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Abstract: We synthesized and characterized (IR, Raman, UV, SXRD) hexaamminecobalt(III) dichloride
permanganate, [Co(NH3)6]Cl2(MnO4) (compound 1) as the precursor of Co–Mn–spinel composites
with atomic ratios of Co:Mn = 1:1 and 1:3. The 3D−hydrogen bond network includes N–H···O–Mn
and N–H···Cl interactions responsible for solid-phase redox reactions between the permanganate
anions and ammonia ligands. The temperature-limited thermal decomposition of compound 1
under the temperature of boiling toluene (110 ◦C) resulted in the formation of (NH4)4Co2Mn6O12.

which contains a todorokite-like manganese oxide network (MnII
4MnIII

2O12
10−). The heat treatment

products of compounds 1 and [Co(NH3)5Cl](MnO4)2 (2) synthesized previously at 500 ◦C were
a cubic and a tetragonal spinel with Co1.5Mn1.5O4 and CoMn2O4 composition, respectively. The
heating of the decomposition product of compounds 1 and 2 that formed under refluxing toluene (a
mixture with an atomic ratio of Co:Mn = 1:1 and 1:2) and after aqueous leaching ((NH4)4Co2Mn6O12,
1:3 Co:Mn atomic ratio in both cases) at 500 ◦C resulted in tetragonal Co0.75Mn2.25O4 spinels. The
Co1.5Mn1.5O4 prepared from compound 1 at 500 ◦C during the solid-phase decomposition catalyzes
the degradation of Congo red with UV light. The decomposition rate of the dye was found to be
nine times faster than in the presence of the tetragonal CoMn2O4 spinel prepared in the solid-phase
decomposition of compound 2. The todorokite-like intermediate prepared from compound 1 under
N2 at 115 ◦C resulted in a 54 times faster degradation of Congo red, which is a great deal faster than
the same todorokite-like phase that formed from compound 2 under N2.

Keywords: permanganate; ammine; solid-phase quasi-intramolecular redox reaction; todorokite;
spinel; photochemical degradation; Congo red

1. Introduction

The preparation and thermal decomposition of transition metal complexes with reduc-
ing ligands and oxygen−containing anions are intensively studied areas of coordination
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chemistry [1–22], especially due to the quasi-intramolecular redox reactions observed be-
tween their reducing ligands and oxidizing anions, which result in various simple and
mixed nanosized metal oxides. If the oxidizing anion is permanganate, and the ligand
is ammonia, the controlled−temperature thermal decomposition generally resulted in a
MMn2O4 spinel and other bimetallic oxides [23–29]. The presence of halogens, depending
on the chemical form and character in the complexes (ligand or anion) can drastically change
the nature of the products. For example, diamminesilver perchlorate resulted in AgCl
as the end−product [30], whereas chloride ligands in [pentaammine(chlorido)cobalt(III)]
dipermanganate resulted in the expected phase−pure CoMn2O4 spinel [9] containing
chloride ions and cobalt(III) in the redox interactions. The cobalt manganese oxide spinel
compounds have enormous importance in catalysis; e.g., Mansouri et al. prepared a
cobalt manganese oxide spinel (given as CoMn2O4) by the thermal decomposition of the
[Co(NH3)4CO3]MnO4 complex [28,29] with excellent activity in the Fischer–Tropsch fuel
synthesis. However, [Co(NH3)4CO3]MnO4 contains Co and Mn in a 1:1 atomic ratio.
Thus, the decomposition product is probably a mixed Co.1.5Mn1.5O4 spinel or a mixture of
CoMn2O4 and Co3O4. Klobb prepared a compound, [Co(NH3)6]Cl2(MnO4) (compound
1) with a Co:Mn ratio of 1:1 [31]. Compound 1 is expected to transform Co–Mn–oxides
with a Co:Mn = 1:1 ratio, and it allows the comparison of the catalytic properties of the
Co1.5Mn1.5O4 spinel phases prepared from compound 1 and [Co(NH3)4CO3]MnO4. Com-
pound 1 has not been characterized in detail; therefore in the present paper, we discussed
the structural and spectroscopic features and the influence of outer sphere chloride anions
on its thermal decomposition, including the comparison of the effect of chloride position
(outer or inner in compounds 1 and 2, respectively) on the thermal and redox processes.

2. Results and Discussion
2.1. Synthesis and Properties of Compound 1

[Hexaamminecobalt(III)] dichloride permanganate (compound 1) has been isolated
first by Klobb [31] as a by-product in the synthesis reaction of [Co(NH3)6](MnO4)3 (com-
pound 3) from [Co(NH3)6]Cl3 (compound 4) and KMnO4 in water at 50 ◦C. Klobb isolated
pure compound 1 in the reaction of compound 3 and a huge excess of [Co(NH3)6]Cl3 in
water at 50 ◦C. The previously isolated Cl−, MnO4

− and ClO4
− containing compounds

and their abbreviations are listed in Table 1.

[Co(NH3)6](MnO4)3 + 2[Co(NH3)6]Cl3 = 3[Co(NH3)6]Cl2MnO4

Table 1. Labels of compounds.

Compound Label

[Co(NH3)6]Cl2(MnO4) 1
[Co(NH3)5Cl](MnO4)2 2
[Co(NH3)6](MnO4)3 3

[Co(NH3)6]Cl3 4
[Co(NH3)6]Cl2(ClO4) 5
[Co(NH3)6](ClO4)3 6

The blackish purple blocks of compound 1 show some birefringence (red, brown). It
decomposes in water easily and explodes on fast heating with an evolution of ammonia [31].
We repeated this experiment, although the yield was quite low (16.4%) due to the solubility
of compound 1 in water at room temperature (7.89 g/100 mL). Compound 1 is insoluble
in aliphatic and aromatic hydrocarbons, acetone, and chlorinated solvents such as CCl4,
chloroform or dichloromethane, but it is soluble in DMF (0.848 g/100 mL) and decomposes
in DMSO immediately. It also decomposes in wet state in a day but when it is dry and
in the absence of light, it can be stored for several days. Its powder X-ray diffractogram
confirmed the phase purity (the PXRD patterns completely agree with the peak positions
calculated from the single crystal X-ray measurements, as shown in ESI Figures S1 and S2).
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We tested some other preparation possibilities for compound 1, e.g., the reaction
of [hexaamminecobalt(III)] chloride with KMnO4 at various molar ratios, but instead of
an increased yield, a complex product K[Co(NH3)6]Cl2(MnO4)2 containing K+ [31] was
obtained. Using NaMnO4, the solubility of which is higher by one order of magnitude
than the solubility of KMnO4 [32], resulted in a similar product containing Na+. Other
alternative reaction routes to prepare permanganate salts [33–35] have also been tested, but
complicated reaction mixtures formed due to side reactions involving chloride ions and the
hydrolysis of compound 1. The reaction of ([Co(NH3)6]Cl2)2SO4 with barium manganate
would ensure an easy way to prepare compound 1, but only the mixed chloride sulfate salt
of the hexaamminecobalt(III) cation ([(Co(NH3)6]Cl(SO4)) is known [36], and the requested
([Co(NH3)6]Cl2)2SO4 has not been prepared yet.

Alvisi performed a series of experiments to prepare the perchlorate analog, [Co(NH3)6]
Cl2(ClO4) (compound 5) in the reaction of compound 4 and NH4ClO4, but only the com-
plex [Co(NH3)6]Cl(ClO4)2 could be isolated [37]. Similarly, when [Co(NH3)6](ClO4)3
(compound 6) reacted with hydrochloric acid, only [hexaamminecobalt(III)] chloride diper-
chlorate was obtained. If the hydrochloric acid was fuming, compound 4 was formed.
The reaction between silver perchlorate and compound 4 also failed [37]. The analogous
reactions with permanganate derivatives cannot be performed due to the reaction between
hydrochloric acid and permanganate ions and the low solubility of AgMnO4 [32].

2.2. Structure of Compound 1

Red platelet single crystals of compound 1 were selected from the mother liquor, which
was formed during the synthesis and measured by the single crystal X-ray diffraction
method. Selected crystallographic data based on the refinement results are listed in Table 2.
The structural features of compound 1 are given in Figures 1–4. The detailed structural
parameters, bond lengths and angles including hydrogen bond parameters are given in
Tables S1–S3. The powder X-ray data calculated from the single crystal XRD results agreed
very well with the powder XRD results found experimentally (ESI Figures S1 and S2).

Table 2. Crystal data of compound 1.

Empirical Formula [Co(NH3)6]Cl2(MnO4)

Formula weight 350.97 g·mol−1

Crystal system Monoclinic
Space group P21/c

Unit cell dimensions, Å
a = 13.6133 (7)
b = 7.3658 (5)

c = 12.3682 (6);
β = 108.547 (8)◦

Z 4
Density (calcd.) (g·cm−3) 1.983

Temperature (K) 163
Volume (Å3) 1175.78 (13)
R factor (%) 4.22

CSD deposition number 2,220,607
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Compound 1 crystallized in the monoclinic system in the P21/c (Nr. 14) space group.
The asymmetric unit contains two halves of the hexaamminecobalt(III) complex cation,
two chloride anions and one permanganate anion, whereas the unit cell contains four
hexaamminecobalt (III) dichloride permanganate complexes. There are two different
complex cations with a somewhat distorted octahedral geometry (bond angles ranging
between 88.1◦ and 91.9◦) (Figure 1). The two different cations (labeled as A and B) are
hydrogen bonded to the permanganate oxygens; with different geometries; the complex
cation B has considerably shorter hydrogen bond lengths.

No direct metal–metal interactions were found in the structure; the shortest Co–Co,
Co–Mn and Mn–Mn distances are 7.198 (1) Å, 5.011 (1) Å, and 6.895 (1) Å, respectively. The
arrangement of metallocenter polyhedra are given in Figure 2.

The packing arrangements along the directions of crystallographic axes a, b and c are
shown in Figure 3. Two types of cationic layers can be found in the structure. In the first
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type of layer, cation A is placed together with Cl1 anions, whereas cation B is placed in a
different type of layer without any chloride ions. The Cl2 ion is pushed into the anionic
layer formed by the permanganate anions. The permanganate layers are in very close
contact with the cation B layers, and they are moderately further from the cation A layers
where the Cl1 anions decrease the positive charge.

A high number of rather strong hydrogen bond interactions exist between the complex
cations and both types of anions (a total of 25 hydrogen bonds). Each ammonia forms
three to five hydrogen bonds with the anions. Cl1 accepts six hydrogen bonds, and Cl2
accepts five hydrogen bonds. The hydrogen bonds that formed with the chloride anions
are on average weaker than those established by the permanganate anions. The strongest
hydrogen bonds are between cation B and the permanganate ion. The hydrogen bonds of
cation A are somewhat longer and the D−H···A angles are on average less favorable. A
permanganate anion is fixed by 14 hydrogen bonds in the crystal lattice.

To explore the intermolecular interactions of the two crystallographically independent
cations, we performed a Hirshfeld surface analysis by partitioning the space within a
crystal structure into regions, in which the electron density from a sum of atoms of the
given molecule dominates over the sum of the electron densities of the crystal. Several
2D fingerprint plots were generated for the complex cations (Figure 4). In the fingerprint
plots, de is represented against di where di is the distance from the Hirshfeld surface to the
nearest atom internal to the surface and de is the distance of the surface to the nearest atom
external to the surface.

The fingerprint plots for the two cations show marked differences. The strongest
H−bonds are formed with cation B, which is indicated by the much lower de and di values
(Figure 4d). For cation B, two independent spikes can be seen on the plot: one for the N–
H···O and one for N–H···Cl interaction (Figure 4e,f). The spike of the N–H···Cl interaction
appears at much higher de values. For cation A, the spike for the N–H···O interactions is
missing (Figure 4b), which shows that the interactions of cation A with the permanganate
are slightly loose (the same could also be concluded from the H−bond interaction lengths
in ESI Table S2). This is a marked difference from cation B, where the N–H···O spike is
pronounced (Figure 4e). The number of the N–H···Cl interactions of cation A is much
higher than for cation B (Figure 4c), as indicated by red in the fingerprint plots while the
interaction distances; thus, the shape of the spikes are similar.

The strong asymmetry of the hydrogen bond interactions of the ammonia ligands of
cation A and B may play a key role in the occurrence of the selective ammonia oxidation
reaction, leading to the oxidation of only a part of ammonia ligands into nitrate (see below).

2.3. Spectroscopic Properties of Compound 1

We analyzed the vibrational spectra (IR and Raman) of compound 1 by means of factor
group analysis and the available spectroscopic data of [Co(NH3)6]3+ cation [38–42]. The
structure of [Co(NH3)6]Cl2(MnO4) in the unit cell can be considered composed of a CoIII

(Ci) and two chloride (C1) ions, six NH3 molecules (C1), and one MnO4
– anion (C1), taking

into consideration that there are six crystallographically different NH3 molecules ligated to
two crystallographically different half−CoIII centers.

As mentioned above, compound 1 is monoclinic (P21/c, Z = 4). There are a total
of 36 internal permanganate vibrational modes: nine of each symmetry species. Those
are one ν1 (νs) mode, a doublet of the ν2 (δs) mode, and two triplets due to νas and δas
modes, respectively, expecting up to 18 bands (9Au and 9Bu) in the IR and the same number
(9Ag and 9Bg) in the Raman spectra (Figure 5). Altogether, 12 hindered rotational and
12 hindered translational modes are expected in the IR (6Au and 6Bu) and Raman (6Ag and
6Bg) spectra (Figure 5), respectively.
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Figure 5. (a) Internal and (b) external permanganate vibrations in compound 1. ν1—symmetric
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For two crystallographically different types of Co atoms, the number of translational
modes is doubled (2 × 6) (2 × 3 in Au and 2 × 3 in Bu) (ESI Figure S3). For two crystallo-
graphically different types of Cl atoms at positions of trivial symmetry, the number of modes
is also doubled (2 × 12). Namely, six hindered translations are expected of each symmetry,
giving 12 bands in the IR and in the Raman spectra each, respectively (ESI Figure S4).

There are six different crystallographic types of NH3 molecule at the position of trivial
symmetry, C1. Since 12 modes are expected in the IR (6Au and 6Bu) and another 12 are
expected (6Ag and 6Bg) in the Raman spectra (1−1 ν1 (νs), 1−1 ν2 (δs) and 2−2 ν3 (νas)
and 2−2 ν4 (δas)) for one crystallographic type of ammonia ligands, the total number of
internal vibrations are 6 × 24 = 144 (Figure 6). Translations along or rotations around an
axis are presented by lower indices of the axis/axes in question. For six crystallographic
types of NH3 molecules, the number of modes is correspondingly six times larger, i.e.,
6 × 12 = 72 hindered rotations and 72 hindered translations.
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Figure 6. (a) Internal and (b) external ammonia vibrational modes in compound 1. ν1—symmetric
stretch; ν2—symmetric bend; ν3—antisymmetric stretch; ν4—antisymmetric bend.

For the 32 atoms in the formula unit multiplied by 4 (value of Z in the primitive cell)
and multiplied by 3 (3N, where N = 32× Z = 128), the total number of rotational degrees of
freedom (hindered rotations) is altogether 84, and that of the internal vibrations is 180. The
total number of hindered translations in compound 1 is 120 (72 for the ammonia ligands and
48 for other parts of the complex). Three of them belong to acoustic modes, and the rest (117)
are vibrations of translational origin. These give a total number of 384 degrees of freedom.
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2.3.1. Vibrational Modes of the Permanganate Anion in Compound 1

The IR and Raman spectra of compound 1 are given in Figure 7 and ESI Figures S5–S9,
and the band assignments can be seen in Tables S4–S6. Two series of vibrational modes of
the permanganate ions (singlet symmetric stretching (ν1), triplet antisymmetric stretching
(ν3) and bending (ν4), or doublet symmetric deformation (ν2)) are expected to appear in
both the IR and Raman spectra (all four normal modes of tetrahedral permanganate ions
are Raman active, and the IR forbidden ν1 and ν2 are also expected to appear due to the
distortion from the ideal tetrahedral symmetry (Figure 5)).
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Figure 7. Raman spectra of compound 1 with (a) 532 and (b,c) 785 nm excitation.

The stretching modes of the permanganate ion in compound 1 appear as a weak singlet
(852 cm−1, νs) and as a doublet with a shoulder (924 sh, 910 and 894 cm−1, νas). In the
Raman spectra measured at room temperature and at −123 K, however, the antisymmetric
stretching mode appears as four bands and a shoulder (Figure 7, ESI Table S4). The band
belonging to the νs mode is weak in the IR spectra, whereas it is very strong in the Raman
spectra. The antisymmetric stretching mode is the strongest band in the IR spectra; however,
it is medium intensity in the Raman spectra. The deformation modes of the permanganate
ion are located in the far-IR range. δs cannot be seen due to its forbidden nature under Td in
the IR spectra, whereas a weak and poorly resolved triplet of δas appears near 388 cm−1. A
singlet and a singlet with a shoulder appear both in room-temperature and low-temperature
Raman spectra of compound 1 for δs and δas modes, respectively.

The Raman measurement with 532 nm excitation resulted in resonance Raman ef-
fects [43] (Figure 7), and a series of overtone bands appeared at 846, 1676, 2526, and
3354 cm−1 (νs, 2νs, 3νs and 4νs) with decreasing intensity. The bands of antisymmetric
stretching mode (νas, 2νas, 3νas and 4νas) as weak bands also appeared (Figure 7). Although
ν2 (Co–N is IR inactive under Oh, this mode might be mixed with the δas (Mn–O) due to
the distortion of regular octahedral structure in compound 1.

2.3.2. Vibrational Modes of the [Hexaamminecobalt(III)] Cation in Compound 1

The correlation analysis of the cationic part of compound 1 showed two sets of vi-
brational modes belonging to 2 × 6 different ammonia molecules and two octahedral
CoN6 skeletons. Based on the normal coordinate analysis and band assignations of the
hexaamminecobalt(III) cation [38–42], the assignments of the cationic vibrational modes of
compound 1 are given in ESI Tables S5 and S6.
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The six crystallographically different ammonia molecules in each cation type (A and
B) resulted in poorly resolved complex band systems for each N–H mode. The symmetric
and antisymmetric deformation modes appear around 1340 cm−1 (with a shoulder at
1327 cm−1) and as a wide asymmetric band at 1608 cm−1, respectively. The appearance
of the shoulder that belongs to the symmetric deformation mode νs (N–H) of compound
1 showed that the 2 × 6 different ammonia ligands can be divided into at least two sets
ligated with significantly different strengths to the central CoIII−ion. A relative bond
strength parameter (ε) for the ammonia molecules in ammine complexes was defined by
Grinberg [11,44]. The parameter (ε) was found to be 0.94 and 0.90 for the two groups
of the coordinated ammonia ligand types in compound 1. The bond strength difference
between these groups of coordinated ammonia ligands in compound 1 is only ~4%, and it
might be attributed to the differences between the Co–N bond strengths in the apical or
equatorial positions or between the cations of type A and B. Among the vibrational modes
belonging to the ammonia ligand, only the rocking mode ρ(NH3) is sensitive enough to
characterize the strength of hydrogen bonds in ammonia complexes [39]. This shows that
the average strength of the hydrogen bonds in compound 1 is somewhere between the
strength of an average hydrogen bonds in [Co(NH3)6]Cl3 (ρ(NH3) = 830 cm−1) [39] and
that in [Co(NH3)6](MnO4)3 (ρ(NH3) = 803 cm−1) [45].

Only the δs(NH) and ρ(NH3) Raman bands were visible at room and liquid N2 tem-
perature as a wide and a weak band consisting of three components (ESI Table S5).

The CoN6 octahedron under Oh has six normal modes, among which ν1(ν(CoN), Ag),
ν2(νas, Eg) and ν5(δs, F2g) are Raman, whereas ν3(νs, F1u) and ν4(δas, F1u) are only IR active
modes. The ν6(δ(NCoN), F2u) mode is IR and Raman inactive mode. These band positions
were calculated by normal coordinate analysis methods [40–43]. The ν1 mode has a singlet
nature; thus, the two bands in the Raman spectra probably belong to separated νCo–N
modes of two different Co–N moieties. An intense band consisting of ν3(Co–N)(νs) and
ν4(NCoN) (δas) appears in the IR spectrum, whereas all the ν1–ν5 modes can be found
in the Raman spectra due to the distortion of the regular CoN6 octahedron. The splitting
of the bands belonging to the ν2–ν5 modes can be attributed to the presence of various
Co–N distances in the two different CoN6 skeletons (ESI Figure S7), and at the same time,
to the removal of the degeneracy of E and F levels. The geometry distortion results in
the appearance of the forbidden ν6(δNCoN) band as well as a shoulder in the IR spectrum
around 250 cm−1.

2.4. UV−VIS Spectroscopy

The UV−VIS spectra of solid compound 1 was recorded at room temperature (ESI
Figure S10). The spectrum consists of strongly overlapping bands of four possible d–d
transitions of the [Co(NH3)6]3+ cation and CT bands of the permanganate anion [8,46]. As
a low-spin complex cation, the ground state of [Co(NH3)6]3+ is t2g

6 (1A1g). The electron is
excited, and the t2g

5eg excited state spans with 3T1g + 1T1g + 1T2g + 3T2g terms. The triplet
states lie at lower energies than the singlet states. The intensity of spin-allowed transitions
(singlet terms) was expected to be weak [47–51]. The presence of hydrogen bonds with
water in aqueous solutions resulted in trigonal distortion of an octahedral structure and
the appearance of new bands [48]. The experimentally found UV−VIS data are given in
ESI Table S7.

The 1A1→1T1 and 1A1→1T2 transitions of the octahedral CoIII cation are spin-allowed.
The distortion due to hydrogen bonds results in trigonal distortion (compression), which
was found in the experimental electronic spectrum of the aq. solutions of [Co(NH3)6]Cl3
and also showed by DFT calculations with water around the [Co(NH3)6]3+ cation [48]. The
band observed at 250 cm−1 may be assigned both to the CT band of the complex cation
and the 1A1−1T2 (3t2−2e) transition of the permanganate ion (it was found at 259 nm for
KMnO4), whereas the band at 220 nm may be assigned to the 1A1−1T2 (t1−4t2) transition
of a permanganate ion (it was found at 227 nm for KMnO4) [8].
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In the visible region of spectra, the bands at 510 and 530 nm belong to the perman-
ganate 1A1−1T2 (t1−2e) transition, whereas the bands at 490 and 551 nm may belong to
the permanganate and cation transitions (ESI Table S7) as well. A similar band system
was found in the UV−VIS spectrum of KMnO4 between 500 and 562 nm [8]. The band at
725 nm is the strongest band and probably consists of the 1A1−1T1(t1−2e) transition of the
permanganate ion and a weak component of the 1A1→5T2 transition of the complex cation.
The 1A1−1T1(t1−2e) transition of the permanganate ion was found at 720 nm for KMnO4
and 710 nm for [Agpy2]MnO4 [8].

2.5. Non-Isothermal Thermal Decomposition of Compound 1

Compound 1 is not thermally stable and behaves as an explosive on heating; therefore,
its decomposition had to be performed with a low heating rate (2 ◦C min−1) until 150 ◦C
to avoid an explosion-like decomposition. The temperatures of the first DTG peak of
compound 1 recorded under an inert atmosphere and an atmosphere with oxygen content
were 107 and 129 ◦C, respectively (Figure 8a,b). The DSC peak temperatures, however, were
the same in O2 and N2 atmospheres (109 and 134 ◦C for the 1st and 2nd decomposition steps
in both atmospheres, respectively) (Figure 8c,d), whereas the reaction heats were found
to be different (−107.1 and −260.8 kJ/mol in the first and −90.3 and −64.5 kJ/mol in the
second decomposition step, in O2 and N2 atmospheres, respectively (Figure 8)). It shows
that outer oxygen does not take part directly in the starting of the decomposition reaction;
however, an indirect influence can be found during the reaction, e.g., via consumption
of the primary thermal decomposition products in consecutive secondary endothermic
reactions. We can assume that the primary thermal decomposition products containing
nitrogen in some reduced species form are oxidized in the presence of O2. The formation of
endothermic nitrogen compounds such as NO or N2O can explain why the reaction heat in
the first decomposition step is lower in O2 than in N2. Furthermore, other endothermic
reactions such as increased ammonia ligand loss can cause similar results.
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Under N2, two other DTG peaks were observed at 382 and 441 ◦C, whereas in air, the
oxidizable residues were completely eliminated even at 378 ◦C, and there was no DTG peak
above this temperature. Above 500 ◦C, in air, the low-valence metal ion components of
the thermal decomposition products that formed as reduced components (e.g., CoII, MnII,
MnIII) due to redox reactions may have been oxidized in air (with the formation of CoIII,
MnIV), which caused a weight increase due to oxygen uptake.

Since the formation of N2 and O2 as decomposition products during the analysis of
the evolved gas, the TG−MS measurements were not performed in air but only in argon
(m/z = 40) as an inert atmosphere (Figure 9). The TG−MS curves unambiguously show
that the first three decomposition steps consist of redox reactions, because H2O (m/z = 18),
NO+ (m/z = 30) and N2O+ (m/z = 44) as redox products were detected. Compound 1 is
anhydrous; thus, water may only be the oxidation product of the only possible hydrogen
source—ammonia ligands—and the only possible oxygen source may be the permanganate
ions. Thus, the first redox reaction is involved with ammonia ligands and permanganate
ions. Water and N2 formed in all three decomposition steps, N2O formed only in the first
and third steps, and NO formed in the second and third steps. It shows that NO+ would
only be the fragment ion of N2O+. The signal at m/z = 17 may belong to both OH+ as water
fragments and an ammonia molecular ion (NH3

+) as well. The m/z = 17 and 16 ion intensity
curves indicate the release of ammonia (NH3

+ and NH2
+) as m/z = 17, and 16 fragment

ions of H2O were subtracted from these curves. The intensity ratio of the m/z = 16 (O+)
fragment from water comparing to the intensity of m/z = 17 and 18 signals in the TG−MS
of water [52] confirm unambiguously that ammonia is also present in the system. There
was no peak at m/z = 32 (O2

+) as the parent ion for m/z = 16 (O+), and we could not detect
HCl or Cl2 due to a reaction of these reactive species with the wall of the capillary column
in the TG−MS instrument [9] (Figure 9).
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In order to clarify the nature of intermediate products and gain an insight into the
reaction mechanism, we studied isotherm thermal decompositions of compound 1 in solid
phase under air and N2 at various temperatures that were determined on the basis of the
DTG curves (Figure 8a,b) and under refluxing toluene (boiling point is 110 ◦C).

Toluene acted as a heat-absorbing medium preventing local overheating due to
exotherm redox reactions, and it limited the decomposition temperature to 110 ◦C. The
reaction temperature could not exceed the boiling point (110 ◦C) of toluene until liquid
toluene is present; thus, we can study in detail the first decomposition step of compound 1
that occurred around 107 ◦C.
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2.6. Isothermal Heat Treatments of Compound 1

The powder X-ray diffractograms and IR/far−IR spectra of the decomposition inter-
mediates and products of compound 1 were recorded on the samples made by heating
compound 1 for 2 h near the DTG peak temperatures and 500 ◦C (Figure 8a,b), respectively.
The powder XRD of the decomposition products made at 500 ◦C showed the presence of a
(Co,Mn)T−4(Co,Mn)OC−6

2O4 phase with a Co:Mn ratio of 1:1 and an average size of ~9 nm
(determined by the Scherrer method (Figure 10)).
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The Co1.5Mn1.5O4 formula determines 2 MIII and one MII ions, so at least 0.5 Co is
surely trivalent, even if all the manganese is trivalent, but the distribution and the valences
of Mn and Co at the tetrahedral and octahedral sites may vary. A comparison of the powder
XRDs of Co1.5Mn1.5O4 with the diffractograms of CoMn2O4 (tetragonal, I41/amd) [53] and
MnCo2O4 (cubic, Fd3m) unambiguously showed that Co1.5Mn1.5O4 is isostructural with
the cubic MnIICoIII

2O4 [54].
The distribution of valences (CoII/III and MnII/III/IV) and distribution of the metal ions

between the tetrahedral and octahedral sites of the spinel lattice strongly depend on the
composition and preparation method of the Co–Mn–spinel [54–62]. Generally, cubic spinels
with inverse spinel structures form when more than the half of metal ions is cobalt, whereas
the manganese-rich spinel are tetrahedral. CoIII, MnIII and MnIV favor the octahedral sites
of spinel lattice, whereas CoII and MnII have no preference. Since the redox reactions
between CoII and MnIII/MnIV can result in charge re-distribution, divalent ions can form at
the octahedral sites as well, especially if the synthesis temperature is low and the diffusion
rate is limited [54–62].

The PXRDs of the intermediate phases produced at 135, 160, 250 and 390 ◦C under N2
show that amorphous materials are formed until 250 ◦C, and the crystalline spinel structure
was found to build up at 390 ◦C (average crystallite size is ~8 nm) (Figure 10). It is confirmed
by the far−IR spectra (Figure 11) of the decomposition intermediates, where the low-frequency
metal–oxygen and lattice modes characteristic of the spinel structures [26–28] appear in the
spectrum of sample produced at 390 ◦C. Since we found no differences between the far−IR
band positions of the intermediates prepared in air and an inert atmosphere between 135 and
500 ◦C, the development of the cobalt-manganese oxide framework looks to be independent of
the composition of the atmosphere. Therefore, the role of oxygen in the thermal decomposition
of compound 1 may not be associated with the build-up of these phases. Consequently, the
unidentified crystalline product that appears in the XRD of the samples produced in the
presence of oxygen at 135 ◦C is not a cobalt manganese oxide.
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The strong antisymmetric stretching bands of MnO4
−, MnO4

2− and MnO4
3− ions at

~910, ~862 and 770 cm−1 [63], respectively, could not be detected in the IR spectrum of the
intermediate that formed at 115 ◦C. Thus, all the permanganate ion content of compound 1
is reduced at the first moment of thermal decomposition into MnIV, MnIII or MnII species.
The wide band in the 600–400 cm−1 region shows the presence of these species containing
a low-valence Mn–O bond [63].

The ν2(N–O) band of the nitrate ion [64] (it may be mixed with ρ(NH3) belonging
to coordinated ammonia) appears in the samples prepared at 135, 160 and 250 ◦C with
decreasing intensity around 850 cm−1, which is gradually eliminated with increasing tem-
perature. The positions of symmetric and antisymmetric N–H stretching, and deformation
modes of coordinated ammonia coincide with the bands of ammonium ion N–H stretching
modes, but the presence of bands/shoulders between 2900 and 2800 cm−1 (combination
bands of ν2 + ν4) confirms that some of the ammonia is in protonated (ammonium ion)
form [65]. The intensive antisymmetric ν(N–O) band of nitrate ions can be seen around
1330 cm−1 [53], the intensity of which decreases with increasing temperature, parallel with
the decrease in the ν2(N–O) band intensity. Thus, the nitrate compounds that form are
not thermally stable and gradually decompose. The crystalline compound detected in
the sample made at 135 ◦C (Figure 10) disappears at 160 ◦C (Figure 10), so it is thermally
unstable. The formation of a phase containing water (an O–H symmetric and antisymmetric
stretching band appearing at ~3500 cm−1, and the intensity of the band containing δas(N–H)
and scissoring OH2 components at ~1600 cm−1 increasing as a result) starts together with
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increasing ammonia/ammonium ion content (appearing of N–H symmetric and antisym-
metric stretching at ~3200 cm−1). The largest amount of products containing water were
found at 250 ◦C, and compounds containing both water and ammonia (ammonium ion)
completely disappeared at 500 ◦C in both atmospheres.

The IR study of the crystalline compound found in the intermediate that formed
in air at 135 ◦C shows that a nitrate compound is present, which decomposes at 160 ◦C
(disappearing of the νas(N–O) band at 1330 cm−1) (Figure 11). A weak stretching band of
water as a shoulder at >3400 cm−1 can also be observed, which suggests the formation of a
complex containing water. When the temperature is increased, more water (increasing the
scissoring δ(H2O) mode at ~1600 cm−1) and less ammonia (ammonium-ion) (disappearing
of the δas(N–H) mode at 1400 cm−1) are present in the IR spectrum of the sample made at
250 ◦C.

The reduction of CoIII ions into CoII ions during the thermal decomposition of
[Co(NH3)6Cl3] and its decomposition intermediate [Co(NH3)5Cl]Cl2 is a well-known
process, similarly to other hexaamminecobalt(III) salts, with N2 and NH4Cl (NH4X salt)
formation [66,67]. Since [hexaamminecobalt(II)] complexes are thermally less stable than
the analogous CoIII complexes [68], and N2 formation was detected in the thermal de-
composition reaction, we performed a temperature-limited decomposition under boiling
toluene. The limit of this decomposition process is 110 ◦C, the boiling point of toluene,
which is an upper temperature limit, because the exothermic reaction heat is absorbed
by the evaporation of toluene. It can prevent the decomposition of the primarily forming
intermediate due to local overheating and self-propagating the decomposition reaction.

2.7. Isothermal Decomposition of Compound 1 in Boiling Toluene

The thermal decomposition of compound 1 starts at 110 ◦C, which is the boiling point
of toluene. The solid phase formed in the thermal decomposition of compound 1 under
refluxing toluene in 2 h consisted of a brown amorphous/hardly crystallized material,
which was crystallized out—with or without washing with water before heating—at 500 ◦C
into spinel phases with 1:1 and 1:3 Co:Mn stoichiometry, respectively (Figure 12a–d). The
difference between the Co:Mn ratio with and without aqueous leaching unambiguously
shows that in the first decomposition step, at least one water-soluble Co compound also
forms. Therefore, the aqueous extract was evaporated to dryness, and the solid residue was
studied by IR and powder XRD (ESI Figures S11 and S12). The powder XRD of the evapo-
ration residue from the aqueous extract of the decomposition intermediate made in boiling
toluene shows the presence of [Co(NH3)6]Cl3 and [Co(NH3)6]Cl2 as well (ESI Figure S12).

A layered compound with high interlayer distance, characteristic of basic cobalt salts
might also form as a hydrolysis product (2θ = 14.7◦) (ESI Figure S12). We found a small amount
of the cubic α−ammonium chloride (ESI Figure S12). The IR spectrum of this residue contains
a band characteristic of coordinated ammonia, ammonium ions and nitrate ions as well [9]
(ESI Figure S11). These results unambiguously show that the ammonia is partially oxidized
into nitrate ions, reducing the permanganate ion content completely and partly the CoIII ions
as well. Only a part of ammonia (due to the oxygen deficiency of one permanganate toward
six ammonia) can be oxidized; therefore, the residual ammonia is left back as coordinated
ammonia or ammonium ions. According to this, the mass decrease during the thermal
decomposition in toluene roughly corresponds to the weight of ~3NH3 or 2NH3 + H2O. The
nitrate and chloride counter-ions are crystallized from the aqueous leachate as ammonium
nitrate and hexaamminecobalt(III) and hexaamminecobalt(II) chlorides.
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Figure 12. The powder X-ray diffractograms of the decomposition intermediates and products of
compound 1: (a) made by heat treatment in toluene at 110 ◦C, (b) made by the heat treatment of
compound 1 at 500 ◦C in air and (c) made from the water-insoluble part of the decomposition inter-
mediate of compound 1 made in toluene by heating at 500 ◦C and (d) made from the decomposition
intermediate of compound 1 made in toluene by heating at 500 ◦C.

The water-insoluble decomposition residue contains cobalt and manganese in an
atomic ratio of 1:3 (ICP). Based on the weight loss during the aqueous extraction and
the IR studies (ESI Figure S13), the residue can be characterized with the formula of
Co2(NH3)4Mn6O12 or (NH4)4Co2Mn6O12 (todorokite-skeleton [69,70] with square-hape
channels intercalated with 4 ammonia or 4 ammonium ions). We found a similar phase
during the decomposition of compound 2 under toluene but did not determine the chem-
ical form of ammonia and valence distributions of the Co and Mn ions in the material
that was formed (ESI Figure S14). Therefore, we now measured the room-temperature
magnetic susceptibility of the todorokite-like materials forming under similar conditions
from compounds 1 and 2 (5.9 B.M.).

The samples made by the decomposition of compounds 1 and 2 under toluene and
after aqueous leaching may contain the four ammonia molecules as coordinated (to CoII

or CoIII [9]) or protonated ammonia molecules (ammonium ion). The IR band positions
of C3v (or lower symmetry) M···NH3 or hydrogen-bound intercalated ammonium ion
(···H+–NH3) species are quite similar, but the existence of combination bands (ν2 + ν4 of
tetrahedral ammonium ion) in the IR spectra of these intermediates strongly suggest the
presence of ammonium ions.

The magnetic susceptibility values are in accordance only with the presence of two
high-spin CoIII, two high-spin MnIII and four high-spin MnII ions. Other valence combina-
tions of cobalt (2CoII or 1 CoII + 1 CoIII) or manganese (various numbers of MnII, MnIII or
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MnIV with 0 (ammonia ligands), 1–3 (some of the ammonia molecules protonated) or four
ammonium ions gave much lower theoretical magnetic moments than the measured values,
or they cause controversies in charge balances (the cation charges are to be neutralized by
12 × 2 = 24 negative charges).

Based on the IR, PXRD, magnetic susceptibility, TG and TG−MS results, the main
reactions during the thermal decomposition of compounds 1 and 2 in toluene at 110 ◦C can
be summarized with the following equations:

6[Co(NH3)6]Cl2MnO4 = 4Co(NH3)6Cl3 + (NH4)4Co2Mn6O12 + NH4NO3 + 9H2O + 24NH3 + 5N2

and

3[Co(NH3)5Cl](MnO4)2 = [Co(NH3)5Cl]Cl2 + (NH4)4Co2Mn6O12 + NH4NO3 + 6H2O + 3NH3 + 1.5N2

With and without leaching the water-soluble Co−compounds, [Co(NH3)6]Cl3 and
[Co(NH3)6]Cl2, the heat-treatment of the decomposition intermediate that formed un-
der refluxing toluene, at 500 ◦C, led to spinel phases with a Co:Mn ratio of 1:3 and 1:1
(Co0.75Mn2.25O4, and Co1.5Mn1.5O4), respectively. Under analogous conditions, the tetrago-
nal Co–Mn spinel with a Co:Mn stoichiometry of 1:2 and 1:3, respectively, formed from
compound 2. Without removing the water-soluble intermediate cobalt compounds, the
formal equations of the decomposition reactions at 500 ◦C are:

6[Co(NH3)6]Cl2MnO4 = 4MnIICoIII
1.5MnIII

1.5O4 + 2N2O + 6H2O + 28NH3 + 12HCl +2N2

3Co(NH3)5Cl](MnO4)2 = 3CoMn2O4 + N2O + 9H2O + 8NH3 + 3HCl + 2.5 N2

After removing the water-soluble components, the formula of (NH4)4Co2Mn6O12
determines the formation of Co0.75Mn2.25O4 compound. Under N2, atmospheric oxygen
cannot help the oxidation of ammonium ions.

The 2nd and 3rd decomposition steps of compound 1 belong to the further catalytic/
non-catalytic thermal decomposition of NH4NO3 and [Co(NH3)6]Cl3/[Co(NH3)6]Cl2 pre-
cursors [66–68,70–72]. The source of N2O and H2O may be ammonium nitrate; NO can be
formed via the reaction of ammonia and the oxide phases. The high similarity of the decom-
position pattern of compound 1 and 2 can be explained with the fact that [Co(NH3)6]Cl3
forms during the thermal decomposition of compound 1, which transforms during its
thermal decomposition first into [Co(NH3)5Cl]Cl2 [66,67]. [Co(NH3)5Cl]Cl2 forms as an
intermediate during the thermal decomposition of compound 2.

The direct thermal decomposition of compound 1 and 2 at 500 ◦C resulted in cubic and
tetragonal spinel phases, respectively. The thermal decomposition of compounds 1 and 2 in
toluene, then heating at 500 ◦C (without washing out the water-soluble Co−compounds)
gave tetragonal spinels with the same stoichiometry as that found in the simple solid-
phase decomposition. The removal of water-soluble Co−compounds from the thermal
decomposition products of compounds 1 and 2 in boiling toluene, however, resulted in
the same product in both cases with Co:Mn = 1:3 stoichiometry ((NH4)4Co2Mn6O12). Heat
treatment of ((NH4)4Co2Mn6O12) at 500 ◦C led to the same spinel phases with a tetragonal
lattice (Figure 12, Scheme 1).
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Scheme 1. Thermal decomposition products formed from compounds 1 and 2 at 500 ◦C with and
without various pre-treatments.

The distribution possibility of cationic species in the spinel lattice shows high vari-
ability depending on the composition, preparation method, and synthesis conditions of
the Co–Mn–spinels [55–62]. Even the normal spinel structures with CoII in the tetrahe-
dral sites as CoII[CoIII,MnIII)2]O4 [56,57] show high variability due to redox equilibriums
between the MnII + MnIV = 2MnIII and CoII + MnIV = CoIII + MnIII at the octahedral
sites when the spinels with CoII[CoIIMnIV]O4 [58,59], CoII[(CoIII,MnII,MnIII,MnIV)2]O4 [60],
CoII[(CoII,MnIII,MnIV)2]O4 [61], and CoII[(CoII,CoIII,MnIV)2]O4 [61] were found. Since CoII

and MnII have no preferential site within the spinel lattice, MnII can substitute CoII at the T−4
site, and not only the (CoII,MnII)[MnIII

2]O4 spinel [56] but the (CoII,MnII)[CoII,CoIII,MnIII]O4
spinels [62] were also identified. This high variability in the oxidation states of each metal
ion in both T−4 and OC−6 spinel positions results in the possibility of preparing promising
Co–Mn–oxide catalysts for various industrially important processes. Therefore, a detailed
study of the composition, metal and charge distributions, magnetic properties, and catalytic
activity of Co–Mn spinels prepared from various ammine complexes of cobalt permanganates,
including compounds 1 and 2, will be studied and published in our forthcoming paper.

2.8. Surface Characterization of the Decomposition Products Form from Compound 1 and Their
Photocatalytic Activity in the Degradation of Organic Dyes

The BET surface area determination, SEM morphological characterization and photocat-
alytic activity studies on the thermal decomposition intermediates and end-products formed
(up to 500 ◦C in N2 and air atmospheres) were performed.

The morphology of the end-product (spinel-like) obtained at 500 ◦C under N2 and
air show pumice-like and lamellar morphology, respectively (Figure 13). The evolution of
gas with the disruption of the crystalline lattice resulted in an amorphous structure which
transforms into badly crystallized spinel. Table 3 contains the specific surface area (BET, N2
isotherm) of each intermediate and the final decomposition products.
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Figure 13. SEM images of the decomposition products form from compound 1 at 500 ◦C under
nitrogen (a) and air (b).

Table 3. The specific surface area (m2·g−1) of the thermal decomposition intermediates and end-
products that formed at different temperatures from compound 1 in N2 and air.

Temperature, ◦C 115 135 160 250 390 500

Specific surface area, m2·g−1
Under N2 6 17 16 7 27 8

Under air − 6 4 4 − 35

The specific surface area (SSA) of the thermal decomposition intermediates and products
that formed from compound 1 under N2 changed irregularly with increasing sintering tem-
perature. The reaction product prepared at 390 ◦C had the highest surface area (~27 m2·g−1).
Increasing the temperature to 500 ◦C led to a decrease in the surface area (8 m2·g−1) due to
sintering during crystallization. In the presence of air, the highest SSA value was found at
500 ◦C (35 m2·g−1), which shows less compactness of the spinel lattice in air than in N2 due
to the oxidation of the residual reducing components and possible gas formation during the
crystallization process.

We checked the photocatalytic potential of the thermal decomposition intermediates
and products of compound 1 in the degradation of two organic dyes below and above pH
values relates to their pKa values. The photocatalytic activity results are summarized in
Figure 14, and the apparent decomposition rate (kapp, pseudo-first order rate constant) for
each intermediate can be seen in Table 4 and Figure 14.

The studied catalysts that formed under an inert atmosphere with the thermal decom-
position of compound 1 showed good activity in accelerating (11–54 times) the degradation
of Congo red at pH = 5.7 (alkaline form of Congo red). The highest value was found for
the intermediate that formed at 115 ◦C (probably a todorokite-like material) in the first
decomposition step under N2. Using the similar todorokite-like material that formed from
compound 2 at 125 ◦C resulted in less catalytic activity (5 and 18 times, under N2 and air,
respectively) for the photodegradation of Congo red under analogous conditions [9].

Increasing the decomposition temperature of compound 1 decreases the activity of
the products. Catalytic activity does not correlate with the specific surface area; thus, the
changes in catalytic activity may be attributed to the changes of the valence and defect
distributions in the intermediates formed at various temperatures. The decomposition
products that formed at 500 ◦C (cubic Co1.5Mn1.5O4) in air or N2 gave the same results:
nine times faster decomposition. Neither the specific surface area nor the atmosphere of
the synthesis had any influence on the catalytic activity of the Co1.5MnO1.5O4 spinel that
formed at 500 ◦C. It is different from the result found in the case of tetragonal CoMn2O4
spinel that formed from compound 2. Here, the atmosphere influenced the photocatalytic
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acidity in Congo red degradation (13 and 9 times, samples prepared under N2 and air,
respectively) [9].
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Figure 14. Photocatalysis of decomposition intermediates and products forming from compound
1 at various temperatures under nitrogen (a) and air (b) during the photodecomposition of Congo
red. Figure 14 shows that among the two studied dyes, Methyl orange and Congo red; only the
degradation of Congo red was catalyzed by these catalyst candidates. The pH of the dye solutions
was adjusted to be over the pKa values of dyes.

Table 4. Photocatalytic parameters (kapp) in the decomposition of Congo red and Methyl orange
catalyzed with intermediates forming under N2 and end-products forming under air or N2 in
different conditions.

Dyes (2·10−5 M) and Catalysts Parameters pH Kapp/10−4, min−1 R2

Congo red, without catalyst 5.7 1.0 0.98

Congo red, catalyst made at 115 ◦C in N2 5.7 54.0 0.93

Congo red, catalyst made at 250 ◦C in N2 5.7 12.0 0.87

Congo red, catalyst made at 390 ◦C in N2 5.7 11.0 0.99

Congo red, catalyst made at 500 ◦C in N2 5.7 9.0 0.99

Congo red, catalyst made at 500 ◦C in air 5.7 9.0 0.98

Methyl orange, without catalyst 5.6 0.8 0.99

Methyl orange, catalyst made at 500 ◦C in N2 5.6 0.6 0.97

Methyl orange, catalyst made at 500 ◦C in air 5.6 0.6 0.94

3. Materials and Methods

Chemical-grade CoCl2·6H2O, ammonium chloride, hexachloroplatinic acid (H2PtCl6·
6H2O), sodium permanganate (40% aq. soln.), 25% aq. ammonia, 37% aq. hydrochloric
acid, silver nitrate, and NaOH were supplied by Deuton-X Ltd. (Érd, Hungary).

3.1. Synthesis of Compound 1

Compound 1 was prepared following Klobb’s method [31] by a direct combination of 1 g
of compound [Co(NH4)3](MnO4)3 and 4.13 g of [Co(NH3)6]Cl3 in 70 mL of water (60.0 ◦C).
The mixture was stirred for 15 min and left to be chilled in a fridge, where blocks of small
strips of crystals formed at around 1.0 ◦C. Then, the formed crystals were filtered off and
dried in a desiccator at room temperature.



Inorganics 2022, 10, 252 20 of 26

3.2. Preparation of Co(NH3)6Cl3 (Compound 4)

[Co(NH3)6]Cl3 was prepared according to the method of Jörgensen [73]. First, 14 g of
NH4Cl was dissolved in 20 mL of distilled water; then, 21.6 g of CoCl2·6H2O was added to
the solution and stirred for fifteen minutes. After that, 0.5 g of activated carbon (powder)
was added with 55 mL of cc. ammonia solution. An O2 stream was passed into the solution
slowly. In every 15 min interval, 2–3 mL of cc. ammonia was added. The reaction can
be considered completed when the color completely turns to brown. The precipitate was
filtered out, 100 mL of hydrochloric acid (~5%) was added, and the mixture was heated to
80.0 ◦C and kept at that temperature for fifteen minutes. Then, the mixture was filtered
while still hot, and 29 mL of cc. HCl was added, after which [Co(NH3)6]Cl3 crystallized
out on chilling the solution to 0.0–5.0 ◦C. The crystals were washed with distilled water
and dried at room temperature.

3.3. Preparation of [Co(NH3)6](MnO4)3 (Compound 3)

Compound 3 was prepared by dissolving 1 g of [Co(NH3)6]Cl3 in 50 mL of distilled
water, then by adding of 40% aq. NaMnO4 (2.29 mL). The mixture was heated at 60.0 ◦C for
15 min. The mixture was left to cool down to form compound 3. The crystals were filtered
off and washed with cold distilled water.

3.4. Analytical Methods

The classical analytical and basic instrumental measurements were taken using meth-
ods and instruments described in detail in our earlier papers [1–7]. The most essential
conditions of the measurement methods are listed below.

3.5. Elemental Analysis

The Co and Mn content of compound 1 was determined by ICP−OES (atomic emis-
sion spectroscopy with a Spectro Genesis ICP−OES instrument (SPECTRO Analytical
Instruments GmbH, Kleve, Germany). A multielement standard (Merck Chemicals GmbH,
Darmstadt, Germany) was used for calibration. Chloride content was determined by ar-
gentometric titration. The ammonia and ammonium ion content of the decomposition
intermediates were determined by gravimetry in the form of (NH4)2PtCl6. Gaseous am-
monia was liberated from ammonium salts by a 10% aqueous solution of NaOH with
subsequent boiling. The classic method to determine NH3 via absorption in a HCl solution
using back-titration does not work here because of the NOx as HNO3 precursor formation
during the decomposition of compound 1. The NOx gases do not give a precipitate with
H2PtCl6.

3.6. Vibrational Spectroscopy

The far−IR and mid−IR spectra of compound 1 were recorded in attenuated total
reflection (ATR) mode using a BioRad−Digilab FTS−30−FIR and a Bruker Alpha IR
spectrometer for the 400–40 and 4000–400 cm−1 ranges, respectively. Raman spectroscopy
at 298 and 123 K between 2000 and 200 cm−1 was performed on a Horiba Jobin−Yvon
LabRAM microspectrometer. Two external laser sources were used (a 785 nm diode laser
and a 532 nm Nd:YAG laser with ~80 and ~40 mW, respectively), and an Olympus BX−40
optical microscope. A Linkam THMS600 temperature-controlled microscope stage was
used in the low-temperature measurements. The laser beam was focused on an objective of
20×. Due to the heat sensitivity of compound 1, a D0.6 (123 K) and a D2 (298 K) intensity
filter was used with a 785 nm laser to decrease the laser power to 25% and 1%, respectively.
The 532 nm excitation required a D3 (298 K) density filter using only 0.1% of the initial light
power. A confocal hole of 1000 µm and a monochromator with 950 (for the diode laser)
and 1800 groove mm−1 (for the Nd:YAG laser) gratings were used to disperse light. The
resolution was 4 cm−1, and the exposure times were 20–200 s.
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3.7. UV−Vis Spectroscopy

The room temperature UV−VIS diffuse reflectance spectrum of compound 1 was
measured with a Jasco V−670 UV–VIS instrument equipped with a NV−470 integrating
sphere (BaSO4 was used as standard).

3.8. Scanning Electron Microscopy

Scanning electron microscopy (SEM) was performed with a JEOL JSM−5500LV instru-
ment. The samples were fixed on a Cu/Zn alloy with a carbon tape holder and sputtered
with a conductive Au/Pd layer for imaging.

3.9. Powder X-ray Diffractometry

Powder X-ray tests were performed with a Philips PW−1050 Bragg–Brentano parafo-
cusing goniometer equipped with a copper cathode (40 kV, 35 mA, secondary beam graphite
monochromator, proportional counter). Scans were recorded in step mode, and the diffrac-
tion patterns were evaluated with a full profile fitting technique.

3.10. Single-Crystal X-ray Diffraction

A clear red platelet-like crystal of [Co(NH3)6]Cl2MnO4 was mounted on a loop. Cell
parameters were determined by least squares using 22,083 (3.160 ≤ θ ≤ 27.550) reflections.
Intensity data were collected on a Rigaku R−Axis Rapid diffractometer (monochromator;
Mo−Kα radiation, λ = 0.71073 Å) at 163 (2) K in the range 3.157 ≤ θ ≤ 27.473. A total of
18,320 reflections were collected of which 2684 were unique [R(int) = 0.0588, R(σ) = 0.0372];
intensities of 2351 reflections were greater than 2σ(I). Completeness was measured to
θ = 0.997.

A numerical absorption correction was applied to the data (the minimum and maxi-
mum transmission factors were 0.868 and 0.987).

The structure was solved by iterative methods (and subsequent difference syntheses).
The anisotropic full-matrix least-squares refinement on F2 for all non-hydrogen atoms

yielded R1 = 0.0397 and wR2 = 0.0747 for 1332 [I > 2σ(I)] and R1 = 0.0422 and wR2 = 0.0854
for 1332 [I > 2σ(I)] and R1 = 0.0528 and wR2 = 0.0892 for all (2684) intensity data, (number
of parameters = 136, goodness-of-fit = 1.152, the maximum and mean shift/esd are 0.000
and 0.000, respectively). The maximum and minimum residual electron density in the final
difference map were 1.535 and −0.574 e.Å−3, respectively. The weighting scheme applied
was w = 1/[σ2(Fo

2) + (0.03461.8733P)2 + 1.8733P] where P = (Fo
2 + 2Fc

2)/3.
Hydrogen atomic positions were calculated from assumed geometries. Hydrogen

atoms were included in structure factor calculation, but they were not refined. The isotropic
displacement parameters of the hydrogen atoms were approximated from the U(eq) value
of the atom they were bonded to.

The CSD Deposition Number is 2220607.

3.11. Thermal Studies

The TG/MS measurements were performed with a modified TGS−2 thermobalance
(Perkin Elmer, Waltham, MA, USA) coupled to a HiQuad quadrupole mass spectrometer
(Pfeiffer Vacuum, Germany). A ~1 mg sample was measured in a Pt sample pan. The
decomposition process was followed from 25 to 500 ◦C with a 2 ◦C min−1 heating rate, in
Ar carrier gas at a flow rate of 140 cm3 min–1. Selected ions were selected for monitoring
(SIM) in a range of m/z = 2–88.

The DTG data were collected by a TA Instruments SDT Q600 thermal analyzer. A
2 mg sample was heated from 25 to 150 ◦C with a heating rate of 2 ◦C/min and from 150
to 500 ◦C at 5 ◦C min−1. The gas flow of the inert (nitrogen) and oxidative (synthetic air)
gases was 20 mL/min.

The DSC curves were recorded between −130 and 300 ◦C with a Perkin Elmer DSC
7 instrument with a sample mass of 3–5 mg and a heating rate of 5 ◦C/min under a
continuous nitrogen or oxygen flow (20 cm3 min−1) in an unsealed aluminum pan.
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3.12. Measurement of Magnetic Susceptibility

Magnetic measurements were carried out with an MSB−MKI magnetic susceptibility
balance (Sherwood Scientific Ltd., Cambridge, UK) calibrated with Hg[Co(NCS)4] standard.

3.13. Photocatalytic Measurements

To evaluate the photocatalytic activity of the samples, 1.0 mg of the decomposition
products from compounds 1 and 2 were put into 3 mL of an aqueous solution of Methyl
Orange (MO—4 × 10−5 M), and Congo Red (CR—2 × 10−5 M) poured into quartz cu-
vettes. The samples were kept in the dark overnight for the adsorption equilibrium. After
that, they were submitted to a UV irradiation provided by Osram 18 W blacklight lamps
(λ = maximum intensity at 375 nm). The cuvettes were placed 5 cm from each lamp, and
the absorbance was measured every 30 min during four hours by a Jasco V−550 UV−VIS
spectroscope. The relative absorbance values of the most intensive peaks for MO (464 nm)
and CR (497 nm), below and above their pKa value, were considered to evaluate the cata-
lysts’ activity in the degradation of dyes. The dilute perchloric acid solution (0.1 M) was
used to decrease the pH of both dyes.

4. Conclusions

We synthesized [hexaamminecobalt(III)] dichloride permanganate [Co(NH3)6]Cl2(MnO4)
(compound 1) in the reaction of [Co(NH3)6]Cl3 and [Co(NH3)6](MnO4)3. Compound 1 was
spectroscopically (FT−IR, far−IR, Raman and UV) characterized. The structure of compound 1
was determined by single-crystal X-ray diffraction. The 3D hydrogen bond network (N–H···O–
Mn and N–H···Cl interactions) are centers of a solid-phase redox reaction that occurs between
the permanganate anion and ammonia ligand. The CoIII centers and permanganate ions act as
oxidant, and chloride ions and ammonia act as reducing agents in consecutive redox reactions
during heating. The temperature-limited thermal decomposition of compound 1 under boiling
toluene resulted in the formation of (NH4)4Co2Mn6O12 (a todorokite-like manganese oxide
network (MnII

4MnIII
2O12

10−) with square-shape channels). Aqueous leaching of the residue
gave [Co(NH3)6]Cl3, [Co(NH3)6]Cl2, NH4NO3 and NH4Cl as water-soluble products.

The heat treatment products of the solid 1 and 2 at 500 ◦C are cubic and tetragonal
spinels with Co1.5Mn1.5O4 (MnCo2O4 type) and CoMn2O4 composition, respectively. Heat-
ing of the residues of thermal decomposition of compounds 1 and 2 under toluene at 110 ◦C
followed with aqueous leaching and heating at 500 ◦C for 1.5 h gave the same tetragonal
spinel phase with the Co0.75Mn2.25O4 formula. Without aqueous leaching, the products of
heating at 500 ◦C are tetragonal Co1.5Mn1.5O4 and CoMn2O4, respectively.

The cubic Co1.5Mn1.5O4 prepared from compound 1 at 500 ◦C catalyzes the degrada-
tion of Congo red with UV light. The ((NH4)4Co2Mn6O12) intermediate prepared from
compound 1 under N2 degraded Congo red 54 times faster, which is much faster than what
was found for ((NH4)4Co2Mn6O12) that formed from compound 2 under N2.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/inorganics10120252/s1, Figure S1: The powder X-ray diffractogram
of compound 1; Figure S2: The calculated (from SXRD data) powder X-ray diffractogram of compound
1; Table S1: Crystal data and structure refinement of compound 1; Table S2: The hydrogen bond
interactions in the crystal structure of hexaamminecobalt(III) dichloro permanganate; Table S3:
The bond lengths (Å) and angles (◦) in the crystal structure of hexaamminecobalt(III) dichloro
permanganate; Table S4: The IR and Raman spectral data of permanganate ion in compound 1;
Table S5: The IR and Raman spectral data of the ammonia ligand in compound 1; Table S6: The IR
and Raman spectral data of the CoN6 skeleton in compound 1; Table S7: Electronic transitions (in
nm) of the hexaamminecobalt(III) cation in compound 1 and in octahedral and trigonally distorted
(compressed) octahedral structures; Figure S3: The group analysis for Co atoms in compound 1;
Figure S4: The group analysis for Cl atoms in compound 1; Figure S5: The IR spectra of compound
1; Figure S6: The IR spectra of compound 1 between 950 and 600 cm−1; Figure S7: The far-range IR
spectra of compound 1; Figure S8: The Raman spectra (at room temperature) of compound 1 with (a)
532 and (b) 785 nm excitation; Figure S9: The Raman spectra (at 123K) of compound 1 with (a) 532
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and (b) 785 nm excitation; Figure S10: The (a) full range and (b) 200–570 nm range UV−VIS spectra
of compound 1; Figure S11: The IR spectra of the evaporation residue from the aqueous extract of
the decomposition intermediate made in boiling toluene from compound 1; Figure S12: The powder
XRD of the evaporation residue from the aqueous extract of the decomposition intermediate made in
boiling toluene from compound 1; Figure S13: The IR spectra of the water-insoluble decomposition
residue of the decomposition intermediate made in boiling toluene from compound 1; Figure S14:
The powder X-ray diffractograms of the decomposition intermediates and products of compound
2: (a) made by heat-treatment in toluene at 110 ◦C, (b) made by the heat treatment of compound 1
at 500 ◦C in air and (c) made from the water-insoluble part of the decomposition intermediate of
compound 1 made in toluene by heating at 500 ◦C and (d) made from the decomposition intermediate
of compound 1 made in toluene by heating at 500 ◦C.
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