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Abstract: The search for and design of suitable superior lithium ion conductors is a key process
for developing solid state batteries. In order to realize a large range of applications, we researched
the ionic conductivity of LiSiON, an example oxynitride mainly composed of elements with high
abundance and a similar mixed anion size. Both its amorphous and heterovalent-doped phases were
studied through density functional theory simulations. The Li+ ion diffusion behaviors and related
properties are discussed. These elements are abundant in nature, and we found that amorphization
or doping with P obviously enhanced the ionic conductivity of the system. General strategies to
improve the kinetic properties of a candidate structure are presented, to help in the design of solid
state electrolytes for lithium batteries.

Keywords: fast ion conductor; solid state lithium battery; density functional theory simulations

1. Introduction

With the rapidly increasing requirements for clean energy, to reduce carbon emis-
sions, using electric vehicles (EV), or even electric flights, is one of the main methods
of realizing carbon neutrality [1–3]. In order to enhance the safety and energy density,
solid state batteries have higher requirements [4–7]. A few solid-state electrolytes, such as
Li10GeP2S12 [8], Li9.54Si1.74P1.44S11.7Cl0.3 [9], and even β-Al2O3 [10], show comparable ionic
conductivities with liquid electrolytes, while some commonly used lithium ion electrolytes,
such as Li7La3Zr2O12 [11], Li3xLa2/3−xTiO3 [12], and Li2O-Al2O3-GeO2-P2O5 [13] provide
0.1–1 mS/cm, which almost meets the requirements for EVs. However, the key purpose
of using solid-state batteries is to replace the millions of fuel vehicles, and it is necessary
to use abundant elements in the Earth to lower the cost and accelerate electrification. As
such, use of some rare elements, such as Ge in LGPS/LAGP, La in LLZO/LLTO, will hinder
this process. Using cheaper and more abundant elements will also promote EVs from the
perspective of economy. Si is the second richest element in the Earth’s crust, and there
are almost endless applications, thanks to glass and chip. SiO2 is so common that it is not
affected by the rising price of raw materials. In addition, using Si to substitute P in sulfides
can also improve stability and ionic conductivity, such as in Li9.54Si1.74P1.44S11.7Cl0.3 [9] and
Li2SiS3 [14].

Cation doping is a powerful method to improve ionic conductivity, by enhanc-
ing the concentration of the carrier, such as Li10GeP2S12 [8], Li9.54Si1.74P1.44S11.7Cl0.3 [9],
Li7La3Zr2O12 [11], and Li3xLa2/3−xTiO3 [12]. Besides cation doping, utilizing mixed anions
is also an effective way to increase the ionic conductivity. Using O to partially replace
S gives an improvement of both the ionic conductivity and the stability in a Li3PS4 sys-
tem [15,16]. The new oxysulfide material LiAlSO, and some of its derivatives in ABXO
form (A, B = Metals; X = S, Se, and Te), have been suggested as fast ion conductors by
high-throughput calculations [17,18]. Besides S2− ions, N3− and F− ions can also coexist
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with O2−, because of the close ionic size between them, to form oxynitrides and oxyfluo-
rides, respectively. Apart from doping, amorphization is another method to enhance ion
diffusion [19–22].

In this article, we chose LiSiON [23], mainly composed of elements with high abun-
dance, as an example oxynitride, to discuss the kinetic properties of a material with a
similar mixed anion size. An attempt to improve the Li+ ion diffusion was made, by creat-
ing various chemical environments, including crystal, amorphous, and doped structures.
With amorphization or doping with P, the diffusion coefficient of Li+ was enhanced by
orders of magnitude. Compared with oxysulfides, the similar ion radius and more carriers
created by heterovalent doping represent a method to design suitable solid state electrolytes
for batteries.

2. Results
2.1. The Crystal Structure and Basic Properties of α-LiSiON

The crystal structure of α-LiSiON belongs to the Pca21 space group in the orthorhombic
system [23]. Figure 1a shows the lattice structure of α-LiSiON after geometrical relaxation.
The optimized lattice parameters are a = 5.233 Å, b = 6.410 Å, and c = 4.784 Å, which are
slightly overestimated by ~0.9% maximum compared with the experimental values. The
unit cell contains four formula units (f.u.), with 16 ions in total. Each Li+ ion coordinates
three O2− ions with a Li-O bond length of 1.92, 1.93, and 2.05 Å, and one N3− ion with the
Li-N bond length of 2.25 Å. Each Si4+ ion coordinates one O2− ion with a Si-O bond length
of 1.63 Å, and three N3− ions with a Si-N bond length of 1.73, 1.74, and 1.78 Å. Distorted
LiO3N and SiON3 tetrahedrons are connected in a vertex-sharing manner by O2− or N3−

ions. LiO3N tetrahedrons form a connected network in the ac-plane, and the neighboring
LiO3N planes are separated by SiON3 tetrahedrons in the b direction, which implies that the
lithium diffusion pathways potentially exist in the ac-plane with a two-dimensional form.
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Before investigating the kinetic properties of the LiSiON system, we first made a basic 
investigation of its thermostability and band structures. To date, α-LiSiON has been ex-
perimentally synthesized by solid state reactions. To check the stability of α-LiSiON, the 
formation energy with respect to its stable constituent phases was estimated according to 
the following two possible reactions: 

2Li2O + SiO2 + Si3N4  4LiSiON (1) 

Figure 1. (a) The crystal structure and (b) the band structure of α-LiSiON. The green, blue, red, and
gray spheres represent Li, Si, O, and N atoms, respectively.

Before investigating the kinetic properties of the LiSiON system, we first made a
basic investigation of its thermostability and band structures. To date, α-LiSiON has been
experimentally synthesized by solid state reactions. To check the stability of α-LiSiON, the
formation energy with respect to its stable constituent phases was estimated according to
the following two possible reactions:

2Li2O + SiO2 + Si3N4 → 4LiSiON (1)

Li4SiO4 + Si3N4 → 4LiSiON (2)



Inorganics 2022, 10, 45 3 of 11

By performing DFT calculations for the related compounds, the reaction energies of
−0.672 eV/f.u. and −0.191 eV/f.u. were evaluated for Equations (1) and (2), respectively,
indicating that LiSiON is intrinsically thermodynamically stable at 0 K. Previous studies
reported that the thermal decomposition of LiSiON happens at 1300 ◦C, resulting in the
formation of Li2SiN2 and probably amorphous SiO2 [24]. The decomposition condition is
far beyond the operational temperature of lithium batteries; thus, we believe α-LiSiON is
promisingly stable within the temperature range, when working as a solid state electrolyte.

The band structure of α-LiSiON is presented in Figure 1b. To be used as an electrolyte,
a wide band gap should be maintained, to ensure negligible electronic conductivity. It
is obvious that the α-LiSiON phase shows characteristics of a wide-band-gap insulator,
with a band gap of ~5eV, which is comparable to the band gaps of a crystalline Li-P-O-N
system [25], ensuring the wide electrochemical window of this material.

2.2. Ionic Diffusion Properties of α-LiSiON

After obtaining a preliminary understanding of the thermostability and electronic
structure of α-LiSiON, we started to investigate its ionic transport properties with both the
quasiempirical bond-valence (BV) method [26] and DFT-based nudged-elastic band (NEB)
method [27]. The former gave us initial knowledge of the diffusion channels and directions
in the structure, and the latter provided a more accurate evaluation of the energy barrier for
each pathway. Figure 2 illustrates the isosurfaces of the potential energies calculated using
the BV-based method, in which the preferred diffusion channels viewed in ab-, ac-, and
bc-planes are given. The continuous pathways are formed in a zigzag pattern in ac-plane.
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predicted by the BV method, a zigzag transporting network could be formed in the ac 
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Figure 2. The Li+ diffusion pathways evaluated using the bond valence method and represented by
yellow isosurfaces, with the isovalue of 0.90 eV, viewed in the (a) ab-, (b) ac-, and (c) bc-plane. The
green, blue, red, and gray spheres represent Li, Si, O, and N atoms, respectively.

Based on the Li+ ion diffusion pathways revealed by the BV method, DFT simula-
tions of the kinetic properties were performed using transition-state theory and the NEB
method [27]. The hopping events of Li+ ions from one lattice site to the neighboring one,
assisted by the vacancy along [110] and [100], were considered, and the calculated barrier
shapes and corresponding activation energies are shown in Figure 3. Along the [110]
direction, the vacancy hopping was the migration with the lower barrier of ~0.13 eV, while
the energy barrier for Li+ hopping along the [100] direction was about 0.36 eV. Thus, as
predicted by the BV method, a zigzag transporting network could be formed in the ac plane,
with a very low energy barrier of ~0.13 eV, as shown in Figure 3a.

Besides the energy barrier, the formation energy of carriers also plays a role in deter-
mining the ionic conductivity; since, the latter correlates with the carrier concentration in
the structure. To further understand the diffusion behavior in α-LiSiON, ab initio molecular
dynamics (AIMD) simulations at 10 temperatures, ranging from 1600 K to 2600 K, were per-
formed, with the parameters described in Section 4. Mean squared displacements (MSD),
as indicated in Figures 4a and S1, were adopted to measure the deviation of ions over
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time, with respect to their initial positions. The whole structural framework constituted by
SiON was stable, since the MSDs of Si, O, and N remained less than 2 Å2, even at 2600 K.
However, hopping events of Li+ ions appeared frequently until reaching high temperature,
and MSDs with values larger than 100 Å2 were only exhibited at 2500 K and 2600 K. While
for solid electrolytes with comparable activation energies, e.g., the Ea of 0.21 ± 0.01 eV
in Li10GeP2S12 and the Ea of 0.25 ± 0.02 eV in Li1.33Al0.33Ti1.67(PO4)3 [28], much lower
temperatures were needed to induce Li+ ion hopping. Since similar Ea values are found
among these systems, this implies that the formation of carriers in α-LiSiON is much more
difficult, because of the full occupation of Li+ at the lattice sites. The Li+ ion diffusion energy
barrier extracted from the Arrhenius plot of diffusion coefficients, as shown in Figure 4b,
was 1.59 ± 0.24 eV. The Ea values obtained from AIMD represent the self-diffusion process,
in which the energies for creating carriers are included. When taking Ea as the summation
of the energy barrier and half the formation energy of the Li vacancy, we can estimate that
the energy for creating the Li vacancy is around 3 eV, which is ~20 times larger than the
energy barrier of 0.13 eV. Therefore, decreasing the formation energy of the Li+ vacancy or
enhancing the vacancy concentrations were the subsequent procedures aimed at improving
the ionic conductivities of the LiSiON system. Creating a frustrated energy landscape [29]
and heterovalent ion doping [30] have been proven to be promising strategies in other
fast ion conductors. In the following, the two methods, including amorphization of the
structure and element doping, were attempted for the LiSiON system.
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2.3. The Properties of Amorphous-LiSiON

To model the effect of amorphization of LiSiON on the Li+ ion diffusion, an atomic
structure of amorphous-LiSiON was built by simulating the quenching process, as de-
scribed in the Method Section. After melting and quenching, the disordered structure was
frozen at 300 K, as illustrated in Figure 5a. The coordination analysis indicated that Si4+

ions remained in the four coordinate environments, but, besides the SiON3 tetrahedron,
SiO2N2 and SiON3 tetrahedrons were also found in the amorphous structure. Zanotto et al.
used NMR measurement and found similar structures, such as SiO3N, SiO2N2, and SiON3
in nitrated lithium disilicate glasses [31]. Unlike the crystal phase, in which all the SiON3
polyhedrons are connected by vertexes, both vertex-shared and edge-shared connections
appear. The coordination environment of Li+ ions in an amorphous structure is much
more complex than that in a crystal, since 3-, 4-, and 5-coordinated Li+ are observed in the
disordered structure. The partial radial distribution function (PRDF) for Li-O, Li-N, Si-O,
and Si-N pairs in amorphous-LiSiON can be seen in Figure S2, and all pairs became wider,
indicating the varied distribution of bond lengths in the amorphous state. The coexistence
of O and N and the various distortions of each polyhedron offer no regular sites for Li
ions, which creates a frustrated environment, similar to that in the superionic conductor
LiTi2(PS4)3 [29].
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Figure 5. (a) The disordered structure of amorphous-LiSiON frozen at 300 K, in which the green,
blue, red, and gray spheres represent Li, Si, O, and N atoms, respectively. (b) The formation energy
for each of the Li vacancy in amorphous-LiSiON and the coordination environment of each Li site.
The value for creating one Li vacancy in crystalline α-LiSiON is indicated as a horizontal dotted line
for comparison.

The coordination environments for the 32 Li sites in the disordered structure are
illustrated in Figure 5b. Ten types of chemical environments, including 3-coordinated
LiN3, LiON2, LiO2N, LiO3, 4-coordinated LiON3, LiO2N2, LiO3N, LiO4, and 5-coordinated
LiON4, LiO3N2, were observed. The formation energies for creating Li vacancies in these
environments were estimated in the cell with 32 f.u., according to Equations (3) and (4),

Li32Si32O32N32 → Li31Si32O32N32 + Li (3)

Ef(Li_vacancy) = E(Li31Si32O32N32) + E(Li) − E(Li32Si32O32N32) (4)

The formation energy for each of the Li vacancies in amorphous-LiSiON is given
in Figure 5b. The Ef(Li_vacancy) values varied among the 32 sites, because of the diverse
coordination environments; however, all of them were around 3 eV and much lower than
the Ef(Li_vacancy) value in crystalline α-LiSiON. Thus, the carrier concentration in amorphous-
LiSiON is much higher than that in the crystal phase.

The results of the AIMD simulations for amorphous-LiSiON are shown in Figure 6.
Compared with α-LiSiON, much lower temperatures were needed to observe the Li+ ion
diffusion. For the nine simulation temperatures, the data from those larger than 800 K
were adopted to obtain the diffusion coefficients and the activation energy. As indicated
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in Figure 6b, the evaluated Ea for amorphous-LiSiON was 0.18 ± 0.08 eV, which is very
close to the energy barriers estimated using the NEB method in α-LiSiON, indicating that
amorphization effectively decreased the energies needed for carrier creation.
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Along with the disordering process, the band gap of the LiSiON system changes from
~5 eV in crystal phase, to ~3 eV in amorphous states. The density of states for α-LiSiON
and amorphous-LiSiON are compared in Figure 7. Referring to the Fermi level (EF), the
electronic states of α-LiSiON, ranging from −2 to 0 eV, are mainly occupied by O 2p and
N 2p orbitals, with nearly no contribution from Li and Si, indicating that the states from
O and N dominate the valence band of α-LiSiON. The electronic states ranging from −8
to −2 eV illustrate the covalent characteristics of Si-O and Si-N chemical bonds, because
of the orbital hybridization between Si 3p and O 2p states, and between Si 3p and N 2p
states. In amorphous phase, both the p states of O and N are dispersed in a broader range,
reflecting the diversified strength of bond interactions in the disordered state. The diversity
of bond characteristics in the amorphous phase were also confirmed by the Bader charge
analysis. The calculated Bader charges of O and N in α-LiSiON were −1.62 e and −2.26 e,
respectively, while those in amorphous-LiSiON for O were distributed in the range of
−1.66~−1.57 e, and the charge for N was distributed from −2.30 to −2.14 e.
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2.4. Ionic Diffusion Properties of P-Doped α-LiSiON

Besides adjusting the formation energies of carriers, another way to improve the
carrier concentrations is to introduce vacancies by doping with heterovalent ions. For
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example, Equation (5) demonstrates using a higher valence state P5+ to replace part of
Si4+, to introduce Li vacancies; and Equation (6) shows the substitution of N3− with O2−

to create Li vacancies in the structure. We adopted the method of a P-doped Si site, to
investigate manners of improving the ionic conductivity.

1.5 Li2O + Si3N4 + 0.5 P2O5 → Li3Si3PO4N4 (5)

(2 − x) Li2O + Si3N4 + SiO2 → Li4-2xSi4O4-xN4 (6)

The doping is simulated in the primitive cell with 4 f.u., in which one, two, or three
of the four Si sites is(are) replaced by P, and one, two, or three of the four Li ions is(are)
removed. More details are shown in Tables S1–S3, and we found that 0.25 is the best P
content to obtain the lowest Li+ migration energy barrier using the BV method; therefore,
subsequently, we only considered Li0.75Si0.75P0.25ON by AIMD. Sixteen configurations
were constructed to simulate Si/P and Li/vacancy coexistence. The total energies of these
structures and the Li+ ion diffusion barrier evaluated using the BV method are listed in
Table S1. The structure with the lowest total energy was regarded as the most stable and
selected to further investigate the Li+ ion diffusion properties with the AIMD technique
in the P-doped LiSiON system. The MSD of Li+ ions simulated using AIMD for P-doped
LiSiON is shown in Figure 8, and a similar Li+ ion diffusion ability was found compared
to amorphous-LiSiON, indicating that creating Li vacancies in advance by heterovalent
ion doping is also an effective way to optimize the kinetic properties within a candidate
structural framework. The ion conductivity for P doping by extrapolation to the room
temperature was 3.9 × 10−3 mS/cm. The effectiveness of P doping could be confirmed by
comparing it to the 2.5 × 10−20 mS/cm in a crystal LiSiON.

Inorganics 2022, 10, x FOR PEER REVIEW 8 of 12 
 

 

 

Figure 8. The MSD for Li+ ions simulated by AIMD for P-doped LiSiON. 

3. Discussion and Conclusion 
We chose LiSiON as an example of oxynitride, in order to discuss the superionic ki-

netic properties of materials with a similar mixed anion size. Si is the second richest ele-
ment in the Earth's crust and may be suitable for large-scale applications in batteries. Be-
sides the approximate radius between O2− and N3−, Si is also easier to be doped with P, 
which provides a large chemical space for Li-Si-O-N to investigate. Although LiSiON has 
a small migration energy barrier, the large formation energy of the Li vacancy is the rate 
limitation for self-diffusion of Li in LiSiON. Amorphization and doping to create carriers 
have been proven to be good choices for improving ionic conductivity. Some experiments 
[32–34] revealed that the similar components or amorphization in the Li-Si-P-O-N chemi-
cal space will enhance the ionic conductivity, which is consistent with our theoretical pre-
diction for the LiSiON system. In Table S4, we calculated that the ion conductivities for 
crystal/amorphous/P-doped are 2.5 × 10−20, 8.1 and 3.9 × 10−3 mS/cm, respectively, by ex-
trapolation to room temperature. It is evident that doping and amorphization can enhance 
ion conductivity. 

Combined with other possible strategies, such as introducing concerted migration 
[35] and dynamic coupling [36–39], the methods for improving the ionic conductivity for 
a candidate framework are summarized in Figure 9. Meanwhile, the Li+ concentrations 
can be adjusted by heterovalent doping, and may be suitable for the different sides in 
batteries. According to the space charge interface model [40–42], they may match the cat-
ion/anode with suitable doping, as shown in the first column of Figure 9. The creation of 
a vacancy (upper panel) and interstitial (lower panel) will provide Li-poor and Li-rich 
samples. Moreover, they may be suitable for the cation or anode sides, respectively. In 
addition, the Li+ concentrations may affect the electrochemical stability window [43,44], 
and the combination of different concentrations for the two sides may be a good choice to 
enlarge the electrochemical window.  

Figure 8. The MSD for Li+ ions simulated by AIMD for P-doped LiSiON.

3. Discussion and Conclusions

We chose LiSiON as an example of oxynitride, in order to discuss the superionic
kinetic properties of materials with a similar mixed anion size. Si is the second richest
element in the Earth’s crust and may be suitable for large-scale applications in batteries.
Besides the approximate radius between O2− and N3−, Si is also easier to be doped with
P, which provides a large chemical space for Li-Si-O-N to investigate. Although LiSiON
has a small migration energy barrier, the large formation energy of the Li vacancy is the
rate limitation for self-diffusion of Li in LiSiON. Amorphization and doping to create
carriers have been proven to be good choices for improving ionic conductivity. Some exper-
iments [32–34] revealed that the similar components or amorphization in the Li-Si-P-O-N
chemical space will enhance the ionic conductivity, which is consistent with our theoretical
prediction for the LiSiON system. In Table S4, we calculated that the ion conductivities
for crystal/amorphous/P-doped are 2.5 × 10−20, 8.1 and 3.9 × 10−3 mS/cm, respectively,
by extrapolation to room temperature. It is evident that doping and amorphization can
enhance ion conductivity.
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Combined with other possible strategies, such as introducing concerted migration [35]
and dynamic coupling [36–39], the methods for improving the ionic conductivity for a
candidate framework are summarized in Figure 9. Meanwhile, the Li+ concentrations
can be adjusted by heterovalent doping, and may be suitable for the different sides in
batteries. According to the space charge interface model [40–42], they may match the
cation/anode with suitable doping, as shown in the first column of Figure 9. The creation
of a vacancy (upper panel) and interstitial (lower panel) will provide Li-poor and Li-rich
samples. Moreover, they may be suitable for the cation or anode sides, respectively. In
addition, the Li+ concentrations may affect the electrochemical stability window [43,44],
and the combination of different concentrations for the two sides may be a good choice to
enlarge the electrochemical window.
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In summary, we have discussed the ionic conductivity of LiSiON. Vacancy-assisted
Li+ diffusion in LiSiON is improved by amorphization or by doping P5+ to form a Li-poor
material. In additional, amorphization will reduce the Ea for diffusion, due to the abundant
coordination, while heterovalent doping will provide Li vacancies in advance. Both of
these increase the carrier concentration in the structure and effectively improve the Li+

diffusion behavior. We hope our work will be helpful for designing solid state electrolytes
for lithium batteries.

4. Materials and Methods
4.1. DFT-Based Structural Relaxation and Band Structure Calculations

The present calculations were performed with the Vienna ab initio simulation package
(VASP) [45] using the generalized gradient approximation, with a parameterized exchange–
correlation functional according to Perdew–Burke–Ernzerhof [46]. The cutoffs for the
wavefunction and density were 500 eV and 756 eV, respectively. For the crystal structure
optimization and the electronic structure evaluation, the k-mesh used to sample the Bril-
louin zone was 10 × 8 × 11 for the conventional cell, and 5 × 5 × 5 for the supercell. In
both cases, the Γ point was included. The non-spin-polarized scheme was adopted for all
the simulations in this work. Both ions and cells was relaxed in the optimization, with the
energy and force convergence criterions of 10−5 eV and 0.01 eV/Å, respectively.

4.2. BV and NEB Simulations

Both the semi-empirical bond valence (BV) method and accurate quantum mechanical
calculations based on density functional theory (DFT) were adopted to understand the
kinetic properties of α-LiSiON. The initial estimation of the Li+ ion diffusion pathways
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utilized BV calculations [15,26], in which the Li+ ions were assumed to move within the
framework composed of immobile anions and cations. The interactions between a dummy
Li+ ion in the space and the ions around it were empirically evaluated by summation
of the attraction between Li+ and anions described by the Morse-type potential and the
repulsion between Li+ and cations expressed by the Coulombic potential. Maps of the total
potential energy, E(Li), on grids of points with a resolution of 0.1 Å were built in the unit
cell. Then, the threshold value of E(Li) to form a continuous pathway was estimated as
the Li+ migration energy barrier. The energy barriers of the typical pathways found in
the BV simulations were calculated using the NEB method [27], with the energy and force
convergence criterions of 10−5 eV and 0.02 eV/Å, respectively.

4.3. The Model Building of Amorphous-LiSiON

To create the amorphous structure of LiSiON, we started from the crystalline α-LiSiON
lattice in a 2 × 2 × 2 supercell, with 128 atoms in total. The ab initio molecular dynamics
(AIMD) method was adopted to build the atomic position for the disorder phase. First, the
ensemble was melted at 3000 K and allowed to equilibrate at this temperature for 20 ps
with a timestep of 2 fs. The system was then quenched to room temperature at a rate of 1 K
per timestep. We subsequently relaxed the atomic coordinates and length of the cell lattice
with an atomic force tolerance of 0.01 eV/Å. The molecular dynamics calculations were
carried out on the Γ point to equilibrate the computational cost and the accuracy.

4.4. The AIMD Simulations

The kinetic properties of Li+ ion diffusion were studied using the AIMD method.
The simulations were performed on a 2 × 2 × 2 supercell containing 32 formula units
(128 atoms in total), and only the Γ point was used for Brillouin zone sampling. The AIMD
run was carried out with a Nose thermostat for 40,000 steps, with a time step of 1 fs. No
obvious Li migration was observed in the simulations with temperatures of 1600 and 1800 K.
To keep the computational cost at a reasonable level, we raised the temperature to increase
the possibility of Li ion diffusion; and the results of the latter were used to investigate the
diffusion pathways. The kinetic properties were extracted using the molecular dynamics
analysis package developed by Mo et al. [28].
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ergies (Etot) of 16/12/4 configurations for Li0.75Si0.75P0.25ON/Li0.5Si0.5P0.5ON/Li0.25Si0.25P0.75ON
and the Li+ ion diffusion barriers evaluated using the BV method (Ea by BV); Table S4: The estimated
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LiSiON (Li0.75Si0.75P0.25ON) according to the Arrhenius plot of diffusion coefficients.
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