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Abstract: Carbon-based nanocomposites have been attracting extensive attention as high-performance
catalysts in alkaline media towards the electrochemical reduction of oxygen. Herein, polyacrylonitrile
nanoflowers are synthesized via a free-radical polymerization route and used as a structural scaffold
and precursor, whereby controlled pyrolysis leads to the ready preparation of carbon nanocomposites
(FeNi-NCF) doped with both metal (Fe and Ni) and nonmetal (N) elements. Transmission electron
microscopy studies show that the FeNi-NCF composites retain the flower-like morphology, with
the metal species atomically dispersed into the flaky carbon petals. Remarkably, despite a similar
structure, elemental composition, and total metal content, the FeNi-NCF sample with a high Fe:Ni
ratio exhibits an electrocatalytic performance towards oxygen reduction reaction (ORR) in alkaline
media that is similar to that by commercial Pt/C, likely due to the Ni to Fe electron transfer that
promotes the adsorption and eventual reduction of oxygen, as evidenced in X-ray photoelectron
spectroscopic measurements. Results from this study underline the importance of the electronic
properties of metal dopants in the manipulation of the ORR activity of carbon nanocomposites.

Keywords: polyacrylonitrile; carbon flower; metal–metal charge transfer; electrocatalytic activity;
oxygen reduction reaction

1. Introduction

The development of sustainable energy technologies has been attracting extensive
interest, and fuel cells represent a unique viable option [1]. Typical fuel cell operation entails
two main reactions, the oxidation of small-molecule fuels at the anode and the reduction
of oxygen at the cathode, where appropriate catalysts are needed to generate a current
density sufficiently high for practical applications. These are, in general, based on the
platinum group metals (PGM). Nevertheless, the precious nature of PGM has significantly
impeded the commercial implementation of these technologies [2]. In addition, PGM-
based catalysts are prone to inactivation by poisoning species (e.g., CO) and structural
instability due to Ostwald ripening in long-term operation, which compromises their
overall performance [3,4]. Thus, significant efforts have been dedicated to the development
of alternative catalysts, in particular, for the cathodic oxygen reduction reaction (ORR),
which has been largely accepted as a significant roadblock limiting fuel cell performance.
Among these, carbon-based nanocomposites have been recognized as viable electrocatalysts,
mostly owing to ready structural engineering that renders it possible to obtain a large
surface area, good electrical conductivity, corrosion resistance, and a skeleton that is easy to
modify for both functionalization and heterodoping [5–7]. For instance, heteroatoms such
as nitrogen and sulfur can be readily doped into the carbon matrices, leading to electron
redistribution and an activation of various atomic sites that is conducive to the adsorption
of key ORR intermediates. Thus, doped carbon can exhibit an apparent ORR activity,
although it is typically inferior to that of the commercial Pt/C benchmark [8,9]. Performance
improvements can be achieved with the additional doping of select metal centers, forming
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MNx coordination moieties [10–14]. This is primarily attributed to the synergistic tuning of
the electronic interactions between the MNx sites and reaction intermediates [15]. In fact,
extensive research has been reported on metal–nitrogen co-doped carbon since the first
breakthrough with a Fe–N–C catalyst in 2009 [6,7,16]. However, it has been recognized that
the binding strength of the FeNx moiety to oxygen is somewhat too strong, and an electron-
deficient environment is preferred for the further enhancement of the ORR performance.
One effective strategy is to incorporate a second metal center to manipulate the electronic
property of the FeNx site [17].

Indeed, in recent years, carbon nanocomposites with bimetal dopants have been found
to exhibit further improved ORR activity, in comparison to the mono-metal based coun-
terparts, largely due to the unique metal–metal charge transfer that provides a further
control of the electronic interactions with ORR intermediates [18,19]. For instance, carbon
nanocomposites doped with Fe/Co [20], Fe/Mn [21], and Fe/Ni [22] have shown a re-
markable ORR activity. The enhanced performance can also be aided by the formation of a
three-dimensional (3D) porous carbon scaffold, with interconnected micropores, mesopores,
and macropores that facilitate both the electron transfer involved in ORR and the mass
transfer of reactants and electrolyte species.

Herein, polyacrylonitrile with a nanoflower morphology was first prepared by free
radical polymerization [23], and was transformed into N-doped carbon nanoflowers em-
bedded with Fe/Ni bimetallic centers by controlled pyrolysis with the addition of iron
and nickel compounds at varied feeds. It was found that the obtained nanocomposites
displayed a significantly improved ORR activity in alkaline media, in comparison to the
metal-free or monometal counterparts, signifying the critical role of the metal dopants in
dictating the electrocatalytic activity, and of the nanoflower morphology in facilitating
accessibility to the electrocatalytic active sites and mass transport of key reaction species.

2. Results and Discussion

Polyacrylonitrile was first prepared by azobis(isobutyronitrile) (AIBN)-initiated free
radical polymerization of acrylonitrile, exhibiting a nanoflower morphology with a diame-
ter of ca. 850 nm and porous petals [23], as manifested in transmission electron microscopy
(TEM) measurements (Figure S1a). The overall morphology was stabilized in a subsequent
thermal annealing in ambient air at 230 ◦C, but with a slight shrinkage of the nanoflow-
ers to ca. 750 nm (Figure S1b), suggesting the increasing rigidity and compactness of
the polymer flowers [24]. Note that this stabilization step was critical to preserve the
nanoflower structure after pyrolysis. Upon carbonization at 900 ◦C (Figure S1c), one can see
that carbon nanoflowers (NCF) were produced, but that the size was further decreased to
400–500 nm [25]. A similar structure was observed for the Fe/Ni-codoped carbon nanocom-
posites, which were prepared by soaking the polyacrylonitrile nanoflower precursors in
an aqueous solution containing FeCl3 and Ni(NO3)2 at a total concentration of 3 mM,
but at varied feed ratios of 1:0, 1:1, 2:1, and 3:1 prior to pyrolysis at 900 ◦C. The obtained
samples were denoted as Fe-NCF and FeNi-NCF(1,2,3), respectively. From Figure 1a, the
FeNi-NCF(3) sample can be seen to retain the flower morphology with a diameter of ca.
400 nm. Furthermore, at higher magnifications, no particulates can be identified within the
flaky petals, suggesting that the metal species were atomically distributed within the carbon
scaffolds (Figure 1b); furthermore, the nanoflowers entailed only short-range lattice fringes,
featuring an interplanar separation of ca. 0.34 nm (Figure 1c), suggestive of the formation of
highly defective carbon. In fact, from the elemental maps acquired with energy-dispersive
X-ray spectroscopy (Figure 1d–g), one can see a rather uniform distribution of Fe, Ni, and
N over the C background.

The sample structures were further characterized by X-ray diffraction (XRD) measure-
ments (not shown), where only two broad peaks were identified at 2θ≈ 21◦ and 41◦, due to
the (002) and (101) facets of graphitic carbon, respectively (PDF card #65-6212), confirming
the successful carbonization of polyacrylonitrile. No diffraction features characteristic of
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metal/metal oxide nanoparticles can be resolved, consistent with atomic dispersion of the
metal species into the carbon matrix.
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Figure 1. (a–c) TEM images of FeNi-NCF(3) at different magnifications, along with the associated
elemental maps of (d) C, (e) N, (f) Fe, and (g) Ni.

The sample porosity was then examined by nitrogen sorption measurements (Figure 2).
From panel a, the metal-free NCF can be seen to display a Type-I nitrogen adsorption/
desorption isotherm with a hysteresis loop, which suggests mostly micropores, whereas
FeNiC-NCF(3) produced a Type-IV isotherm, suggesting the formation of both micropores
and mesopores in the sample. From the pore size distributions (panel b), NCF was indeed
found to consist mostly of micropores of ca. 1.25 nm, whereas FeNi-NCF(3) contained
a significant portion of mesopores at 2.5 nm, likely due to the thermal volatility of the
metal compounds that renders them effective porogens [5]. Additionally, the Brunauer–
Emmett–Teller (BET) specific surface area was found to increase from 90 m2 g−1 for NCF to
110 m2 g−1 for FeNi-NCF(3).

X-ray photoelectron spectroscopy (XPS) measurements were then carried out to eval-
uate the elemental composition and valency of the nanocomposites. Figure S2 (Supple-
mentary Materials) shows the survey spectra, where the elements of carbon, nitrogen, and
oxygen can be clearly resolved within the NCF, Fe-NCF, and FeNi-NCF samples, with addi-
tional Fe and Ni for the latter, indicative of the successful doping of the carbon skeletons by
N, Fe, and Ni. On the basis of the integrated peak areas, the metal-free NCF sample was
found to consist of 90.11 at% of C, 6.20 at% of N and 3.70 at% of O. The Fe-NCF sample
consisted of 92.2 at% of C, 2.28 at% of N, 0.13 at% of Fe, and 5.41 at% of O. In the FeNi-NCF
series, the carbon content stayed virtually invariant at ca. 90 at%; the N content was about
2.28 at% for Fe-NCF, 2.21 at% for FeNi-NCF(1), 4.09 at% for FeNi-NCF(2), and 4.10 at% for
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FeNi-NCF(3); the O content increased somewhat to 6.97 at% for FeNi-NCF(1), 6.10 at% for
FeNi-NCF(2), and 4.41 at% for FeNi-NCF(3), suggesting that the basic carbon scaffold was
almost unchanged with the addition of the metal precursors (Table S1). Notably, the total
metal content remained low among the Fe-NCF and FeNi-NCF samples, only 0.15 at% for
Fe-NCF, 0.26 at% for FeNi-NCF(1), 0.27 at% for FeNi-NCF(2), and 0.22 at% for FeNi-NCF(3),
with a respective Fe:Ni atomic ratio of 1.0, 2.0, and 3.5 for the FeNi-NCF series, which is in
rather good agreement with the initial feeds.
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Figure 2. (a) N2 sorption isotherms and (b) the corresponding pore size distributions of NCF and
FeNi-NCF(3).

The high-resolution C 1s spectra are shown in Figure S3, where the FeNi-NCF sam-
ples all displayed a major component at 284.4 eV due to graphitic sp2 carbon, evidence
of the successful carbonization of polyacrylonitrile, C sp3 at 285.1 eV, with two minor
ones at 286.7 and 289.7 eV, corresponding to oxidized carbon such as C=O and COOH,
respectively [26]. The corresponding N 1s, O 1s, Fe 2p, and Ni 2p spectra for Fe-NCF and
FeNi-NCF are depicted in Figures 3 and S4. From the N 1s spectra in Figure 3a, six N
species can be resolved at ca. 398.1 eV for pyridinic N, 398.9 eV for metal–N, 399.9 eV for
pyrrolic, 400.8 eV for graphitic, 401.7 eV for oxidized N, and 403 eV for NO2 [27,28]. Note
that the metal–N peak was absent in the NCF sample (Figure S5). The O 1s spectra are
shown in Figure 3b, which contain three components, 532.2 eV for O–C, 533.3 eV for O–H,
and 530.1 eV for metal–O [29,30]. These results collectively indicate that the metal species
are most likely involved in the chelation interactions with the N and O dopants within the
carbon skeletons.
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(d) Ni 2p.

From the Fe 3p spectra in Figures 3c and S4, it can be seen that the FeNi-NCF and
Fe-NCF samples all displayed a very consistent binding energy of the Fe 2p3/2 electrons
at about 710 eV, which can be ascribed to Fe2+. Similarly, from the Ni 2p spectra in
Figure 3d, the FeNi-NCF samples can be seen to show a binding energy of ca. 854.6 eV
for the 2p3/2 electrons of Ni2+ [18,31]. Interestingly, one can see that among the series, the
FeNi-NCF(3) sample showed the lowest binding energy for Fe 2p3/2 at 709.58 eV, but the
highest binding energy for Ni 2p3/2 at 854.69 eV, suggesting that the Fe2+ centers were in an
electron-withdrawing environment (Table S2) [18,32]. Note that such Ni to Fe metal–metal
charge transfer is conducive to ORR electrochemistry catalyzed by metal-doped carbon
nanocomposites (vide infra) [33,34].

The ORR activity of the nanocomposites was then evaluated and compared in alkaline
media. As shown in Figure 4a, the nanocomposite samples all exhibited a non-zero ORR
activity in 0.1 M KOH; however, the activity varied among the samples. It can be seen that
the metal-free NCF exhibited only a minimal activity featuring an onset potential (Eonset)
below +0.6 V. The activity was substantially improved with the Fe-NCF sample, with
Eonset = +0.89 V and (half-wave potential) E1/2 = +0.72 V, signifying the key role of metal
species in driving the electron-transfer kinetics. The performance was further enhanced
with the FeNi-NCF samples, and FeNi-NCF(3) exhibited the best activity within the series,
where the E1/2 (+0.79 V) and Eonset (+0.93 V) values were only somewhat lower than those
of the commercial Pt/C benchmark (E1/2 = +0.83 V, Eonset = +1.00 V).

The electron-transfer number (n) and H2O2 yield (H2O2%) were then estimated from
the RRDE data (Figure 4b). Again, FeNi-NCF(3) exhibited the best performance, with the
higher n and lower H2O2% than all other samples. For example, at +0.70 V, the n/H2O2%
values were 3.99/0.59 for FeNi/NCF(3), in comparison to 3.82/9.6 for FeNi/NCF(2),
3.87/7.1 for FeNi/NCF(1), 3.99/0.69 for Fe-NCF, and 3.99/0.4 for Pt/C, indicating high
selectivity of the 4e− ORR pathway by the nanocomposites. Figure 4c shows the associ-
ated Tafel plots, where FeNi-NCF(3) exhibits the lowest slope of 77.62 mV dec−1, which
suggested that the first electron reduction of oxygen was likely the rate-limiting step [33,34].
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(d) ORR polarization curves in the first scan and after 10,000 potential cycles within +0.2 to +1.1 V, as
well as with the introduction of KSCN (10 mM).

As mentioned earlier, the FeNi-NCF sample series consisted of a similar elemental
composition and total metal contents (Table S1). Therefore, it is most likely that the
remarkable ORR activity of FeNi-NCF(3) is a consequence of the collective contributions of
a porous structure that promoted transport of electrolyte ions and reaction species, as well
as effective Ni–Fe charge transfer that facilitated the adsorption and ultimately reduction of
oxygen, where the reduced electron density of the Fe centers led to a weakened interaction
with oxygen intermediate, a unique feature favored for ORR electrocatalysis [33,34].

Notably, the FeNi-NCF(3) sample also exhibited remarkable stability. The ORR polar-
ization curve remained virtually unchanged after 10,000 potential cycles within the range of
+0.20 to 1.00 V (Figure 4d). However, the introduction of KSCN (10 mM) led to a substantial
diminishment of the ORR activity (Figure 4d), due to blocked access to the catalytic active
sites, further confirming the key role of the metal species in ORR electrocatalysis.

3. Materials and Methods
3.1. Chemicals

Iron(III) chloride (FeCl3, 97%, Sigma Aldrich, St. Louis, MO, USA), nickel(II) nitrate
(Ni(NO3)2, 99.999%, Sigma Aldrich, St. Louis, MO, USA), azobis(isobutyronitrile) (AIBN,
98%, Sigma Aldrich, St. Louis, MO, USA), acrylonitrile (≥99%, Sigma Aldrich, St. Louis,
MO, USA), and Pt/C (20 wt%, Alfa Aesar, Ward Hill, MA, USA) were used as received
without further treatment. Water was purified with a Barnstead Nanopure Water system
(resistivity 18.3 MΩ cm).
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3.2. Sample Preparation

Polyacrylonitrile with a nanoflower morphology was first prepared by following a
free radical polymerization procedure reported previously with modification [23]. Briefly,
4 mL of acrylonitrile was dispersed into 4 mL of acetone, into which was then added 4 mL
of AIBN as the initiator. The reaction was run for 2 h in a vial at 70 ◦C, affording a white
powder (PACN-70) after being dried at ambient temperature for 1 d. The sample was then
stabilized by thermal treatment in air at 230 ◦C for 2 h, producing a brown powder denoted
as PACN-230.

The obtained PACN-230 was then utilized to prepare Fe/Ni-codoped carbon flowers.
Briefly, 20 mg of PACN-230 was sonicated in acetone for 45 min, into which was then added
an aqueous solution containing FeCl3 and Ni(NO3)2 with a total concentration of 3 mM
but at varied feed ratios: 1:0, 1:1, 2:1, and 3:1. The mixture was then dried in vacuum,
loaded into a tube furnace, and thermally treated at 900 ◦C in a N2 atmosphere for 1 h. The
produced black powders were referred to as Fe-NCF and FeNi-NCF(1,2,3), respectively. A
control sample (NCF) was also synthesized in the same fashion but in the absence of any
metal salts.

3.3. Characterization

Transmission electron microscopic (TEM) images were acquired with an aberration-
corrected Titan FEI electron microscope. Nitrogen sorption isotherms were obtained at
77 K using 99.999% N2 with an Autosorb iQ2 (Quantachrome) low-pressure gas sorption
analyzer. X-ray diffraction (XRD) patterns were acquired with a Bruker D8 Advance
diffractometer with Cu Kα radiation (λ = 0.15418 nm). X-ray photoelectron spectroscopic
(XPS) studies were performed with a PHI 5000 Versaprobe instrument.

3.4. Electrochemical Tests

Electrochemical studies were all performed in a three-electrode configuration with a
CHI 710 electrochemical workstation. The counter electrode was a graphite rod, while a
Ag/AgCl electrode in 1.0 M KCl served as the reference electrode. A reversible hydrogen
electrode (RHE) was used to calibrate the potential of the reference electrode, and the
potentials in the present study were all referenced to this RHE. The working electrode was
a gold ring–glassy-carbon disk electrode (RRDE) purchased from Pine Research Instrumen-
tation. In the preparation of catalyst inks, the nanocomposites prepared above (0.8 mg)
and a Nafion solution (20%, 2.0 µL) were added to a mixture of water and ethanol (1:1 v:v,
200 µL). After 30 min of sonication, a calculated amount of the ink (5.0 µL) was cast onto
the glassy-carbon disk. The loading of the catalysts was estimated to be 84.2 µg cm−2. After
the catalyst film was dried, it was covered with 3.0 µL of 20% Nafion, and the electrode
was introduced into the electrolytes for electrochemical measurements.

4. Conclusions

In this study, carbon nanoflowers doped with both metal (Fe and Ni) and non-metal
(N) elements were readily synthesized by the controlled pyrolysis of polyacrylonitrile
flowers in the presence of Fe and Ni compounds. The obtained FeNi-NCF nanocomposites
exhibited a similar elemental composition and total metal content. However, the sample
that exhibited a high Fe:Ni atomic ratio showed the best ORR performance, close to that of
commercial Pt/C, likely due to the Ni to Fe metal–metal charge transfer that facilitated the
adsorption and, ultimately, the reduction of oxygen, as evidenced in XPS measurements.
Results from this study suggest that structural engineering of the electronic properties of
metal dopants is a critical strategy for improving the electrocatalytic activity of carbon-
based nanocomposites.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/inorganics10030036/s1, Figure S1: TEM images of (a) PACN-70,
(b) PACN-230, and (c) NCF; Figure S2: XPS survey spectra of FeNi-NCF(1), FeNi-NCF(2), FeNi-

https://www.mdpi.com/article/10.3390/inorganics10030036/s1
https://www.mdpi.com/article/10.3390/inorganics10030036/s1
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NCF(3), and NCF; Figure S3: High-resolution C 1s spectra of the series of FeNi-NCF samples;
Figure S4: High-resolution scans of the (a) C 1s, (b) N 1s, and (c) Fe 2p electrons of Fe-NCF; Figure S5:
High-resolution XPS scans of the (a) C 1s and (b) N 1s electrons of NCF; Table S1: Elemental
compositions of the sample series from XPS measurements; Table S2: Binding energies of Fe and Ni
in the sample series from XPS measurements.
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