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Abstract: A series of 18 lanthanide-containing 1D-coordination polymers 1
∞[Ln2(2–PyPzH)4Cl6],

Ln = La, Nd, Sm, dinuclear polymorphic complexes α–, β–[Ln2(2–PyPzH)4Cl6], Ln = Sm, Eu, Gd, α–
[Tb2(2–PyPzH)4Cl6], and [Gd2(2–PyPzH)3(2–PyPz)Cl5], mononuclear complexes [Ce(2–PyPzH)3Cl3],
[Ln(2–PyPzH)2Cl3], Ln = Tb, Dy, Ho, and Er, and salt-like complexes [Gd3(2–PyPzH)8Cl8]Cl and
[PyH][Tb(2–PyPzH)2Cl4] were obtained from the reaction of the respective lanthanide chloride
with the 3–(2–pyridyl)pyrazole (2–PyPzH) ligand at different temperatures. An antenna effect
through ligand-to-metal energy transfer was observed for several products, leading to the highest
luminescence efficiency displayed by a quantum yield of 92% in [Tb(2–PyPzH)2Cl3]. The Ce3+ ion in
the complex [Ce(2–PyPzH)3Cl3] exhibits a bright and orange 5d-based broadband emission with a
maximum at around 600 nm, marking an example of a strong reduction of the 5d-excited states of
Ce(III). The absorption spectroscopy shows ion-specific 4f–4f transitions, which can be assigned to
Nd3+, Sm3+, Eu3+, Dy3+, Ho3+, and Er3+ in a wide spectral range from UV–VIS to the NIR region.

Keywords: N-donor ligand; luminescence; polymorphism; cerium; lanthanides

1. Introduction

The coordination polymers (CPs) and complexes of lanthanides with N-donor ligands
have been the focus of research efforts in recent decades [1–5]. Their hybrid nature results
in distinctive photoluminescence (PL) properties [6–9] alongside a wide variety of other
features and properties [10–13]. The PL of the lanthanide ions is mainly based on two types
of transitions: 4f–4f or 5d–4f transitions [14]. In general, the emission intensity of 5d–4f
transitions is often strong due to their allowed character, resulting in short excited-state
lifetimes (<100 ns) [15–19]. The luminescence colors of these lanthanide ions, such as Eu2+,
Ce3+, Sm2+, etc., can vary upon the coordination environment due to the influence of the
crystal field on the outermost 5d electron shell [20–23]. In contrast, spin-forbidden 4f–4f
transitions (lifetimes up to the ms range) [24] with intrinsically low absorption coefficients
have the 4f electron shell regularly shielded by the 5d electron shell, and the characteristic
emission of these ions are therefore almost independent of the chemical surrounding, as
observed in Tb3+, Eu3+, Dy3+, Ho3+, etc., [25]. A key factor is a proper ligand selection to
sensitize the Ln3+ ion by ligand-to-metal energy transfer [26]. The organic ligand should
also possess appropriate energy-donating states for efficient energy transfer [27].
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Recently, the investigation and determination of the luminescence properties of
Ce3+-based CPs and complexes have increasingly become the focus of scientific inter-
est after several reports in the literature of non-emissive Ce3+-based compounds due to
luminescence quenching by linkers and/or solvent molecules [28]. The reported Ce3+-
centered luminescence is mainly in the near UV and blue region [22,29,30]. Recently, the
green/yellow [31–34] or even the unusual yellow emission [35] of some Ce3+-based doped
materials as well as the red emission of Ce/Pr systems and their application in solid-state
LEDs have been reported [36–40].

Since 3–(3–pyridyl)pyrazole (3–PyPzH) and 3–(4–pyridyl)pyrazole (4–PyPzH) ligands
have recently been used to obtain homoleptic and highly luminescent trivalent lanthanide
3D-CPs with the formula 3

∞[Ln(3–PyPz)3] and 3
∞[Ln(4–PyPz)3], Ln = Sm, Eu, Gd, Tb,

Dy [7]. In addition, 3–PyPzH has been further used to obtain a variety of 3D-frameworks
and 2D-networks as well as complexes of Ln-trichlorides differing in constitution and struc-
ture: 3

∞[Ln(3–PyPzH)Cl3], Ln = Eu, Gd, 2
∞[Sm(3–PyPzH)Cl3], 2

∞[Tb2(3–PyPzH)3Cl6]·2Tol,
2

∞[Ln2(3–PyPzH)3Cl6]·2MeCN, Ln = Eu3+, Tb3+, Dy3+, Ho3+, Er3+, 2
∞[Ln(3–PyPzH2)Cl4],

Ln = La, Nd, and [(3–PyPzH2)][Ln(3–PyPzH)2Cl4], Ln = Eu, Tb, Dy, Ho [2]. An antenna
effect through ligand-to-metal energy transfer was observed for several products for both
ligands, resulting in the highest luminescence efficiency for Tb3+-based compounds, indi-
cated by quantum yield reaching 76%. The reported results indicate the value of exploring
new N-donor-based ligands and coordination compounds to achieve a wide variety of
structures and PL for the lanthanides. Consequently, the objective of our work was the
synthesis of new CPs and complexes along the lanthanide series with the tridentate ligand
3–(2–pyridyl)pyrazole (2–PyPzH) to develop a better understanding of the photophysical
and thermal properties observed for the Ln series, as well as investigating the polymor-
phism, the ability of a pure compound to adopt more than one packing arrangement in the
solid-state [41,42], of the studied compounds.

The highlight of this work is the strong bathochromic shift of the Ce3+-based emission
towards the red region of the visible spectrum and the high luminescence efficiency for the
Tb3+ complex, reaching 92%.

2. Results and Discussion
2.1. Synthesis and Structural Analysis

Solvothermal syntheses of 3–(2–pyridyl)pyrazole (2–PyPzH) with anhydrous lan-
thanide trichlorides in either acetonitrile (MeCN), toluene (Tol), or pyridine (Py) were
implemented to obtain a family of 18 CPs and complexes as shown in Scheme 1.
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The structures of 1
∞[Ln2(2–PyPzH)4Cl6], Ln = La (1), Nd (2), Sm (3), α–[Ln2(2–

PyPzH)4Cl6], Ln = Eu (5), Gd (6), Tb (7), β–[Ln2(2–PyPzH)4Cl6], Ln = Sm (8), Eu (9), Gd (10),
[Ce(2–PyPzH)3Cl3] (11), [Ln(2–PyPzH)2Cl3], Ln = Tb (12), Dy (13), Ho (14), Er (15), [Gd2(2–
PyPzH)3(2–PyPz)Cl5] (16), [Gd3(2–PyPzH)8Cl8]Cl (17), and [PyH][Tb(2–PyPzH)2Cl4] (18)
were determined by single crystal X-ray diffraction (SCXRD), whereas the structure of
α–[Sm2(2–PyPzH)4Cl6] (4) was identified from microcrystalline product by powder X-ray
diffraction (PXRD).

1
∞[Ln2(2–PyPzH)4Cl6], Ln = La (1), Nd (2), Sm (3), α–[Ln2(2–PyPzH)4Cl6], Ln = Sm

(4), Eu (5), Gd (6), Tb (7), and [Ln(2–PyPzH)2Cl3], Ln = Tb (12), Dy (13), Ho (14), Er (15)
crystallize in the monoclinic crystal system with the space group C2/c for 1–3 and P21/c
for 4–7 and 12–15. [Ce(2–PyPzH)3Cl3] (11) crystallizes in the orthorhombic crystal system
of higher symmetry with the space group Pbca, while the β–[Ln2(2–PyPzH)4Cl6], Ln = Sm
(8), Eu (9), and Gd (10) crystallizes in the triclinic crystal system with the space group P1̄.

In 1
∞[Ln2(2–PyPzH)4Cl6] (1–3), α–[Ln2(2–PyPzH)4Cl6] (4–7), and β–[Ln2(2–PyPzH)4Cl6]

(8–10), each Ln3+ ion coordinates to four Cl− ligands and four nitrogen atoms in a distorted
triangular dodecahedral geometry. In 1–3, a chlorine atom acts as a bridge between
two adjacent Ln3+ ions to form a 1D-coordination polymer (Figure 1), while two chlorine
atoms bridge the two Ln3+ ions in the dimeric complexes 4–10 (Figures 2 and S1). For the
monomer complexes, the Ce3+ in [Ce(2–PyPzH)3Cl3] (11) has a CN of nine coordinated by
three chlorides and six nitrogen atoms of three 2–PyPzH ligands in a distorted tricapped
trigonal prismatic geometry (Figure 3), while the Ln3+ in [Ln(2–PyPzH)2Cl3] (12–15) has
a CN of seven and is coordinated by three chloride ions and four nitrogen atoms of
two 2–PyPzH ligands in a distorted capped trigonal prism (Figure 4). The differences in
the orientation and position of the atoms between the polymorphs α–[Ln2(2–PyPzH)4Cl6]
(5, 6) and β–[Ln2(2–PyPzH)4Cl6] (9, 10) are minor when the two structures are overlaid
(Figure S2). The α phase (higher crystallographic symmetry) is about 1.2% more densely
packed than the β phase, resulting in a slightly shorter metal–metal distance (443.3(1) in
5 and 447.6(1) pm in 9).
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(a) (b) 

Figure 1. (a) Extended coordination sphere of the Sm3+ ion in 1
∞[Sm2(2–PyPzH)4Cl6] (3) representing

the isotypic compounds 1–3.; (b) crystal structure of 3 with a view along [010]. Symmetry operation:
I −x+1,y,−z+1/2. In all figures, the hydrogen atoms are omitted for clarity and the coordination
polyhedra around Ln3+ are shown in green, with thermal ellipsoids shown with a probability of 50%.
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The Ln–N and Ln–Cl distances of the studied compounds agree with the expected
range for the trivalent Ln ions in halides [43,44]. A comparison of the interatomic dis-
tances of β–[Sm2(2–PyPzH)4Cl6] (9) (average Sm–N 258.3 and Sm–Cl 269.2(1)–277.6(1)
pm) with the structurally related complex [Sm(µ–Cl)2Cl4(phen)4]·2CH3OH, (phen = 1,10–
phenanthroline, average Sm–N 258.4 and Sm–Cl 269.1–281.8 pm) [45] resulted in a good
agreement for both distances.

A further comparison of [Ce(2–PyPzH)3Cl3] (11) (average Ce–N 270.2 and Ce–Cl
279.7(2)–283.2(1) pm) with the [CeL]Cl3·4H2O, (L = a chiral macrocyclic ligand derived from
(1R,2R)–1,2–diphenylethylenediamine and 2,6–diformylpyridine, average Ce–N 273.42 and
Ce–Cl 280.0–285.5 pm) [46] resulted in a good agreement for both distances. A further
comparison of [Tb(2–PyPzH)2Cl3] (12) (Tb–N(py) 255.9(4), 256.7(4), Tb–Cl 262.2(2) –267.3(2)
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259.3, Tb–Cl 261.68–266.44 pm) [47] shows as well a good agreement for both distances.
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Figure 4. (a) Extended coordination sphere of the Tb3+ ion in [Tb(2–PyPzH)2Cl3] (12) representing
the isotypic complexes 12–15.; (b) packing structure of 12 with a view along [100].

Another three complexes of the formula, [Gd2(2–PyPzH)3(2–PyPz)Cl5] (16), [Gd3(2–
PyPzH)8Cl8]Cl (17), and [PyH][Tb(2–PyPzH)2Cl4] (18), are formed as byproducts and
crystallize in the monoclinic, triclinic, and orthorhombic crystal systems with the space
groups P21/n, P1̄, and Pbcn, respectively. In [Gd2(2–PyPzH)3(2–PyPz)Cl5] (16) (Figure S3),
both Gd3+ are octa-coordinated; one is coordinated to four chlorides and four nitrogen
atoms of a 2–PyPzH and a deprotonated 2–PyPz− in a distorted bicapped trigonal prism
environment. Two chlorine atoms along with the 2–PyPz− act as a bridge to the second
Gd3+ ion, which coordinates to another four nitrogen atoms of two 2–PyPzH and a chloride
ion in a distorted triangular dodecahedron. For the anionic complex [Gd3(2–PyPzH)8Cl8]Cl
(17) (Figure S4), all three Gd3+ ions are octa-coordinated, forming distorted triangular
dodecahedral polyhedra, with two Gd3+ ions coordinated to two Cl− ligands and six
nitrogen atoms of three 2–PyPzH. The third Gd3+ ion coordinates to four chloride ions
and four nitrogen atoms of two 2–PyPzH. Electroneutrality is established by the existence
of an uncoordinated chloride ion. For [PyH][Tb(2–PyPzH)2Cl4] (18) (Figure S5), another
distorted triangular dodecahedral polyhedron is formed due to the coordination of the
Tb3+ ion to four Cl− ligands and four nitrogen atoms of two 2–PyPzH. Electroneutrality is
achieved through the formation of protonated pyridine.

The obtained bulk of the 1D-CPs (1–3) and the complexes (4–6, 8, 9, 11–15) were in-
vestigated by PXRD. The experimental diffraction patterns of the studied compounds
agree well with the corresponding diffraction patterns simulated from single crystal
data in terms of reflection positions and intensities (Figures 5 and S6–S9). Additional
Pawley refinements for 8 and 11 were carried out, confirming the phase purity of the
investigated compounds (Figure S10). β–[Gd2(2–PyPzH)4Cl6] (10) is formed at higher
temperatures in a mixture together with the α–Gd3+ phase (6) (Figure S11). Isolation of
α–[Tb2(2–PyPzH)4Cl6] (7), [Gd2(2–PyPzH)3(2–PyPz)Cl5] (16), [Gd3(2–PyPzH)8Cl8]Cl (17),
and [PyH][Tb(2–PyPzH)2Cl4] (18) as single crystals was also possible. Tables with detailed
crystallographic data and selected interatomic distances (pm) and angles (◦) of the studied
compounds are given in the Supplementary Materials (Tables S1–S13).

2.2. Photophysical Properties
2.2.1. UV–VIS–NIR Absorption Spectra

Electronic absorption spectra were recorded in the solid state at room temperature
(RT) along with emission and excitation spectra to allow for detailed spectroscopic inter-
pretations for 1

∞[Ln2(2–PyPzH)4Cl6], Ln = La (1), Nd (2), Sm (3), α–[Ln2(2–PyPzH)4Cl6],
Ln = Eu (5), Gd (6), β–[Ln2(2–PyPzH)4Cl6], Ln = Sm (8), Eu (9), [Ce(2–PyPzH)3Cl3] (11),
and [Ln(2–PyPzH)2Cl3], Ln = Tb (12), Dy (13), Ho (14), Er (15). In the literature, the absorp-
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tion spectra have mostly been measured in solution, examining the ligand-based absorption
band [48–50], while fewer examples have examined the Ln-based absorption bands in the
solid state [2,51–54].
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The absorption spectrum for 2–PyPzH (Figure S12) was as reported in the literature
for the solid state and in acetonitrile solution (7.8 × 10−5 mol L−1), with two characteristic
K-band (ca. 210~265 nm) and B-band regions (285~350 nm) observed corresponding to
the π–π* transitions [55,56]. An intense broad absorption band of the ligand in the UV
range was detected for the compounds obtained (Figure 6). In addition, sharp and weak
to medium bands originating from the respective f–f transitions (Table 1) in both the VIS
and NIR regions for 1

∞[Ln(2–PyPz)3], Ln = Nd (2), Sm (3), α–[Eu2(2–PyPzH)4Cl6] (5),
β–[Ln2(2–PyPzH)4Cl6], Ln = Sm (8), Eu (9), and [Ln(2–PyPzH)2Cl3], Ln = Dy (13), Ho
(14), Er (15) ions [54,57–60] were observed. For [Ce(2–PyPzH)3Cl3] (11), the formation of a
shoulder is observed at higher wavelengths due to the transition from 4f to 5d.
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2.2.2. Emission and Excitation Spectra

The photoluminescence properties were recorded for all bulk products, 1
∞[Ln2(2–

PyPzH)4Cl6], Ln = La (1), Nd (2), Sm (3), α–[Ln2(2–PyPzH)4Cl6], Ln = Sm (4), Eu (5),
Gd (6), β–[Ln2(2–PyPzH)4Cl6], Ln = Sm (8), Eu (9), [Ce(2–PyPzH)3Cl3] (11), and [Ln(2–
PyPzH)2Cl3], Ln = Tb (12), Dy (13), Ho (14), Er (15) in the solid state at RT and 77 K.
The complex [Ce(2–PyPzH)3Cl3] (11) shows remarkable photoluminescence properties
with Ce3+-centered light emission in the orange range of the visible spectrum, which can
already be distinguishable by the eye under the UV lamp. The Ce3+ orange emitter is
an exception within other Ce3+-based emitters. Determinations via photoluminescence
spectroscopy (Figure 7) revealed a broadband emission starting at 460 nm with a center at
around 600 nm at 77 K and RT, indicating large crystal field splitting and a bathochromic
shift for the emission wavelength. The excitation spectrum exhibits a shoulder at 370 nm,
corresponding to the lowest energy levels of the crystal field splitting bands of the 5d-
excited state of the Ce3+ ion. The maximum excitation band is at 315 nm, correlated with
the coordinated 2–PyPzH ligand. To the best of our knowledge, an orange–red emitting
undoped cerium compound (11) has hardly been reported, only for doped systems such
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as Gd3Ga5O12 doped with both Pr3+ and Ce3+ [40], Y3Al5O12:Ce nanophosphor doped
with Pr3+ [61], and the cerium-doped scandate [62,63]. The nanosecond scale luminescence
lifetime (τ) of 11 (2.83 ns) (Table 2) results from the parity-allowed nature of the 5d–4f
transition. In contrast, the longer lifetime for the parity-forbidden 4f–4f transitions in [Tb(2–
PyPzH)2Cl3] (12) reaches 1.230(1) ms. By comparing both the lifetime and the quantum
yield (QY) measured for Tb3+ (12) (τ = 1.230 (1) ms, QY = 91.8(1.6)%) with the reported
3

∞[Tb(3–PyPz)3], (3–PyPz− = 3–(3–pyridyl)pyrazolate, τ = 1.0874 ms, QY = 74%), 3
∞[Tb(4–

PyPz)3] (4–PyPz− = 3–(4–pyridyl)pyrazolate, τ = 0.6273 ms, QY = 23.2%) [7], 2
∞[Tb2(3–

PyPzH)3Cl6]·2Tol (3–PyPzH = 3–(3–pyridyl)pyrazole, τ = 2.039 ms, QY = 73.1), 2
∞[Tb2(3–

PyPzH)3Cl6]·2MeCN, (τ = 2.294 ms, QY = 76%) [2], [Tb(bbpen)Cl] (bbpen2− = N,N′–bis(2–
oxidobenzyl)–N,N′–bis(pyridin–2–ylmethyl)–ethylenediamine, τ = 0.814 ms, QY = 90%),
and [Ln(bbppn)Cl] (bbppn2− = N,N′–bis(2–oxidobenzyl)–N,N′–bis–(pyridin–2–ylmethyl)–
1,2–propanediamine, τ = 0.969 ms, QY = 92%) [64], the complex [Tb(2–PyPzH)2Cl3]
(12) reaches the highest QYs reported among the related Tb-based compounds. The
value of τ and QY for the Eu3+ containing α–[Eu2(2–PyPzH)4Cl6] (5, τ = 1.15(1) ms,
QY = 7.6(2)%), β–[Eu2(2–PyPzH)4Cl6] (9, τ = 1.19(2) ms, QY = 12.8(6)%), and Dy3+ contain-
ing [Dy(2–PyPzH)2Cl3] (13, τ = 17.14(3) µs, QY = 3.3%) are also higher than for 3

∞[Eu(3–
PyPz)3], (τ = 0.576 ms, QY = 0.33%), 3

∞[Eu(4–PyPz)3], (τ = 0.323 ms, QY = 0.11%), 3
∞[Eu(3–

PyPzH)Cl3] (τ = 0.2201 ms, QY = <0.5%), 2
∞[Eu2(3–PyPzH)3Cl6]·2MeCN (τ = 0.170 ms,

QY = na), 3
∞[Dy(3–PyPz)3] (τ = 15 µs, QY = 1.13%), and 3

∞[Dy(4–PyPz)3] (τ = 12.07 µs,
QY = 1.15%). These values decrease significantly for Sm3+ (3), α–Sm3+ (4), and β–Sm3+ (8),
reflecting an excellent antenna effect for Tb3+ (12), where the ligand is mainly responsible
for the excitation and a good antenna effect for α–Eu3+ (5), β–Eu3+ (9), and Dy3+ (13), where
additional weak direct 4f–4f excitation is present, indicated by a series of ion-specific sharp
lines of low intensity and more distinguishable in Nd3+ (2), Sm3+ (3), α–Sm3+ (4), β–Sm3+

(8), and Er3+ (15) (Figures 7 and 8).

Table 1. Absorption wavelengths of the transitions of 1
∞[Ln2(2–PyPzH)4Cl6], Ln = Nd (2), Sm (3),

α–[Eu2(2–PyPzH)4Cl6] (5), β–[Ln2(2–PyPzH)4Cl6], Ln = Sm (8), Eu (9), and [Ln(2–PyPzH)2Cl3],
Ln = Dy (13), Ho (14), Er (15) in the solid state at room temperature.

Intra–4f Absorption Transitions λmax (nm)

Nd3+ (2) 4I9/2→
4D3/2, 2P1/2, (2D, 2P)3/2, 4G7/2/2K13/2, 4G5/2,
2H11/2, 4F9/2, 4F7/2, 4F5/2, 4F3/2

359, 431, 473, 527, 583, 633, 686, 745, 807, 878 nm

Sm3+ (3) 6H5/2→
4F7/2/6P3/2/4K11/2, (6P,4P)5/2, 4M19/2, 4I13/2,
4I11/2, 4G7/2, 4F3/2, 4G5/2, 6F11/2, 6F9/2, 6F7/2

405, 417, 425, 462, 479, 501, 529, 562, 948, 1090,
1237 nm

α–Eu3+ (5) 7F0→ 5L6, 5D2, 5D1, 5D0 394, 465, 534, 579 nm

β–Sm3+ (8) 6H5/2→
4H9/2/4D7/2, 5D5/2, 6P7/2, 4F7/2/6P3/2/4K11/2,
(6P,4P)5/2, 4M19/2, 4I13/2, 4I11/2, 4G7/2, 4F3/2, 4G5/2,
6F11/2, 6F9/2, 6F7/2

346, 363, 378, 405, 418, 424, 462, 478, 501, 529, 562,
947, 1083, 1240 nm

β–Eu3+ (9) 7F0→ 5L6, 5D3, 5D2, 5D1, 5D0 395, 415, 465, 534, 579 nm

Dy3+ (13) 6H15/2→
5P5/2, 4M21/2/4K17/2, 4G11/2, 4I15/2, 4F9/2, 6F3/2,
6F5/2, 6F7/2, 6F9/2, 6F11/2

366, 387, 427, 450, 474, 754, 805, 903, 1100, 1289 nm

Ho3+ (14) 7I8→
(5G,3H)5/3H6, (5G,3G)5

5G6, 5F2, 5F3, 5F4, 5F5,
5I5, 5I6

362, 420, 451, 475, 488, 540, 645, 891, 1154 nm

Er3+ (15) 4I15/2→ 4G11/2, 5F5/2, 4F7/2, 2H11/2, 4S8/2, 4F9/2, 4I11/2 379, 452, 489, 522, 545, 654, 978 nm

A broad emission band was visible in the region from about 400–600 nm at 77 K in
1

∞[La2(2–PyPzH)4Cl6] (1) and α–[Gd2(2–PyPzH)4Cl6] (6) and characterized to the triplet
state of 2–PyPzH with λonset = 425 nm (23,529 cm−1). The energy differences (∆E) between
the organic ligand triplet state and the energy position of Tb3+ (5D4 = 20,500 cm−1) [57,59]
considering the Latva’s rule, ∆E = 3029 cm−1, explain the long lifetime and the excellent
quantum yield value of Tb3+.
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Table 2. Photophysical data of 1
∞[Ln2(2–PyPzH)4Cl6], Ln = La (1), Sm (3), α–[Ln2(2–PyPzH)4Cl6],

Ln = Sm (4), Eu (5), Gd (6), β–[Ln2(2–PyPzH)4Cl6], Ln = Sm (8), Eu (9), [Ce(2–PyPzH)3Cl3] (11), and
[Ln(2–PyPzH)2Cl3], Ln = Tb (12), Dy (13) in the solid state at RT and 77 K.

ID τ(RT)
1 λex/λem

[nm] 2 τ(77 K)
3 λex/λem

[nm] 4 Φ [%] 5 λex/λem
[nm] 6

La3+ (1) 1.89(3) ns 287/364 1.41(1) ns 287/339 n/a n/a
Sm3+ (3) 4.02(9) µs 321/598 1.23(3) ns 287/605 n/a n/a
α–Sm3+ (4) 1.17(2) ns 287/599 1.09(2) ns 287/599 n/a n/a
α–Eu3+ (5) 1.15(1) ms 305/612 1.435(3) ms 311/612 7.6(2) 310/570–720
α–Gd3+ (6) 0.117(2) ms 289/545 1.034(4) ms 310/458 n/a n/a
β–Sm3+ (8) 2.7(1) µs 316/599 20.7(5) µs 316/599 n/a n/a
β–Eu3+ (9) 1.19(2) ms 311/612 1.556(4) ms 308/612 12.8(6) 310/575–715
Ce3+ (11) 2.83(3) ns 368/595 5.6(1) ns 368/604 n/a n/a
Tb3+ (12) 1.230(1) ms 321/546 1.287(1) ms 321/546 91.8(1.6) 318/473–692
Dy3+ (13) 17.14(3) µs 321/573 13.19(1) µs 321/574 3.3(1) 320/459–763

1 Emission lifetimes determined at RT. 2 Excitation and emission wavelengths for the emission lifetime at RT.
3 Emission lifetime determined at 77 K. 4 Excitation and emission wavelengths for the emission lifetime at 77 K.
5 Quantum yield. 6 Excitation wavelength and emission range of QY determinations.

For [Tb(2–PyPzH)2Cl3] (12), α–[Eu2(2–PyPzH)4Cl6] (5), and β–[Eu2(2–PyPzH)4Cl6]
(9) (Figure 7), the highest intensity is found for the transitions 5D0 → 7F5 at 545 nm and
5D4 → 7F2 at 612 nm as expected for Tb3+ and Eu3+ ions [65,66], while multiple emission
lines are Stark levels as a result of energy-level splitting due to the crystal field.

For α–Eu3+ (5), the hypersensitive transition 5D0 → 7F2 shows a higher number of
Stark components (612, 615, and 619 nm) than the triclinic β–Eu3+ (9) with two Stark
components (612, 619 nm) and a higher intensity for the environmentally dependent
transition 5D0→7F4 at 77 K, confirming the different symmetry of the Eu3+ centers in
5 and 9. For the transitions 5D0 → 7FJ, (J = 1, 3, 4) more Stark splitting is observed for
α–Eu3+ (5) and β–Eu3+ (9) than the previously reported orthorhombic 3

∞[Eu(3–PyPzH)Cl3],
confirming the low symmetry for the former. For 1

∞[Sm(2–PyPzH)4Cl6] (3), α–[Sm2(2–
PyPzH)4Cl6] (4), β–[Sm2(2–PyPzH)4Cl6] (8), [Ln(2–PyPzH)2Cl3], Ln = Dy (13), and Ho (14)
(Figure 8), the highest intensity is found at 600 nm (for Sm3+, corresponds to 4G5/2→6H7/2),
574 nm (for Dy3+, corresponds to 4F9/2→6H13/2), and 662 nm (for Ho3+, corresponds to
5F5→5I8). The f–f transitions are dominant in the 1D-CP of Sm3+ (3), while the ligand
emission is more dominant in the β–Sm3+ (8) and further overlaps with the f–f transitions
in the α–Sm3+ (4), which has its effect on the lifetime results; τ decreases from 3 (4.02(9) µs)
through 8 (2.7(1) µs) to 4 (1.17(2) ns). This behavior reflects the quenching effect arising
from the separation of the luminescent metal centers by the extended N-ligands [67], where
a Cl− ligand acts as a bridge between two neighboring Sm3+ ions in 3 and two Cl− ligands
act as bridges in 8 and 4. NIR emission bands can also be observed for 3, 4, and 8 at
about 790, 900, 945, 1030, and 1175 nm, corresponding to the transitions 4G5/2→6H13/2
and 4G5/2→6FJ/2, J = 3, 5, 7, 9 of Sm3+, as well as for 13 at 760, 850, 937, 1016, and 1178 nm
corresponding to 4F9/2→ 6HJ/2, (J = 9, 7, 5) and 6FJ/2, (J = 7, 5) of Dy3+ and for 14 at 991 and
1163 nm to 5F5→5I7 and 5I6→5I8, respectively.

For 1
∞[Nd(2–PyPzH)4Cl6] (2) and [Er(2–PyPzH)2Cl3] (15), NIR emission bands at 887,

1066, and 1351 nm can also be observed, which correlate with the transitions 4F3/2→4IJ/2,
(J = 9, 11, 13) of Nd3+, respectively, and for 15 at 1532 nm, correlated with the transition
4I13/2→ 4I15/2 of Er3+. For 1

∞[La2(2–PyPzH)4Cl6] (1), few peaks with very low intensity
around 620 and 675 nm are attributed to impurities in the ppm range together with an
efficient ligand-to-metal energy transfer. See the Supplementary Materials for half-page
size absorption and photoluminescence spectra with designated 4f–4f transitions for the
studied compounds (Figures S12–S38).
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2.3. Thermal Analysis

Simultaneous DTA and TG studies combined with mass spectrometry were performed
for 1

∞[Sm2(2–PyPzH)4Cl6] (3), α–[Eu2(2–PyPzH)4Cl6] (5), β–[Eu2(2–PyPzH)4Cl6] (9), and
[Tb(2–PyPzH)2Cl3] (12) (Figure 9). For 1

∞[Sm2(2–PyPzH)4Cl6] (3) (Figure 9a), a release
of one equivalent of 2–PyPzH (theoretical mass loss = 26.5%) is indicated by the first
endothermic signal (signal 1) starting at 250 ◦C with a mass loss of 26.4%. The second
equivalent of 2–PyPzH is not fully released within the following two endothermic signals
(2, 3) with a mass loss of 18.1%. A further mass loss is observed at higher temperatures,
coinciding with the decomposition of the remaining 2–PyPzH, with black residues observed
after the measurement, indicating partial carbonization of the ligand.
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Figure 9. Simultaneous DTA/TG analysis together with mass spectrometry of (a) 1
∞[Sm2(2–

PyPzH)4Cl6] (3), (b) α–[Eu2(2–PyPzH)4Cl6] (5), (c) β–[Eu2(2–PyPzH)4Cl6] (9), and (d) [Tb(2–
PyPzH)2Cl3] (12). The investigation was performed in a constant argon flow of 50 mL·min−1 with a
heating rate of 5 K·min−1 from RT to 1000 ◦C.

For α–[Eu2(2–PyPzH)4Cl6] (5) (Figure 9b), two equivalent 2–PyPzH (theoretical mass
loss = 52.9%) are released during the combined endothermic signal (1a, 1b, 1c) with a mass
loss of 53.7% in the TG and an onset temperature of 230 ◦C. For β–[Eu2(2–PyPzH)4Cl6] (9)
(Figure 9c), one equivalent of 2–PyPzH (theoretical mass loss = 26.5%) is released, while
the first combined endothermic signal starts at 230 ◦C (1a, 1b) with a mass loss of 25.8%.
The loss of another equivalent 2–PyPzH is evidenced by a 25.6% mass loss during the
second combined endothermic signal (2a, 2b). The appearance of two endothermic signals
at 745, 835 ◦C (signals 2, 3) in α–Eu3+ (5) and at 745, 865 ◦C (signals 3, 4) in β–Eu3+ (9), far
from the melting point of EuCl3 (theoretical mp = 632 ◦C) [68], indicates the formation of
other phases, confirmed by the lack of EuCl3 reflections and the observation of unknown
reflections in the PXRD pattern.

For [Tb(2–PyPzH)2Cl3] (12) (Figure 9d), the two equivalent 2–PyPzH are not fully
released within the combined endothermic signals (1a, 1b, 1c) with a mass loss of 42.9%
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(theoretical mass loss = 52.3%) and an onset temperature of 250 ◦C. A further endothermic
signal at 800 ◦C (signal 2) far from the melting point of TbCl3 (581 ◦C) [69] is observed
beside unknown reflections in the PXRD pattern, indicating the formation of other unknown
phases, which cause further mass loss at higher temperatures.

In summary, the 1D-coordination polymer 3 and the monomer complex 12 show the
highest stability among the series up to 250 ◦C, while 5 and 9 are stable up to 230 ◦C.
Further confirmation of the decomposition processes in 3, 5, 9, and 12 was the detection of
a set of mass signals at the respective temperatures, which can be assigned to fragments of
the ligand (C7H6N+ m/z = 104, C5H5N+ m/z = 79, C5H2N+ m/z = 76, C5H4N+ m/z = 78,
C2HN2

+ m/z = 53, C2N2
+ m/z = 52, C2NH3

+ m/z = 41, C2H3
+ m/z = 27, C2H2

+ m/z = 26,
CH3

+ m/z = 15).

3. Materials and Methods
3.1. General Procedures

3–(2–pyridyl)pyrazole (2–PyPzH) was synthesized according to the previously re-
ported procedure [70,71]. The method is described in detail in the Supplementary Materials.
The lanthanide chlorides (NdCl3, SmCl3, EuCl3, TbCl3, HoCl3: 99.9%, Sigma Aldrich, St
Louis, MO, USA; DyCl3, GdCl3: 99.9%, Strem Chemicals, Newburyport, Massachusetts,
United States; LaCl3: 99.9%, Heraeus, Karlsruhe, Germany; CeCl3: 99.9%, abcr, Karlsruhe,
Germany) were purchased and used as received. All syntheses involving anhydrous
lanthanide chlorides were performed under argon or using a vacuum line, gloveboxes
(MBraun Labmaster SP, Innovative Technology PureLab, Garching, Germany), Schlenk
tubes, and Duran® glass ampoules (outer � 10 mm, wall thickness 1.5 mm). Acetonitrile
(MeCN), toluene, pyridine, and dichloromethane (DCM) were purified by distillation
and dried using standard methods. The solid reactants for the solvothermal reactions
were mixed and sealed together with the solvent in an ampoule under reduced pressure
(p = 1.0 × 10−3 mbar). A stir bar was added to the reaction mixture when needed. After-
ward, the prepared ampoules were placed in heating furnaces (Büchi glass ovens, Büchi
Labortechnik, Flawil, Switzerland or heating furnaces based on Al2O3 tubes with Kanthal
wire resistance heating and NiCr/Ni (Eurotherm 2416) temperature control elements),
for which temperature programs and working steps according to the specific synthesis
methods were applied. After removing the solvents, the solid raw products were dried at
RT in a dynamic vacuum (p = 1.0 × 10−3 mbar) before further steps. The bulk materials
were characterized by powder X-ray diffraction (PXRD) and CHN analysis. The infrared
spectrum (ATR) of the studied compounds are given in the Supplementary Materials
(Figures S39–S51).

3.2. X-ray Crystallography

SCXRD determinations were performed on a Bruker AXS D8 Venture diffractometer
(Karlsruhe, Germany) equipped with dual IµS microfocus sources, a collimating Quazar
multilayer mirror, a Photon 100 detector, and an Oxford Cryosystems 700 low-temperature
system (Mo–Kα radiation; λ = 71.073 pm), except 11, for which a Bruker AXS D8 Venture
diffractometer (Germany) equipped with Photon III–C14 and an Oxford Cryosystems
800 low-temperature system (Mo–Kα radiation; λ = 71.073 pm) was used. For 2 and 18, the
data collections were performed at 200 K because of the cracking behavior of the single
crystals upon cooling to 100 K. All other data were collected at 100 K. The structures were
solved with direct methods and refined with the least squares method implemented in
ShelX [72,73]. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were
assigned to idealized geometric positions and included in structure factor calculations.
Further, a ligand molecule (2–PyPzH) in the asymmetric unit of 1, 2, 3, 5, 6, 17 and the
pyridine solvent in 18 were found to be fully disordered and were refined with the help
of restraints to achieve a proper structural model. The structures of 1–3, 5–18 have been
deposited to the Cambridge Crystallographic Data Center (CCDC) as supplementary
publication No. 2208098 (1), 2208099 (2), 2208100 (3), 2208101 (5), 2208102 (6), 2208103 (7),
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2208104 (8), 2208105 (9), 2208106 (10), 2208107 (11), 2208108 (12), 2208109 (13), 2208110 (14),
2208111 (15), 2208112 (16), 2208113 (17), and 2208114 (18). Crystallographic data and
selected interatomic distances are listed in Tables S1–S13 for the investigated compounds.

Depictions of the crystal structures were created with Diamond [74]. Structure overlays
for polymorphs 5 and 9 were calculated with Mercury [75].

PXRD analyses of the investigated compounds were carried out on a Stoe Stadi P
diffractometer (Darmstadt, Germany) with a focusing Ge(111) monochromator and a
Dectris Mythen 1K strip detector in Debye–Scherrer geometry. All powder samples were
ground in a mortar and filled into Lindemann glass capillaries with 0.3 mm diameter under
an inert gas atmosphere. All samples were measured in transmission geometry with Cu–Kα

radiation (λ = 154.056 pm). Data collection was done using the Stoe Powder Diffraction
Software Package WinXPOW and Pawley fits on the data were performed using TOPAS
Academic [76]. The data are listed in Figures 5 and S6–S11.

3.3. Synthesis

3.3.1. Synthesis of 1
∞[Ln2(2–PyPzH)4Cl6], Ln = La (1), Nd (2), Sm (3)

A mixture of the respective LnCl3 (76 µmol) and 2–PyPzH (158 µmol) in 0.3 mL MeCN
was sealed in an evacuated Duran glass ampoule. The solvent was frozen using liquid
nitrogen before a vacuum was applied to the ampoule and the ampoule was sealed. For
1 and 2, the ampoule was heated in a tubular furnace to 160 ◦C within 24 h. The temperature
was held for 24 h and then lowered to 25 ◦C within another 72 h. For 3, the phase pure
bulk was only achievable in a synthesis upon stirring using a Büchi oven. The furnace
temperature was raised to 100 ◦C and held for 48 h until colorless crystals formed above
the level of the solvent, followed by cooling to 25 ◦C. The obtained colorless crystalline
bulk was washed with DCM before the characterization processes via SCXRD, PXRD, IR
spectroscopy, and CHN analysis.

1
∞[La2(2–PyPzH)4Cl6]: C16H14N6Cl3La (535.59 g·mol−1): C 36.81 (calcd. 35.88); H

3.33 (2.63); N 14.84 (15.69)%. Yield: 80%. FT-IR (ATR): ν̃ = 3086 (w), 1604 (s), 1569 (w),
1531 (w), 1500 (m), 1456 (m), 1440 (w), 1426 (m), 1356 (m), 1289 (w), 1242 (w), 1181 (w),
1156 (m), 1136 (w), 1085 (s), 1058 (s), 1004 (m), 964 (m), 927 (w), 894 (w), 802 (w), 775 (s),
741 (w), 710 (m), 634 (m), 614 (w), 505 (w), 465 (w) cm−1.

1
∞[Nd2(2–PyPzH)4Cl6]: C16H14N6Cl3Nd (540.92 g·mol−1): C 34.87 (calcd. 35.53); H

2.52 (2.61); N 15.35 (15.54)%. Yield: 84%. FT-IR (ATR): ν̃ = 3129 (w), 1605 (m), 1568 (w),
1531 (w), 1501 (m), 1456 (m), 1440 (m), 1426 (m), 1358 (m), 1290 (w), 1242 (w), 1181 (m),
1155 (m), 1138 (m), 1107 (w), 1085 (m), 1057 (m), 1005 (m), 964 (m), 927 (w), 892 (w), 801 (m),
773 (s), 742 (m), 710 (m), 634 (m), 614 (m), 506 (w), 467 (w) cm−1.

1
∞[Sm2(2–PyPzH)4Cl6]: C16H14N6Cl3Sm (547.03 g·mol−1): C 35.06 (calcd. 35.13); H

2.46 (2.58); N 15.85 (15.36)%. Yield: 86%. FT-IR (ATR): ν̃ = 3123 (w), 1638 (w), 1607 (m),
1596 (w),1503 (w), 1457 (w), 1428 (m), 1361 (m), 1292 (w), 1247 (w), 1183 (w), 1157 (w),
1140 (w), 1087 (m), 1059 (m), 1006 (w), 966 (m), 928 (w), 774 (s), 743 (w), 710 (w), 635 (m),
615 (w), 507 (w), 468 (w) cm−1.

3.3.2. Synthesis of α–[Ln2(2–PyPzH)4Cl6], Ln = Sm (4), Eu (5), Gd (6)

A mixture of the respective LnCl3 (138 µmol) and 2–PyPzH (276 µmol) in 0.3 mL
MeCN in 5 and 6 or toluene in 4 was prepared and sealed in an evacuated Duran glass
ampoule. For 4, the tubular furnace was heated to 120 ◦C within 24 h. The temperature
was held for 72 h and then lowered to 25 ◦C within another 48 h. For 5 and 6, phase pure
bulk was achieved by stirring while using a Büchi oven. The furnace temperature was
raised to 100 ◦C and held for 24 h until colorless crystals formed above the level of the
solvent, followed by cooling to 25 ◦C. Colorless single crystals of the products (6 and 7)
were selected for SCXRD measurements.

α–[Sm2(2–PyPzH)4Cl6]: C16H14N6Cl3Sm (547.03 g·mol−1): C 34.71 (calcd. 35.13); H
2.55 (2.58); N 15.17 (15.36)%. Yield: 89%. FT-IR (ATR): ν̃ = 3047 (w), 1602 (m), 1568 (w),
1532 (w), 1501 (m), 1459 (m), 1446 (w), 1427 (m), 1369 (w), 1295 (w), 1247 (w), 1190 (m),
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1160 (w), 1141 (m), 1109 (w), 1087 (m), 1058 (m), 1004 (m), 966 (m), 929 (m), 898 (w), 812 (m),
784 (s), 768 (s), 705 (m), 676 (w), 632 (m), 611 (m), 510 (w), 471 (w) cm−1.

α–[Eu2(2–PyPzH)4Cl6]: C16H14N6Cl3Eu (548.64 g·mol−1): C 35.90 (calcd. 35.03); H
3.30 (2.57); N 14.42 (15.32)%. Yield: 87%. FT-IR (ATR): ν̃ = 3115 (w), 1602 (m), 1568 (w),
1501 (w), 1460 (m), 1427 (w), 1369 (w), 1292 (w), 1247 (w), 1190 (m), 1161 (w), 1141 (w),
1087 (m), 1058 (m), 1005 (m), 966 (m), 930 (w), 812 (w), 784 (s), 768 (s), 705 (m), 675 (w),
632 (m), 611 (m), 510 (w), 470 (w) cm−1.

α–[Gd2(2–PyPzH)4Cl6]: C16H14N6Cl3Gd (553.93 g·mol−1): C 34.21 (calcd. 34.69); H
2.48 (2.55); N 14.47 (15.17)%. Yield: 82%. FT-IR (ATR): ν̃ = 3123 (w), 1628 (w), 1602 (m),
1568 (w), 1502 (m), 1427 (m), 1361 (w), 1292 (w), 1246 (w), 1185 (w), 1161 (w), 1139 (w),
1087 (m), 1059 (m), 1005 (m), 966 (m), 928 (w), 897 (w), 767 (s), 710 (s), 632 (m), 610 (m),
469 (w) cm−1.

3.3.3. Synthesis of β–[Ln2(2–PyPzH)4Cl6], Ln = Sm (8), Eu (9)

A mixture of the respective LnCl3 (138 µmol) and 2–PyPzH (276 µmol) in 0.3 mL
MeCN was sealed in an evacuated glass ampoule after freezing the solvent. A Büchi oven
with a stirrer was used to raise the temperature of the ampoule to 160 ◦C and held for
three days until colorless crystals formed above the solvent level, followed by cooling to
25 ◦C. Appropriate colorless single crystals were then selected for SCXRD measurements.
The bulk was characterized by PXRD, IR spectroscopy, and CHN analysis

β–[Sm2(2–PyPzH)4Cl6]: C16H14N6Cl3Sm (547.03 g·mol−1): C 34.45 (calcd. 35.13); H
2.07 (2.58); N 14.99 (15.36)%. Yield: 85%. FT-IR (ATR): ν̃ = 3056 (w), 1605 (m), 1568 (w),
1531 (w), 1499 (m), 1459 (m), 1444 (w), 1427 (m), 1366 (w),1294 (w), 1425 (w), 1188 (m),
1142 (m), 1109 (w), 1089 (s), 1059 (m), 1004 (w), 966 (m), 928 (w), 896 (w), 806 (w), 781 (s),
771 (s), 704 (s), 676 (m), 633 (m), 610 (s), 507 (w), 470 (w) cm−1.

β–[Eu2(2–PyPzH)4Cl6]: C16H14N6Cl3Eu (548.64 g·mol−1): C 34.22 (calcd. 35.03); H
1.71 (2.57); N 14.50 (15.32)%. Yield: 92%. FT-IR (ATR): ν̃ = 3112 (w), 1681 (w), 1605 (m),
1568 (m), 1531 (w), 1499 (m), 1458 (m), 1440 (w), 1427 (m), 1362 (w), 1291 (w), 1244 (w),
1184 (m), 1153 (w), 1142 (m), 1109 (w), 1088 (s), 1059 (m), 1004 (m), 965 (m), 929 (w), 895 (w),
806 (w), 781 (s), 771 (s), 704 (s), 677 (m), 632 (m), 610 (m), 508 (w), 471 (w) cm−1.

3.3.4. Synthesis of [Ce(2–PyPzH)3Cl3] (11)

A mixture of CeCl3 (77 µmol) and 2–PyPzH (241 µmol) in 0.3 mL MeCN was sealed in
an evacuated glass ampoule after freezing the solvent using liquid nitrogen. The ampoule
was heated to 90 ◦C in 1 h and then 160 ◦C within 24 h. The temperature was held for 24 h
and then lowered to 25 ◦C within 72 h. The obtained colorless crystalline bulk was washed
with DCM before the characterization process using SCXRD, PXRD, IR spectroscopy, and
CHN analysis. C24H21N9Cl3Ce (681.97 g·mol−1): C 43.15 (calcd. 42.27); H 3.90 (3.10); N
17.54 (18.48)%. Yield: 90%. FT-IR (ATR): ν̃ = 3152 (w), 1633 (w), 1601 (m), 1567 (w), 1529 (w),
1500 (m), 1455 (m), 1440 (m), 1421 (m), 1358 (w), 1302 (w), 1283 (w), 1240 (w), 1189 (m),
1151 (w), 1138 (m), 1105 (w), 1086 (m), 1055 (m), 1002 (w), 959 (m), 928 (w), 909 (w), 762 (s),
713 (m), 686 (w), 629 (m), 615 (m), 595 (w), 515 (w), 466 (w) cm−1.

3.3.5. Synthesis of [Ln(2–PyPzH)2Cl3], Ln = Tb (12), Dy (13), Ho (14), Er (15)

A mixture of the respective LnCl3 (80 µmol) and 2–PyPzH (175 µmol) in 0.6 mL MeCN
was sealed in an evacuated Duran glass ampoule after freezing the solvent. The ampoule
was heated in a tubular furnace to 160 ◦C within 48 h. The temperature was held for
72 h and then lowered to 25 ◦C within another 96 h. The obtained colorless crystalline
bulk was washed with DCM before the characterization process using SCXRD, PXRD, IR
spectroscopy, and CHN analysis.

[Tb(2–PyPzH)2Cl3]: C16H14N6Cl3Tb (555.60 g·mol−1): C 33.95 (calcd. 34.59); H
2.37 (2.54); N 14.75 (15.13)%. Yield: 93%. FT-IR (ATR): ν̃ = 3117 (w), 1601 (m), 1565 (w),
1536 (w), 1509 (m), 1469 (m), 1342 (m), 1368 (w), 1295 (w), 1244 (w), 1208 (m), 1159 (w),
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1138 (w), 1111 (w), 1089 (m), 1055 (w), 1012 (m), 969 (m), 931 (w), 886 (w), 789 (m), 761 (s),
701 (m), 668 (m), 635 (m), 599 (m), 504 (w), 473 (w) cm−1.

[Dy(2–PyPzH)2Cl3]: C16H14N6Cl3Dy (559.18 g·mol−1): C 34.96 (calcd. 34.37); H
2.41 (2.52); N 14.51 (15.03)%. Yield: 90%. FT-IR (ATR): ν̃ = 3117 (w), 1602 (m), 1566 (w),
1536 (w), 1510 (m), 1469 (m), 1432 (m), 1369 (w), 1296 (w), 1244 (w), 1208 (m), 1159 (w),
1139 (m), 1112 (w), 1090 (m), 1056 (w), 1013 (m), 967 (m), 931 (w), 886 (w), 790 (m), 762 (s),
755 (s), 702 (m), 669 (m), 635 (m), 600 (m), 505 (w), 474 (w) cm−1.

[Ho(2–PyPzH)2Cl3]: C16H14N6Cl3Ho (561.61 g·mol−1): C 33.60 (calcd. 34.22); H
2.33 (2.51); N 14.14 (14.96)%. Yield: 94%. FT-IR (ATR): ν̃ = 3117 (w), 1602 (m), 1566 (w),
1536 (w), 1510 (m), 1468 (m), 1432 (m), 1369 (m), 1295 (m), 1244 (m), 1208 (m), 1159 (m),
1139 (m), 1112 (m), 1090 (m), 1056 (m), 1013 (m), 970 (m), 931 (w), 888 (w), 789 (m), 760 (s),
701 (m), 668 (m), 635 (m), 599 (m), 504 (w), 475 (w) cm−1.

[Er(2–PyPzH)2Cl3]: C16H14N6Cl3Er (563.94 g·mol−1): C 33.53 (calcd. 34.08); H
2.08 (2.50); N 14.24 (14.90)%. Yield: 88%. FT-IR (ATR): ν̃ = 3074 (w), 1604 (m), 1565 (m),
1537 (w), 1510 (m), 1469 (m), 1432 (m), 1370 (m), 1297 (m), 1245 (m), 1209 (m), 1159 (m),
1140 (m), 1089 (m), 1012 (m), 970 (m), 931 (m), 886 (w), 760 (s), 701 (m), 669 (m), 635 (m),
600 (m), 504 (w), 475 (w) cm−1.

3.3.6. Single Crystals of α–[Tb2(2–PyPzH)4Cl6] (7)

A mixture of TbCl3 (19 µmol) and 2–PyPzH (59 µmol) in 0.3 mL MeCN was sealed
in an evacuated glass ampoule after freezing the solvent. The ampoule was heated in
a furnace to 160 ◦C within 48 h. The temperature was held for 72 h and then lowered
to 25 ◦C within another 96 h. A colorless single crystal of the product was selected for
SCXRD measurement.

3.3.7. Single Crystals of β–[Gd2(2–PyPzH)4Cl6] (10)

A mixture of GdCl3 (138 µmol) and 2–PyPzH (276 µmol) in 0.1 mL MeCN was sealed
in an evacuated glass ampoule after freezing the solvent. The ampoule was heated in
a Büchi oven to 160 ◦C by stirring until colorless crystals formed above the level of the
solvent, followed by cooling to 25 ◦C. A colorless single crystal of the product was selected
for SCXRD measurement.

3.3.8. Single Crystals of [Gd2(2–PyPzH)3(2–PyPz)Cl5] (16) and [Gd3(2–PyPzH)8Cl8]Cl (17)

A mixture of the respective LnCl3 (138 µmol) and 2–PyPzH (276 µmol) in 0.3 mL
MeCN was sealed in an evacuated glass ampoule after freezing the solvent. The ampoule
was heated in a tubular furnace to 160 ◦C within 48 h. The temperature was held for 72 h
and then lowered to 25 ◦C within another 24 h. A colorless single crystal of the product
was selected for SCXRD measurement.

3.3.9. Single Crystals of [PyH][Tb(2–PyPzH)2Cl4] (18)

A mixture of TbCl3 (19 µmol) and 2–PyPzH (59 µmol) in 0.1 mL pyridine was sealed
in an evacuated glass ampoule after freezing the solvent. The ampoule was heated in a
tubular furnace to 100 ◦C within 72 h. The temperature was held for 72 h and then lowered
to 25 ◦C within another 96 h. A highly reflective colorless single crystal of the product was
selected for the SCXRD measurement.

4. Conclusions

A novel Ce3+-based orange-emitting material was synthesized from anhydrous CeCl3
together with the ligand 3–(2–pyridyl)pyrazole (2–PyPzH). The obtained [Ce(2–PyPzH)3Cl3]
represents the first undoped Ce3+ phosphor material to show intense orange emission
based on 5d–4f transitions. This marks the presented compound an exception within
other Ce3+-based emitters. [Tb(2–PyPzH)2Cl3] exhibits high luminescence efficiency with
a quantum yield of 92%, reflecting an excellent antenna effect through ligand-to-metal
energy transfer. A great structural diversity has been observed along the lanthanide se-
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ries, from 1D-coordination polymers through dimers to monomer complexes, all of which
have been synthesized and characterized that are all luminescent. Two polymorphs are
found for each Sm3+, Eu3+, and Gd3+ and the α-phase crystallizes at lower temperatures
in the P21/c, while the β-phase crystallizes in the P1̄ space group. The Ln3+ ions exhibit
a change in coordination number from nine in Ce3+ to seven in Tb3+, Dy3+, Ho3+, and
Er3+ ions. The characterization of the new compounds was achieved by SC and PXRD,
elemental analysis, IR, photoluminescence spectroscopy, and thermal analysis. Overall,
this shows the high potential of coordination polymers and complexes with a pyridyl-
pyrazole ligand as the N-donor for the design of materials with versatile structures as well
as photophysical properties.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/inorganics10120254/s1, additional experimental details; Tables S1–S13: Crys-
tallographic data and selected interatomic distances (pm) and angles (◦) of 1

∞[Ln2(2–PyPzH)4Cl6],
Ln = La (1), Nd (2), Sm (3), α–[Ln2(2–PyPzH)4Cl6], Ln = Eu (5), Gd (6), Tb (7), β–[Ln2(2–PyPzH)4Cl6],
Ln = Sm (8), Eu (9), Gd (10), [Ce(2–PyPzH)3Cl3] (11), [Ln(2–PyPzH)2Cl3], Ln = Tb (12), Dy (13),
Ho (14), Eu (15), [Gd2(2–PyPzH)3(2–PyPz)Cl5] (16), [Gd3(2–PyPzH)8Cl8]Cl (17), and [PyH][Tb(2–
PyPzH)2Cl4] (18); Figure S1: (a) Extended coordination sphere of Tb3+ ion in α–[Tb2(2–PyPzH)4Cl6]
(7) representing the isotypic complexes 4–7. (b) Packing structure of 7 with a view along [100]. In
all figures, the hydrogen atoms are omitted for clarity and the coordination polyhedra around Ln3+

are indicated in green, with thermal ellipsoids shown with a probability of 50%; Figure S2: Overlay
of the molecular structures of α–[Eu2(2–PyPzH)4Cl6] (red) (5) and β–[Eu2(2–PyPzH)4Cl6] (blue) (9);
Figure S3: (a) Extended coordination sphere of Gd3+ ion in [Gd2(2–PyPzH)3(2–PyPz)Cl5] (16). (b)
Packing structure of 16 with a view along [100]; Figure S4: (a) Extended coordination sphere of Gd3+

ion in [Gd3(2–PyPzH)8Cl8]Cl (17). (b) Packing structure of 17 with a view along [100]; Figure S5: (a)
Extended coordination sphere of Tb3+ ion in [PyH][Tb(2–PyPzH)2Cl4] (18). (b) Packing structure of
18 with a view along [100], the protonated pyridine molecules were omitted for clarity. Symmetry op-
eration: I -x+1,y,-z+3/2; Figures S6–S9 Comparison of the observed powder X-ray diffraction pattern
(colored) of 1

∞[Ln2(2–PyPzH)4Cl6], RE = La (1), Nd (2), Sm (3), α–[Ln2(2–PyPzH)4Cl6], Ln = Sm (4),
Eu (5), Gd (6), β–[Ln2(2–PyPzH)4Cl6], Ln = Sm (8), Eu (9), and [Ln(2–PyPzH)2Cl3], Ln = Tb (12), Dy
(13), Ho (14), Er (15) with the corresponding simulated diffraction patterns from the single crystal
X-ray data (black) for each case; Figure S10: Pawley refinement of (a) β–[Sm2(2–PyPzH)4Cl6] (8) with
a GOF of 1.16, (b) [Ce(2–PyPzH)3Cl3] (11) with a GOF of 1.87. The experimental data are shown
in black, Pawley fit in red, the corresponding difference plot in blue, and the hkl position markers
in green; Figure S11: Comparison of the observed powder X-ray diffraction pattern (colored) of a
mixture of α–[Gd2(2–PyPzH)4Cl6] (6) and β–[Gd2(2–PyPzH)4Cl6] (10) with the simulated diffraction
pattern from the single crystal X-ray data of 6 and 10 (black); Figures S12–S24: Absorption spec-
tra of 2–PyPzH, 1

∞[Ln2(2–PyPzH)4Cl6], Ln=La (1), Nd (2), Sm (3), α–[Ln2(2–PyPzH)4Cl6], Ln=Eu
(5), Gd (6), β–[Ln2(2–PyPzH)4Cl6], Ln=Sm (8), Eu (9), [Ce(2–PyPzH)3Cl3] (11), [Ln(2–PyPzH)2Cl3],
Ln=Tb (12), Dy (13), Ho (14), Er (15) in the solid state at room temperature; Figures S25–S38: Nor-
malized excitation and emission spectra of 2–PyPzH, 1

∞[Ln2(2–PyPzH)4Cl6], Ln=La (1), Nd (2),
Sm (3), α–[Ln2(2–PyPzH)4Cl6], Ln=Sm (4), Eu (5), Gd (6), β–[Ln2(2–PyPzH)4Cl6], Ln=Sm (8), Eu
(9), [Ce(2–PyPzH)3Cl3] (11), and [Ln(2–PyPzH)2Cl3], Ln=Tb (12), Dy (13), Ho (14), Er (15) at room
temperature (top) and 77 K (bottom). Wavelengths at which the spectra were recorded are reported
in the legends; Figures S39–S51: The infrared spectrum (ATR) of 1

∞[Ln2(2–PyPzH)4Cl6], Ln=La (1),
Nd (2), Sm(3), α–[Ln2(2–PyPzH)4Cl6], Ln=Sm (4), Eu (5), Gd (6), β–[Ln2(2–PyPzH)4Cl6], Ln=Sm
(8), Eu (9), [Ce(2–PyPzH)3Cl3] (11), and [Ln(2–PyPzH)2Cl3], Ln=Tb (12), Dy (13), Ho (14), Er (15).
Reference [77] is cited in the Supplementary Materials.
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