature, with stirring
for 20 h. Next, the solution was transferred to an autoclave, and the temperature was raised
to 373 K for 24 h to facilitate the hydrolysis of TEOS. The resulting SBA-15 was filtered,
washed with deionized water, and dried at 353 K. To remove the P-123 surfactant, the
sample temperature was ramped at 1 K/min to 773 K in flowing air; then, it was held
at that temperature for 6 h. The structure of the resulting SBA-15 was confirmed by the
small-angle X-Ray Diffraction and STEM, as reported in a previous study [24].

The metals were added to SBA-15 by vapor-phase infiltration, using home-built
equipment that was also used for ALD. The schematic diagram of the equipment is shown
in the supporting information (See Figure S1). In the present study, approximately 0.2 g
of SBA-15 was placed in a 10 mL quartz tube together with the desired amount of metal
precursor. The tube could be evacuated to ~50 mTorr using a mechanical vacuum pump,
isolated from the vacuum by a high-temperature valve, and then heated to a temperature
sufficiently high to vaporize the metal precursor. In a typical experiment, the SBA-15 was
exposed to the precursor vapor for 10 min, after which the sample was again evacuated at
the exposure temperature. In order to measure the growth rates, most of the experiments in
this study used approximately 50% more precursor than that required to form a monolayer,
with the excess precursor simply removed during the evacuation step; however, additional
experiments were performed with lower amounts of Pd precursor to determine whether
uniform deposition could be achieved at lower metal coverages. Multiple batches were
prepared for some of the samples, and the results were identical in each case. To determine
the effect of substrate composition, Pd was also added to an SBA-15 sample that had been
modified by a 0.2 nm film (48 wt%) of ZrO2. The film was added by ALD, and the sample
and its preparation have been described in detail in a previous publication [24].
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The precursors used for the deposition of Pd, Pt, Ru, Rh, and Ni were bis(2,2,6,6-
tetramethyl-3,5-heptanedionato)palladium (Pd(TMHD)2, Strem Chemicals, Newburyport,
MA, USA, >98%), platinum acetylacetonate (Pt(acac)2, Strem Chemicals, 98%), tris(2,2,6,6-
tetramethyl-3,5-heptanedionato)ruthenium (Ru(TMHD)3, Strem Chemicals, 99%), rhodium
acetylacetonate (Rh(acac)3, Strem Chemicals, >97%), and bis(2,2,6,6-tetramethyl-3,5-
heptanedionato)nickel (Ni(TMHD)2, Strem Chemicals, >98%). The exposure temperatures,
chosen in order to achieve a sufficient vapor pressure without decomposition of the precur-
sors, were 443 K for Pt, 473 K for Rh, and 523 K for Pd, Ru, and Ni. After deposition, the
samples exposed to the precursors of Pd, Pt, Rh, and Ni were removed from the adsorption
system, calcined in flowing air at 773 K for 20 min to remove the ligands, and then reduced
in flowing H2 for 20 min at 573 K. Because RuO4 has a high vapor pressure, the ligands on
the Ru-containing sample were removed by heating the sample in a flowing H2 at 623 K.

For comparison purposes, Pd was also incorporated with SBA-15 using wet impreg-
nation. SBA-15 was initially added to an aqueous solution containing palladium nitrate
dihydrate (Pd(NO3)2·2H2O, Pd 4.501% w/w, Alfa Aesar, Haverhill, MA, USA) with stirring
for 2 h. The sample was then dried at 343 K in air overnight, followed by calcination at
773 K in flowing air for 2 h.

The metal loadings in this study were determined from the sample weight changes. All
the samples were reduced at 573 K or 623 K (for Ru/SBA-15) before performing characteri-
zation. N2 adsorption–desorption isotherms were measured at 78 K using a Micromeritics,
TriStar II Plus analyzer. The surface areas were determined from BET isotherms, with
pore-size distributions calculated using the Barret–Joyner–Halenda (BJH) method. Metal
dispersions were measured using CO chemisorption at 298 K, assuming a stoichiometry of
one CO molecule per surface site. XRD patterns were obtained using a Rigaku MiniFlex
6G X-ray diffractometer. TEM, STEM, and EDS were performed with a JEOL JEM-F200
STEM operated at 200 kV. For these measurements, the samples were diluted in ethanol and
then deposited onto carbon support films on copper grids (Electron Microscopy Sciences,
Hatfield, PA, USA). DRIFTS were performed using an IR spectrometer (Mattson, Galaxy,
Mattson Technology, Fremont, CA, USA) equipped with a diffuse-reflectance cell (Pike
Technologies, DiffusIR, Fitchburg, WI, USA). In each DRIFTS measurement, the sample
was pretreated at 573 K with flowing H2/He for 30 min before cooling to 373 K. The sample
was then exposed to CO for 10 min before flushing the excess CO from the system with
flowing He for 10 min. All DRIFTS results were collected with the sample at 373 K.

4. Conclusions

In this paper, we demonstrated that various catalytic metals could be incorporated into
the mesopores of SBA-15 by exposing the evacuated SBA-15 to vapors of ALD precursors.
The method is simple, quick, and applicable to a wide range of metals and mesoporous
materials. The amount of metal that was added to the SBA-15 depended on the precursor
exposure, but high metal loadings could be easily achieved.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/inorganics10110215/s1. Figure S1: Schematic diagram of the home-
built vapor-phase infiltration equipment.
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