Exploring Growth of Mycobacterium smegmatis Treated with Anticarcinogenic Vanadium Compounds
Abstract
:1. Introduction
2. Results
2.1. Compound Design
2.2. Growth Inhibition of Vanadium Complexes and Free Ligands Determined Using the Minimum Inhibitory Concentration (MIC)
2.3. Solution Chemistry and Stability of Vanadium-Catechol Complexes in Reference Solutions and in Growth Media as Monitored by UV-Vis Spectroscopy
2.4. Solution Chemistry and Stability of Vanadium-Catechol Complexes in Reference Solution and in Cell Growth Media
3. Discussion
4. Experimental Procedure
4.1. Materials
4.1.1. Cell Culture Materials
4.1.2. Chemicals for Synthesis and Spectroscopic Studies
4.2. Methods
4.2.1. Cell Culture and Growth Conditions
4.2.2. Minimum Inhibitory Concentration (MIC) Measurements
4.2.3. Statistical Analysis
4.3. Chemistry
4.3.1. Synthesis of Schiff Base Vanadium-Catecholato Coordination Complexes
4.3.2. Synthesis of [VO(Hshed)(CN)]
4.3.3. Synthesis of [VO(Hshed)(3OMet)]
4.3.4. Synthesis of [VO(Hshed)(Coum)]
4.3.5. Preparation of Stock Solution for NMR Spectroscopic Studies
4.3.6. Preparation of Stock Solutions for Cell Culture Experiments
4.4. UV-Visible Spectra
4.5. Nuclear Magnetic Resonance (NMR) Measurements
4.6. Analysis of Species in Stock Solutions and Media as a Function of Time
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
cat: | Catechol |
Coum | 6,7-Dihydroxycoumarin |
DMSO | Dimethylsulfoxide |
dtb | 3,4-Ditertbutyl catechol |
IC50 | Concentration at 50% growth inhibition |
M. smeg | Mycobacterium smegmatis |
NMR | Nuclear Magnetic Resonance |
OD | Optical density |
CN | 3,4-Dihydroxybenzonitrile |
tbc | Tetrabromocatechol |
UV-Vis | Ultraviolet-visible spectroscopy |
V | Vanadium |
V1 | Vanadate monomer |
V4 | Vanadate tetramer |
V-complexes, | Vanadium complexes |
[VO(Hshed)(3OMet)] | see Figure 2 |
[VO(Hshed)(4NO2)] | see Figure 2 |
[VO(Hshed)(cat)] | see Figure 2 |
[VO(Hshed)(CN)] | see Figure 2 |
[VO(Hshed)(Coum)] | see Figure 2 |
[VO(Hshed)(dtb)] | see Figure 2 |
[VO(Hshed)(tbc)] | see Figure 2 |
3OMet | 3-methoxycatechol |
4NO2 | 4-nitrocatechol |
References
- Cirri, D.; Bartoli, F.; Pratesi, A.; Baglini, E.; Barresi, E.; Marzo, T. Strategies for the Improvement of Metal-Based Chemotherapeutic Treatments. Biomedicines. 2021, 9, 504. [Google Scholar] [CrossRef] [PubMed]
- Dasari, S.; Tchounwou, P.B. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. 2014, 740, 364–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dilruba, S.; Kalayda, G.V. Platinum-based drugs: Past, present and future. Cancer Chemother. Pharmacol. 2016, 77, 1103–1124. [Google Scholar] [CrossRef] [PubMed]
- Graf, N.; Lippard, S.J. Redox activation of metal-based prodrugs as a strategy for drug delivery. Adv. Drug Deliv. Rev. 2012, 64, 993–1004. [Google Scholar] [CrossRef] [Green Version]
- Jin, S.; Guo, Y.; Guo, Z.; Wang, X. Monofunctional Platinum(II) Anticancer Agents. Pharmaceuticals 2021, 14, 133. [Google Scholar] [CrossRef]
- Johnstone, T.C.; Wilson, J.J.; Lippard, S.J. Monofunctional and higher-valent platinum anticancer agents. Inorg. Chem. 2013, 52, 12234–12249. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.F.; Wang, Z.G.; Deng, Z.Q.; Zhu, G.Y. Recent advances in the synthesis, stability, and activation of platinum (IV) anticancer prodrugs. Coord. Chem. Rev. 2021, 442, 213991. [Google Scholar] [CrossRef]
- Rottenberg, S.; Disler, C.; Perego, P. The rediscovery of platinum-based cancer therapy. Nat. Rev. Cancer 2021, 21, 37–50. [Google Scholar] [CrossRef]
- Zhou, J.B.; Kang, Y.; Chen, L.; Wang, H.; Liu, J.Q.; Zeng, S.; Yu, L.S. The Drug-Resistance Mechanisms of Five Platinum-Based Antitumor Agents. Front. Pharmacol. 2020, 11, 343. [Google Scholar] [CrossRef] [Green Version]
- Thota, S.; Rodrigues, D.A.; Crans, D.C.; Barreiro, E.J. Ru(II) Compounds: Next-Generation Anticancer Metallotherapeutics? J. Med. Chem. 2018, 61, 5805–5821. [Google Scholar] [CrossRef]
- Manov, H.; Staneva, D.; Vasileva-Tonkova, E.; Alexandrova, R.; Stoyanova, R.; Kukeva, R.; Stoyanov, S.; Grabchev, I. A New Cu(II) Complex of PAMAM Dendrimer Modified with 1,8-Naphthalimide: Antibacterial and Anticancer Activity. Biointerface Res. Appl. Chem. 2022, 12, 5534–5547. [Google Scholar] [CrossRef]
- Crans, D.C.; Yang, L.N.; Haase, A.; Yang, X.G. Health Benefits of Vanadium and Its Potential as an Anticancer Agent. Metal Ions Life Sci. 2018, 18, 251–280. [Google Scholar] [CrossRef]
- Selman, M.; Rousso, C.; Bergeron, A.; Son, H.H.; Krishnan, R.; El-Sayes, N.A.; Varette, O.; Chen, A.; Le Boeuf, F.; Tzelepis, F.; et al. Multi-modal Potentiation of Oncolytic Virotherapy by Vanadium Compounds. Mol. Ther. 2018, 26, 56–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crans, D.C.; Kostenkova, K. Open questions on the biological roles of first-row transition metals. Commun. Chem. 2020, 3, 104. [Google Scholar] [CrossRef]
- Shahbazi, M.A.; Faghfouri, L.; Ferreira, M.P.A.; Figueiredo, P.; Maleki, H.; Sefat, F.; Hirvonen, J.; Santos, H.A. The versatile biomedical applications of bismuth-based nanoparticles and composites: Therapeutic, diagnostic, biosensing, and regenerative properties. Chem. Soc. Rev. 2020, 49, 1253–1321. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, N.; Rodrigues, C.F.; Moreira, A.F.; Correia, I.J. Overview of the application of inorganic nanomaterials in cancer photothermal therapy. Biomater. Sci. 2020, 8, 2990–3020. [Google Scholar] [CrossRef]
- Bauer, E.B.; Haase, A.A.; Reich, R.M.; Crans, D.C.; Kuhn, F.E. Organometallic and coordination rhenium compounds and their potential in cancer therapy. Coord. Chem. Rev. 2019, 393, 79–117. [Google Scholar] [CrossRef]
- Needham, R.J.; Prokes, I.; Habtemariam, A.; Romero-Canelon, I.; Clarkson, G.J.; Sadler, P.J. NMR studies of group 8 metallodrugs: Os-187-enriched organo-osmium half-sandwich anticancer complex. Dalton Trans. 2021, 50, 12970–12981. [Google Scholar] [CrossRef]
- Frei, A.; Zuegg, J.; Elliott, A.G.; Baker, M.; Braese, S.; Brown, C.; Chen, F.; Dowson, C.G.; Dujardin, G.; Jung, N.; et al. Metal complexes as a promising source for new antibiotics. Chem. Sci. 2020, 11, 2627–2639. [Google Scholar] [CrossRef] [Green Version]
- Imberti, C.; Sadler, P.J. 150 years of the periodic table: New medicines and diagnostic agents. Adv. Inorg. Chem. 2020, 75, 3–56. [Google Scholar] [CrossRef]
- Eyvazi, S.; Vostakolaei, M.A.; Dilmaghani, A.; Borumandi, O.; Hejazi, M.S.; Kahroba, H.; Tarhriz, V. The oncogenic roles of bacterial infections in development of cancer. Microb. Pathog. 2020, 141, 104019. [Google Scholar] [CrossRef] [PubMed]
- Pulcini, C.D.; Lentz, S.; Saladino, R.A.; Bounds, R.; Herrington, R.; Michaels, M.G.; Maurer, S.H. Emergency management of fever and neutropenia in children with cancer: A review. Am. J. Emerg. Med. 2021, 50, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Ross, J.A.; Komoda, K.; Pal, S.; Dickter, J.; Salgia, R.; Dadwal, S. Infectious complications of immune checkpoint inhibitors in solid organ malignancies. Cancer Med. 2022, 11, 21–27. [Google Scholar] [CrossRef]
- Rossi, J.F.; Lu, Z.Y.; Massart, C.; Levon, K. Dynamic Immune/Inflammation Precision Medicine: The Good and the Bad Inflammation in Infection and Cancer. Front. Immunol. 2021, 12, 97. [Google Scholar] [CrossRef] [PubMed]
- Doucette, K.A.; Hassell, K.N.; Crans, D.C. Selective speciation improves efficacy and lowers toxicity of platinum anticancer and vanadium antidiabetic drugs. J. Inorg. Biochem. 2016, 165, 56–70. [Google Scholar] [CrossRef] [PubMed]
- Esteban-Fernandez, D.; Moreno-Gordaliza, E.; Canas, B.; Palacios, M.A.; Gomez-Gomez, M.M. Analytical methodologies for metallomics studies of antitumor Pt-containing drugs. Metallomics 2010, 2, 19–38. [Google Scholar] [CrossRef]
- Levina, A.; Crans, D.C.; Lay, P.A. Speciation of metal drugs, supplements and toxins in media and bodily fluids controls in vitro activities. Coord. Chem. Rev. 2017, 352, 473–498. [Google Scholar] [CrossRef]
- Nunes, P.; Correia, I.; Cavaco, I.; Marques, F.; Pinheiro, T.; Avecilla, F.; Pessoa, J.C. Therapeutic potential of vanadium complexes with 1,10-phenanthroline ligands, quo vadis? Fate of complexes in cell media and cancer cells. J. Inorg. Biochem. 2021, 217, 111350. [Google Scholar] [CrossRef] [PubMed]
- Wexselblatt, E.; Yavin, E.; Gibson, D. Platinum(IV) prodrugs with haloacetato ligands in the axial positions can undergo hydrolysis under biologically relevant conditions. Angew. Chem. Int. Ed. Engl. 2013, 52, 6059–6062. [Google Scholar] [CrossRef]
- Loizou, M.; Hadjiadamou, I.; Drouza, C.; Keramidas, A.D.; Simos, Y.V.; Peschos, D. Vanadium(V) Complexes with Siderophore Vitamin E-Hydroxylamino-Triazine Ligands. Inorganics 2021, 9, 73. [Google Scholar] [CrossRef]
- Creaven, B.S.; Duff, B.; Egan, D.A.; Kavanagh, K.; Rosair, G.; Thangella, V.R.; Walsh, M. Anticancer and antifungal activity of copper(II) complexes of quinolin-2(1H)-one-derived Schiff bases. Inorg. Chim. Acta 2010, 363, 4048–4058. [Google Scholar] [CrossRef] [Green Version]
- Correia, I.; Adao, P.; Roy, S.; Wahba, M.; Matos, C.; Maurya, M.R.; Marques, F.; Pavan, F.R.; Leite, C.Q.F.; Avecilla, F.; et al. Hydroxyquinoline derived vanadium(IV and V) and copper(II) complexes as potential anti-tuberculosis and anti-tumor agents. J. Inorg. Biochem. 2014, 141, 83–93. [Google Scholar] [CrossRef]
- Crans, D.C.; Koehn, J.T.; Petry, S.M.; Glover, C.M.; Wijetunga, A.; Kaur, R.; Levina, A.; Lay, P.A. Hydrophobicity may enhance membrane affinity and anti-cancer effects of Schiff base vanadium(v) catecholate complexes. Dalton Trans. 2019, 48, 6383–6395. [Google Scholar] [CrossRef] [PubMed]
- Levina, A.; Pires Vieira, A.; Wijetunga, A.; Kaur, R.; Koehn, J.T.; Crans, D.C.; Lay, P.A. A Short-Lived but Highly Cytotoxic Vanadium(V) Complex as a Potential Drug Lead for Brain Cancer Treatment by Intratumoral Injections. Angew. Chem. Int. Ed. Engl. 2020, 59, 15834–15838. [Google Scholar] [CrossRef] [PubMed]
- Maurya, M.R.; Khan, A.A.; Azam, A.; Ranjan, S.; Mondal, N.; Kumar, A.; Avecilla, F.; Pessoa, J.C. Vanadium complexes having [(VO)-O-IV]2+ and [(VO2)-O-V]+ cores with binucleating dibasic tetradentate ligands: Synthesis, characterization, catalytic and antiamoebic activities. Dalton Trans. 2010, 39, 1345–1360. [Google Scholar] [CrossRef]
- Rosu, T.; Pahontu, E.; Ilies, D.C.; Georgescu, R.; Mocanu, M.; Leabu, M.; Shova, S.; Gulea, A. Synthesis and characterization of some new complexes of Cu(II), Ni(II) and V(IV) with Schiff base derived from indole-3-carboxaldehyde. Biological activity on prokaryotes and eukaryotes. Eur. J. Med. Chem. 2012, 53, 380–389. [Google Scholar] [CrossRef] [PubMed]
- Machado Pde, A.; Mota, V.Z.; Cavalli, A.C.; de Carvalho, G.S.; Da Silva, A.D.; Gameiro, J.; Cuin, A.; Coimbra, E.S. High selective antileishmanial activity of vanadium complex with stilbene derivative. Acta Trop. 2015, 148, 120–127. [Google Scholar] [CrossRef] [PubMed]
- He, L.Y.; Qiu, X.Y.; Cheng, J.Y.; Liu, S.J.; Wu, S.M. Synthesis, characterization and crystal structures of vanadium(V) complexes derived from halido-substituted tridentate hydrazone compounds with antimicrobial activity. Polyhedron 2018, 156, 105–110. [Google Scholar] [CrossRef]
- Missina, J.M.; Gavinho, B.; Postal, K.; Santana, F.S.; Valdameri, G.; de Souza, E.M.; Hughes, D.L.; Ramirez, M.I.; Soares, J.F.; Nunes, G.G. Effects of Decavanadate Salts with Organic and Inorganic Cations on Escherichia coli, Giardia intestinalis, and Vero Cells. Inorg. Chem. 2018, 57, 11930–11941. [Google Scholar] [CrossRef] [PubMed]
- Costello, R.L.; Hedgecock, L.W. Effect of metavanadate ion on the growth in vitro of Mycobacterium tuberculosis. J. Bacteriol. 1959, 77, 794–799. [Google Scholar] [CrossRef] [Green Version]
- Samart, N.; Arhouma, Z.; Kumar, S.; Murakami, H.A.; Crick, D.C.; Crans, D.C. Decavanadate Inhibits Mycobacterial Growth More Potently Than Other Oxovanadates. Front. Chem. 2018, 6, 519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kostenkova, K.; Arhouma, Z.; Postal, K.; Rajan, A.; Kortz, U.; Nunes, G.G.; Crick, D.C.; Crans, D.C. Pt(IV)- or Mo(VI)-substituted decavanadates inhibit the growth of Mycobacterium smegmatis. J. Inorg. Biochem. 2021, 217, 111356. [Google Scholar] [CrossRef]
- Mosquillo, M.F.; Smircich, P.; Lima, A.; Gehrke, S.A.; Scalese, G.; Machado, I.; Gambino, D.; Garat, B.; Perez-Diaz, L. High Throughput Approaches to Unravel the Mechanism of Action of a New Vanadium-Based Compound against Trypanosoma cruzi. Bioinorg. Chem. Appl. 2020, 2020, 1634270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffin, E.; Levina, A.; Lay, P.A. Vanadium(V) tris-3,5-di-tert-butylcatecholato complex: Links between speciation and anti-proliferative activity in human pancreatic cancer cells. J. Inorg. Biochem. 2019, 201, 110815. [Google Scholar] [CrossRef]
- Lima, L.M.A.; Murakami, H.; Gaebler, D.J.; Silva, W.E.; Belian, M.F.; Lira, E.C.; Crans, D.C. Acute Toxicity Evaluation of Non-Innocent Oxidovanadium(V) Schiff Base Complex. Inorganics 2021, 9, 42. [Google Scholar] [CrossRef]
- Chen, X.; Hu, X.; Lu, Q.; Yang, Y.; Linghu, S.; Zhang, X. Study on the differences in sludge toxicity and microbial community structure caused by catechol, resorcinol and hydroquinone with metagenomic analysis. J. Environ. Manag. 2022, 302, 114027. [Google Scholar] [CrossRef] [PubMed]
- Lambert de Malezieu, M.; Courtel, P.; Sleno, L.; Abasq, M.L.; Ramassamy, C. Synergistic properties of bioavailable phenolic compounds from olive oil: Electron transfer and neuroprotective properties. Nutr. Neurosci. 2021, 24, 660–673. [Google Scholar] [CrossRef]
- Schweigert, N.; Zehnder, A.J.B.; Eggen, R.I.L. Chemical properties of catechols and their molecular modes of toxic action in cells, from microorganisms to mammals. Environ. Microbiol. 2001, 3, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, S.K.; Ahmad, E.; Khan, J.M.; Alam, P.; Ishtikhar, M.; Khan, R.H. Elucidating the interaction of limonene with bovine serum albumin: A multi-technique approach. Mol. Biosyst. 2015, 11, 307–316. [Google Scholar] [CrossRef]
- Ribeiro, N.; Bulut, I.; Cevatemre, B.; Teixeira, C.; Yildizhan, Y.; Andre, V.; Adao, P.; Pessoa, J.C.; Acilan, C.; Correia, I. Cu(II) and V(IV)O complexes with tri- or tetradentate ligands based on (2-hydroxybenzyl)-L-alanines reveal promising anticancer therapeutic potential. Dalton Trans. 2021, 50, 157–169. [Google Scholar] [CrossRef]
- Le, M.; Rathje, O.; Levina, A.; Lay, P.A. High cytotoxicity of vanadium(IV) complexes with 1,10-phenanthroline and related ligands is due to decomposition in cell culture medium. J. Biol. Inorg. Chem. 2017, 22, 663–672. [Google Scholar] [CrossRef] [PubMed]
- Pessoa, J.C.; Santos, M.F.A.; Correia, I.; Sanna, D.; Sciortino, G.; Garribba, E. Binding of vanadium ions and complexes to proteins and enzymes in aqueous solution. Coord. Chem. Rev. 2021, 449, 214192. [Google Scholar] [CrossRef]
- Aureliano, M.; Gumerova, N.I.; Sciortino, G.; Garribba, E.; McLauchlan, C.C.; Rompel, A.; Crans, D.C. Polyoxidovanadates’ interactions with proteins: An overview. Coord. Chem. Rev. 2022, 454, 214344. [Google Scholar] [CrossRef]
- Haase, A.A.; Murakami, H.A.; Koehn, J.T.; Hagan, J.; Beuning, C.N.; Levina, A.; Lay, P.A.; Crans, D.C. Exploring Electronic Properties of New Non-Innocent Vanadium(V) Compounds. 2022; under preparation. [Google Scholar]
- Kumar, S.; Koehn, J.T.; Gonzalez-Juarrero, M.; Crans, D.C.; Crick, D.C. Mycobacterium tuberculosis Survival in J774A.1 Cells Is Dependent on MenJ Moonlighting Activity, not Its Enzymatic Activity. Acs Infect. Dis. 2020, 6, 2661–2671. [Google Scholar] [CrossRef] [PubMed]
- Cornman, C.R.; Colpas, G.J.; Hoeschele, J.D.; Kampf, J.; Pecoraro, V.L. Implications for the Spectroscopic Assignment of Vanadium Biomolecules—Structural and Spectroscopic Characterization of Monooxovanadium(V) Complexes Containing Catecholate and Hydroximate Based Noninnocent Ligands. J. Am. Chem. Soc. 1992, 114, 9925–9933. [Google Scholar] [CrossRef]
- Chatterjee, P.B.; Goncharov-Zapata, O.; Quinn, L.L.; Hou, G.; Hamaed, H.; Schurko, R.W.; Polenova, T.; Crans, D.C. Characterization of noninnocent metal complexes using solid-state NMR spectroscopy: O-dioxolene vanadium complexes. Inorg. Chem. 2011, 50, 9794–9803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goncharova-Zapata, O.; Chatterjee, P.B.; Hou, G.; Quinn, L.L.; Li, M.; Yehl, J.; Crans, D.C.; Polenova, T. Effect of Ancillary Ligand on Electronic Structure as Probed by (51)V Solid-State NMR Spectroscopy for Vanadium-o-Dioxolene Complexes. CrystEngComm 2013, 15, 8776–8783. [Google Scholar] [CrossRef] [PubMed]
Vanadium Complexes | Microorganism (a, b, c) | Inhibitory Activity | Results | References |
---|---|---|---|---|
M2[CH2{VVO2(sal-bhz)}2]·2H2O M2[CH2{VVO2(sal-fah)}2]·2H2O M = K+ or Cs+ forsal-bhz (5,5′-methylbis(salicylaldehyde) and benzoylhydrazide); M = K+ for sal-fah (5,5′-methylbis(salicylaldehyde) and 2-furoylhydrazide) | Protozoa: Entamoeba histolytica | IC50 values between 0.36 and 2.32 μM | Complexes had potent antibacterial activity compared to hydrazone ligand | [35] |
[VO(L)2(H2O)]SO4 L = 1-phenyl-2,3-dimethyl-4-(1H-indole-3-carboxaldehyde)-3-pyrazolin-5-one (HL). | Bacteria: Staphylococcus aureusa, Klebsiella pneumoniaeb, Legionella monocytogenesb, Escherichia coli, Pseudomonas aeruginosab, and Salmonella typhimurium b Fungi: Candida albicans and Aspergillus flavus | IC50 values between 16 and 64 μg/mL | Complexes had potent antibacterial activity compared to Schiff base ligand | [36] |
Complexes with 8-hydroxyquinoline (8HQ) | Bacteria: Mycobacterium tuberculosis | IC50 values between 2.9 and 42.23 μM | Complexes had less potent activity compared to 8-hydroxyquinoline (8HQ) ligand | [32] |
V(IV)O(Salophen) [VO(C20H16N4O2)]·H2O | Parasite: Leishmania amazonensis | IC50 values of 3.51 μM and 6.65 μM | Complexes had more potent activity compared to H2Salophen ligand | [37] |
Complexes with chlorido-substituted hydrazone ligands ([VOL(OEt)(EtOH)] | Bacteria: Bacillus subtilisa,Staphylococcus aureus, Escherichia coli, and Pseudomonas fluorescence b Fungi: Candida albicans and Aspergillus niger | MICs values at 1.2 and >150 μg/mL | Complexes have stronger activities compared to the free chloride hydrazones | [38] |
(3Hpca)4[H2V10O28]·2H2O· 2(3-pca); (complex I) (4-Hpca)4[H2V10O28]·2(4-pca); (complex II) | Bacteria: Escherichia coli | GI50 values at 0.47 and 0.67 mmol L−1 | Cation increases toxicity | [39] |
Complexes formed with 1,10-phenanthroline or 4,7-dimethyl-1,10-phenanthrolineligands | Cancer cellsc: Ovarian, cisplatin sensitive A2780, breast MCF7, and prostate PC3 | Complexes have variable potency comparable with effects of free phenanthroline ligands and duration of treatment | [28] | |
Complexes with Vitamin E-hydroxylamino-Triazine Ligands | Cancer cells: Human Cal33 cells, Hela cells, embryonic mouse fibroblasts (NIH/3T3) | Complexes are less toxic than free ligands for all three cell lines | [30] |
Tested Compounds | IC50 (µM) | The Effect of Complexes Compared to the Free Catechol |
---|---|---|
[VO(Hshed)(dtb)] | 119 ± 0.09 | 2× more potent in terms of concentration |
H2dtb | 241 ± 0.07 | |
[VO(Hshed)(Coum)] | 370 ± 0.13 | 1.4× more potent in terms of concentration |
H2Coum | 506 ± 0.28 | |
[VO(Hshed)(4NO2)] | 472 ± 0.02 | 1.3× more potent in terms of concentration |
H24NO2 | 610 ± 0.05 | |
[VO(Hshed)(tbc)] | 449 ± 0.22 | Same effect in terms of concentration |
H2tbc | 416 ± 0.19 | |
[VO(Hshed)(cat)] | 518 ± 0.29 | 5× less potent in terms of concentration |
H2cat | 109 ± 0.05 | |
[VO(Hshed)(3OMet)] | 555 ± 0.23 | 2× less potent in terms of concentration |
H23OMet | 262 ± 0.15 | |
[VO(Hshed)(CN)] | 608 ± 0.07 | 1.4× less potent in terms of concentration |
H2CN | 447 ± 0.04 | |
[V(O)2(Hshed)] | 516 ± 0.31 | Schiff base V-complex scaffold |
Complex | Complex (H2O/DMSO) Absorbance (nm)/ε (×103 M−1) | Complex (7H9/DMSO) Absorbance (nm)/ε (×103 M−1) |
---|---|---|
[VO(Hshed)(dtb)] | (280, 1.161, 4.6); (565, 0.396,1.6) | (280, 1.123,4.5); (565, 0.347,1.4) |
[VO(Hshed)(Coum)] | (255, 1.344, 5.3); (275, 0.727, 2.9); (370, 0.870, 3.5) | (255, 1.562, 6.2); (280, 0.836, 3.3); (325, 0.678, 2.7); (380, 0.901, 3.6) |
[VO(Hshed)(4NO2)] | (255, 1.299, 5.2); (325, 0.533, 2.1); (405, 0.552, 2.2) | (260, 1.445, 5.8); (325, 0.583, 2.3); (420, 0.568, 2.3) |
[VO(Hshed)(tbc)] | (255, 0.854, 3.4); (310, 0.284, 1.1) | (305, 0.613, 2.5) |
[VO(Hshed)(cat)] | (255, 0.951, 3.8); (280, 0.579, 2.3); (375, 0.117, 0.47) | (255, 1.183, 4.7); (280, 0.743, 3.0); (325, 0.349, 1.4); (380, 0.138, 0.55) |
[VO(Hshed)(3OMet)] | (255, 0.831, 3.3); (280, 0.408, 1.6) | (255, 1.162, 4.6); (325, 0.441, 1.8); (385, 0.156, 0.62) |
([VO(Hshed)(CN)] | (255, 1.473, 5.9); (300, 0.666, 2.7) | (255, 1.55, 6.2); (300, 0.789, 3.2) |
[V(O)2(Hshed)] | (255, 0.682, 2.7); (325, 0.200, 0.80) | (255, 0.937, 3.7); (325, 0.312, 1.2) |
[H2dtb] ligand | (280, 0.218, 0.90) | (280, 0.513, 2.1) |
[H2Coum] ligand | (255, 0.371, 1.5); (300, 0.524, 2.1); (345, 0.972, 3.9) | (295, 0.639, 2.6); (350, 0.939, 3.8) |
[H24NO2] ligand | (310, 0.652, 2.6); (350, 0.784, 3.1) | (265, 0.726, 2.9); (320, 0.575, 2.3); (430, 0.767, 3.1) |
[H2tbc] ligand | (275, 0.241, 1.0); (300, 0.203, 0.81) | (255, 0.941, 3.8); (300, 0.574, 2.3) |
[H2cat] ligand | (275, 0.364, 1.5) | (275, 0.642, 2.6) |
[H23OMet] ligand | (270, 0.137, 0.50) | (270, 0.417, 1.7) |
[H2CN] ligand | (250, 1.172, 4.7); (290, 0.453, 1.8) | (250, 1.293, 5.2); (290, 0.792, 3.2) |
Complex | Complex δ (DMSO) or δ (H2O/DMSO) ppm/mM/% | Complex δ (7H9 Media) ppm/mM/% | [VO2-(Hshed)] at δ/[mM]/% | V1 at δ ppm/[mM]/% | V4 at δ ppm/[mM]/% |
---|---|---|---|---|---|
[VO(Hshed)(dtb)]/(H2O/DMSO) | 387, 353 (m)/0.43, 7.36/4.3, 73.6 | -- | -- | −541/2.11/21.1 | −557/0.10/1.0 |
[VO(Hshed)(dtb)]/(7H9 media) | -- | 394, 359 (m)/0.42, 5.45/4.2, 54.5 | -- | −544/4.14/41.4 | -- |
[VO(Hshed)(Coum)]/(H2O/DMSO) | −103/1.2/12 | - | −524/1.5/15 | −544/7.4/74 | |
[VO(Hshed)(Coum)]/(7H9 media) | - | - | - | −544/10/100 | - |
[VO(Hshed)(cat)]/(H2O/DMSO) | 206, 196 (m)/0.73,2.47/7.3, 24.7 | -- | −524/1.79/17.9 | −543/5.02/ 50.2 | -- |
[VO(Hshed)(cat)]/(7H9 media) | -- | 205, 193 (m)/0.32, 1.83/3.2,18.3 | −526/2.10/21.0 | −544/5.74 /57.4 | -- |
[VO(Hshed)(3OMet)]/(H2O/DMSO) | 265, 254(m)/1.47, 4.63/14.7, 46.3 | −520/0.23/2.3 | −540/3.56/35.6 | −560/0.11/1.1 | |
[VO(Hshed)(3OMet)]/(7H9 media) | -- | 265, 253(m)/0.78, 3.15/7.8, 31.5 | -- | −541/6.06/60.6 | -- |
[V(O)2(Hshed)]/(H2O/DMSO) | -- | -- | −524/0.0 | −543/8.78/87.8 | −558/1.22/12.2 |
[V(O)2(Hshed)]/(7H9 media) | -- | -- | −526/0.0 | −541/9.94 /99.4 | −565/0.11/1.1 |
[VO(Hshed)(tbc)]/(H2O/DMSO) | −470, −480/2.0, 0.5/20, 5 | - | - | −544/7.4/74 | |
[VO(Hshed)(tbc)]/(7H9 media) | - | - | −524/0.05/0.5 | −544/9.8/98 | −570/0.15/1.5 |
[VO(Hshed)(CN)]/(H2O/DMSO) | −460/0.1/1 | - | −524/3.3/33 | −544/6.6/66 | |
[VO(Hshed)(CN)]/(7H9 media) | −480/0.05/0.5 | - | −544/9.95/99.5 | - | |
[VO(Hshed)(4NO2)]/(H2O/DMSO) | −460/0.1/1 | - | −524/2.5/25 | −544/6.6/66 | - |
[VO(Hshed)(4NO2)]/(7H9 media) | - | - | - | −544/10/100 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arhouma, Z.; Murakami, H.A.; Koehn, J.T.; Li, X.; Roess, D.A.; Crick, D.C.; Crans, D.C. Exploring Growth of Mycobacterium smegmatis Treated with Anticarcinogenic Vanadium Compounds. Inorganics 2022, 10, 50. https://doi.org/10.3390/inorganics10040050
Arhouma Z, Murakami HA, Koehn JT, Li X, Roess DA, Crick DC, Crans DC. Exploring Growth of Mycobacterium smegmatis Treated with Anticarcinogenic Vanadium Compounds. Inorganics. 2022; 10(4):50. https://doi.org/10.3390/inorganics10040050
Chicago/Turabian StyleArhouma, Zeyad, Heide A. Murakami, Jordan T. Koehn, Xiaorong Li, Deborah A. Roess, Dean C. Crick, and Debbie C. Crans. 2022. "Exploring Growth of Mycobacterium smegmatis Treated with Anticarcinogenic Vanadium Compounds" Inorganics 10, no. 4: 50. https://doi.org/10.3390/inorganics10040050
APA StyleArhouma, Z., Murakami, H. A., Koehn, J. T., Li, X., Roess, D. A., Crick, D. C., & Crans, D. C. (2022). Exploring Growth of Mycobacterium smegmatis Treated with Anticarcinogenic Vanadium Compounds. Inorganics, 10(4), 50. https://doi.org/10.3390/inorganics10040050