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Abstract: Bismuth oxyiodide (BiOI) is a targeted material for its relative safety and photocatalytic
activity under visible light. In this study, a successful simple and energy-saving route was applied
to prepare BiOI through a sonochemical process at room temperature. The characterization of the
prepared BiOI was conducted by physical means. The transmission electron microscope (TEM) image
showed that the BiOI comprises nanoparticles of about 20 nm. Also, the surface area of the BiOI was
found to be 34.03 m2 g−1 with an energy gap of 1.835 eV. The adsorption and photocatalytic capacities
of the BiOI were examined for the indigo carmine dye (IC) as a model water-pollutant via the batch
experiment methodology. The solution parameters were optimized, including pH, contact time, IC
concentration, and temperature. Worth mentioning that an adsorption capacity of 185 mg·g−1 was
obtained from 100 mg L−1 IC solution at 25 ◦C within 60 min as an equilibrium time. In addition, the
BiOI showed a high degradation efficiency towards IC under tungsten lamb (80 W), where 93% was
removed within 180 min, and the complete degradation was accomplished in 240 min. The fabricated
BiOI nanoparticles completely mineralized the IC under artificial visible light, as indicated by the
total organic carbon analysis.

Keywords: bismuth oxyiodide; sonochemical synthesis; indigo carmine; adsorption; visible-
light photodegradation

1. Introduction

The deterioration of natural water resources by synthetic organic compounds is a
significant challenge facing the globe. Wastewater from different anthropological activities
transports the residues of the organic contaminants to the natural water resources. Synthetic
organic dyes are considered high oxygen demanding substances that consume a consider-
able amount of the oxygen in water, causing severe damage to aquatic life [1,2]. In addition,
the turbidity caused by the coloring dyes and suspensions reduce the light penetration,
decreasing the photosynthesis efficiency of the algae and breaking the food cycle in the
aquatic ecosystems [3]. Many physical, chemical and biological methods were employed
to remove pollutants from water and wastewater, including oxidation, solvent extraction,
biodegradation, membrane process, and adsorption, all practiced alone or combined [4–6].

Adsorption and photodegradation are among the most applied water treatment meth-
ods due to their simplicity and excellent efficiency [7,8]. An ongoing research trend is
the innovation of efficient and multifunctional materials for water treatment. Various
substances were recently tested for their adsorption, photocatalytic, and disinfectant prop-
erties on the condition of being environmentally friendly substances. Some nanomaterials
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possessed adsorption and photocatalysis activities, such as zinc oxide and titanium diox-
ide. [9,10]. Most prepared materials utilize the relatively expensive and harmful ultraviolet
radiation (UV). In order to avoid the carcinogenic effects of UV light, the synthesis of
photocatalysts to oxidize organic pollutants under visible light is a recent trend. Hence,
bismuth-based nanomaterials (BiOI, BiOBr, and BiOCl) have been targeted [11–13]. The
photochemical properties of bismuth oxyiodide (BiOI) make it an excellent candidate for
degrading organic pollutants in water [14,15]. The low bandgap-energy (ca 1.8 eV) of bis-
muth oxyiodide, relative safety, and cost motivate researchers to innovate many synthesis
routes. Scientists continuously seek a quick, safe, and economic methodology for preparing
BiOI. Almost 400 papers have been issued about fabricating or utilizing BiOI with various
energy and time-consuming methods in the last twelve years. BiOI was synthesized using
water or organic solvents via hydrothermal or solvothermal techniques [16–19]. A recent
study prepared BiOI nanoflakes via some routes starting at room temperature and then
followed by autoclave incubation [20]. To the best of our knowledge, none of the methods
prepared BiOI nanoparticles entirely at room temperature.

This study hypothesized that the energy and time-consuming incubation step could
be eliminated by synthesizing BiOI entirely at room temperature through a sonochemical
method. The product obtained will be characterized and applied to remove indigo carmine
(IC) dye as a model organic pollutant via adsorption and photodegradation under artificial
visible light.

2. Experimental
2.1. Materials

Potassium iodide (KI) and bismuth nitrate pentahydrate (Bi (NO3)3·5H2O) were
provided from BDH-England. The ethylene glycol was supplied from Sharlau-Spain, and
the indigo carmine dye was from Fisher Scientific (Loughborough, UK).

2.2. Sonochemical Preparation of BiOI Nanoparticles

9.70 g of Bi (NO3)3·5H2O was dispersed in 200 mL tri-ethylene glycol. 3.32 g of KI
were dispersed in 50 mL tri-ethylene glycol. The KI solution was added in small portions
to the bismuth nitrate solution in a temperature-controlled ultrasonic path (Labtech-LTUSB,
Korea) adjusted to 25 ◦C. Following 20 min of sonication, the mixture was poured into
500 mL of distilled water and continuously shaken for 10 min (25 ◦C). The product was
filtered, washed with distilled water, and dried at 105 ◦C for three hours.

2.3. Characterization of BiOI Nanoparticles

The prepared BiOI was analyzed utilizing a powder X-ray diffractometer (D8 Advance,
Bruker, Billerica, MA, USA), scanning electron microscopy (SEM)-JSM-IT300, transmission
electron microscopy (TEM-100 kV), surface analyzer (ASAP 2020 micromeritics, USA).
Fourier transform infrared spectroscopy (FTIR, Bruker TENSOR Series, Germany) was
used to analyze the KBr: sample disk of 20:1 ratio. The diffuse reflectance spectrum of BiOI
was recorded using BaSO4 as a reference by the Shimadzu Uv-vis spectrophotometer (2600i
Uv-vis, Japan).

2.4. Adsorption of IC by BiOI

The solution parameters for IC sorption on BiOI were studied. 240 mL of 20 mg −1 of IC
solution and 100 mg of the prepared BiOI were stirred together for the kinetic investigations.
An aliquot of the mixture was withdrawn each interval of time, filtered, and absorbance was
measured until equilibrium. Further, the optimum pH for the adsorption was examined
within the pH range of 3 to 9. The pH effect on the color of the IC was considered, so
the standard solution (20 mg L−1) was adjusted to the same sample pH before comparing
their absorbance. 10, 20, 50, and 100 mg L−1 of IC solutions were employed to inspect the
concentration’s influence on sorption by BiOI. In addition, the temperature impact on the
sorption process was examined at 20 ◦C, 35 ◦C, and 50 ◦C using the same concentrations.
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2.5. Photodegradation of IC by BiOI

The synthesized BiOI was tested for photodegrading IC in synthetic polluted water.
The process was conducted by mixing 50 mg of BiOI with 200 mL of 20 mg L−1 IC-solution.
The mixture was stirred for 2 h in darkness, then placed under tungsten lamb (80 Watt) [21].
The remaining concentration of IC was monitored using a UV-VIS-spectrophotometer.
Additionally, the total organic carbon (TOC) results of the filtered sample and that with the
BiOI suspension were used to propose the mechanism of IC degradation.

3. Results and Discussion
3.1. Characterization

Figure 1 revealed the surficial structure of the synthesized BiOI being explored by SEM.
The BiOI presented a nanosheet structure with a 27.0 to 48.0 nm thickness range. In addition,
the elemental composition of the sonochemically-prepared BiOI was carried out using
EDX. The obtained results (Figure 2a) showed that the prepared material was composed of
bismuth, iodide, and oxygen at 58.1%, 6.1%, and 33.8%, respectively. These practical results
are consistent with the theoretical composition of BiOI, the bit of variation can be attributed
to adsorbed-moisture revealed in the FT-IR results. In addition, the elemental mapping
monitored in Figure 2b–d indicated an excellent homogeneity for the Bi, O, and I elements.
Further, the fabricated BiOI nanosheet’s detailed morphology was examined using TEM.
Figure 3a showed clusters of particles ranging between 85 to 190 nm, and these clusters are
composed of smaller nanoparticles in the range of 5 to 10 nm (Figure 3b). This fast method
yields smaller particles than more sophisticated and energy-consuming methods [22–25].
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The XRD was utilized to examine the crystallography of the as-synthesized BiOl. The
resulting diffraction pattern in Figure 4a corresponds to the BiOI-tetragonal lattice structure
(JCPDS 00-010-0445) [26]. The sharp and intense peaks at 2θ◦ of 29.6 and 31.6 indicated
good crystallinity for this product. These findings suggested an efficient performance for
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the prepared BiOI concerning the charge separation and transfer during the photodegra-
dation [27]. Furthermore, Bragg’s angle was employed in determining the crystal size via
Debye–Scherer’s relation expressed by Equation (1).

D =
k· λ

β cos θ
(1)
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Figure 4. (a) XRD pattern for the synthesized BiOI nanoparticles; (b) the FT-IR vibration bands for
the prepared BiOI nanoparticles; (c) the surface characteristics for the synthesized BiOI nanoparticles;
(d) the energy-band-gap for the fabricated BiOI nanoparticles.

D, λ, and β represent the average crystal size, radiation wavelength, and peak width
at its half-maximum.

The average crystal size for the room temperature-synthesized BiOI was about 17 nm
by all peaks included in the calculation, while 15 nm crystal size was obtained when the
principal peak at 2θ◦ of 29.6 was employed. The XRD average crystals size of 17 nm agreed
with the TEM results since the ultrasmall particles were amorphous, and the diffraction
peaks resulted from the larger ones, which were crystalline.

Figure 4b monitored the FTIR results for the sonochemically synthesized BiOI. The
vibration peaks between 400 cm−1 to 850 cm−1 correspond to the Bi-I, O-I, and Bi–O bonds.
The broadband between 3200 cm-1 to 3500 refers to an O-H of adsorbed moisture [28,29].
Worth mentioning that the prevalence of water molecules on the BiOI via the FT-IR may
justify the minor increase of oxygen within the EDX results.

The surface area (SA), pore diameter (PD), and pore volume (PV) of the synthesized
BiOI were determined via the N2 adsorption-desorption method. Figure 4c revealed that
BiOI exhibited a hysteresis loop of type (III) distinctive for a non-rigid-platelike aggregate
with cylindrical macropores [18,30–36]. The obtained SA, PD, and PV values for the
BiOI were 34.03 m2g−1, 1.579 nm, and 0.054 cm2·g−1, respectively. Compared to some
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recent methods in the literature, the sonochemically fabricated BiOI showed better surface
properties [27,37–39]. One of the main goals of using BiOI as a photocatalyst is to displace
the harmful ultraviolet light with the safe-visible light. Due to that, the optical properties
of BiOI were studied in the range of 300 nm to 800 nm. The Tauc plot (Equation (2))
was employed in determining the bandgap-energy (Eg) for the synthesized photocatalyst.
As monitored in Figure 4d, the Eg was 1.835 eV, which is within the typical Eg range
for BiOI [40–43]. These results nominated the prepared BiOI nanoparticles as a possible
photocatalyst within the visible light region.

αhγ = A
(
hγ− Eg

)n/2 (2)

where: h represents the Plank constant, α and γ are the absorption coefficient and photonic
frequency; n is an interband transition constant (for BiOI, n = 1) [44].

3.2. Possible Formation Route of BiOI Nanoparticles

Preparing a nanoscale BiOI is one of the essential targets to enhance photocatalytic
performance. The long digestion time in the mother solution may produce larger particles;
therefore, short digestion times are crucial for obtaining nanosized particles. This method
prepared BiOI nanoparticles by avoiding heating and long digestion time; in addition to
that, sonication was employed to prevent the formation of large particles and disintegrate
the formed ones. In addition, triethylene glycol was used to obtain a clear solution and
may serve as a surfactant for additional prevention of particle lumping. The formation
route for BiOI can be explained by Equations (3)–(6) [26].

Bi(NO3)3· 5H2O → Bi3+ + 3NO−3 + 5H2O (3)

Bi3+ + 2H2O → Bi(OH)+2 + 2H+ (4)

NO−3 + Bi(OH)+2 → BiONO3 + 2H2O (5)

I− + BiONO3 → BiOI ↓ +NO−3 (6)

3.3. Adsorption of IC on the BiOI

The effect of contact time on IC sorption by the prepared BiOI is depicted in Figure 5a.
The adsorption trend increased progressively until 60 min, which was almost sufficient to
reach equilibrium. Figure 5b showed that the obtained qt value increased proportionally
with the IC concentration until it reached 184.95 mg·g−1 with the 100 mg L−1. This high
qt with the more concentrated dye solution indicated the usability of this nanomaterial
for the removal of dyes from industrial wastewater where high pollutant concentrations
were expected.

The influence of temperature on IC sorption by BiOI was investigated (Figure 5b). The
inverse proportionality of qt with the temperature of the solution implies the exothermic
nature of sorption [45].

Figure 5c illustrates the impact of solution pH on the sorption process. The obtained
qt values indicated the suitability of pH 6 for the IC adsorption on the sonochemically-
synthesized BiOI. With the low pH values (high H+ concentration), the electron-rich sites
on the dye and/or BiOI may be protonated. On the other hand, at high pH values (-OH
high concentration), the hydroxyl groups may compete with pollutants on the adsorption
sites of sorbent.
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Figure 5. The influence of (a) contact time, (b) concentration at different temperatures, and (c) pH on
the adsorption of IC on BiOI nanoparticles.

3.4. Adsorption Kinetics

The adsorption capacity, which is the milligrams of pollutant adsorbed per one gram of
sorbent (qt, in mg·g−1), was calculated via Equation (7). The pseudo-first-order (PSFO) and
pseudo-second-order (PSSO) kinetic models (Equations (8) and (9)) were used to explore the
adsorption rate. An examination of the rate-control mechanism for adsorption was carried
out via the liquid-film-diffusion model (LFD) (Equation (10)) and the intraparticle-diffusion
model (IPD) (Equation (11)) [46,47].

qt =
(Co − Ct) V

m
(7)

ln
(
qe − qt

)
= ln qe − k1· t (8)

1
qt

=
1

k2· q2
e t

+
1
qe

(9)

qt = KIP× t
1
2 + Ci (10)

ln(1− F) = −KLF× t (11)

where: m, v, Ct, and Co were sorbent mass (g), solution volume (mL), and solution con-
centration (mg L−1) at time t and zero, respectively; qe (mg·g−1) represent the adsorp-
tion capacity at equilibrium; k1 (min–1), k2 (g mg–1 min–1), kip (mg·g−1 min−1/2), and
kLF (min–1) are the PSFO, PSSO, IPDM, and the LFDM constants, respectively. Ci (mg·g−1)
is the boundary layer factor.

Figure 6a,b illustrated the linear plot for the PSFO and PSSO kinetic models. The
R2 values were 0.948 and 0.873 for the PSFO and PSSO, while their qt values were
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46.282 mg g−1 and 4.348 mg·g−1, respectively. These findings showed that the IC ad-
sorption on BiOI obeyed the PSFO kinetic model [48]. The investigation of the step control
mechanism of IC adsorption on BiOI was monitored in Figure 6c,d, and the Supplementary
(Table S1). The IPDM and LFDM exhibited equilibrium constants of 4.367 mg·g−1 min−1/2

and 0.053 min–1, respectively. The R2 values were 0.965 and 0.948 for IPDM and LFDM,
suggesting that IPDM controlled the IC sorption. These results indicated that IC adsorption
mainly depends on the migration from the solution to the sorbent’s surface, supporting the
PSFO agreement. Nevertheless, the obtained Ci value of 0.533 indicated slight participation
of LFDM in controlling the IC sorption on BiOI [49].
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Figure 6. (a) PSFO, (b) PSSO, (c) IPDM, and (d) LFDM investigations for the adsorption of IC on
BiOI nanoparticles.

3.5. Adsorption Isotherms

Many models have been used in describing the adsorption isotherms. Among these,
the Langmuir (LIM, Equation (12)) and Freundlich (FIM, Equation (13)) are frequently used,
which is the case in this study.

1
qe

=
1

KL qm
.

1
Ce

+
1

KL
(12)

ln qe = ln KF +
1
n

ln Ce (13)

KL (L mg−1) and KF (L mg−1) represented the LIM and FIM constants. Ce (mg L−1)
is the pollutant’s concentration at equilibrium, qm (mg·g−1) is the maximum adsorption
capacity, while n (arbitrary) is the Freundlich-heterogeneity factor.

Figure 7 showed the plots of LIM and FIM, and their calculated parameters were
included in (Table S1). The adsorption of IC on BiOI fitted the LIM with an R2 of 0.943. On
the contrary, the FIM findings of R2 and (1/n) values of 0.878 and 1.125 indicate that the
multilayer sorption was unfavorable [50–54].
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Figure 7. (a) Langmuir isotherm and (b) the Freundlich isotherm for IC adsorption on BiOI at 25 ◦C
using 10, 20, 50, and 100 mg L−1 IC solutions.

3.6. Thermodynamic

The thermodynamics was explored to better understand the adsorption of IC onto the
fabricated BiOI (Figure 8). Equation (14) was employed to compute the entropy (∆S◦) and
enthalpy (∆H◦), then after the Gibbs free energy (∆G◦) was calculated by applying their
values in Equation (15), and the obtaining were gathered in (Table S1).

ln Kc =
∆Ho

RT
+

∆So

R
(14)

∆Go = ∆Ho − T ∆So (15)
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Figure 8. The thermodynamic investigation for IC adsorption on BiOI at 25 ◦C, 35 ◦C, and 45 ◦C for
(a) 10, (b) 20, (c) 50, and (d) 100 mg L−1 solutions.
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The value of ideal-gas-constant R was applied as 0.0081345 kJ mol−1 in all calculations.
The computed ∆H◦ values for 10, 25, 50, and 100 mg L−1 were −33.477, −80.596, −115.170,
and 104.915 kJ mol−1, respectively, indicating exothermic sorption. In addition, the ∆G◦

values for these concentrations were −2.283, −2.253, −4.436, and −2.736 kJ mol−1, indi-
cating the spontaneity of adsorptions at low temperature, and supporting the exothermic
finding [55–59]. The decrease of ∆G◦ proportionally with the concentration encourages
using this sorbent for water treatment. Furthermore, the chemisorption nature of this
process can be predicted from the ∆H◦ values of more than 80 kJ mol−1.

3.7. Photocatalytic Degradation of IC under Visible Light

According to some recent studies, the generation of reactive hydroxyl radicals requires
about 1.9 electron volt that BiOI nanoparticles can provide, according to the obtained
Eg [60–62]. In order to assess the kinetic order of the photoreaction, a UV-vis spectropho-
tometer was used to monitor the IC concentration. Figure 9a illustrated the first-order
kinetic study expressed by Equation (16).

ln
Ct

Co
= kt (16)
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Figure 9. (a) The first-order kinetic investigation and (b) reuse study for BiOI in degrading IC in
water under artificial visible light.

Co and Ct represent the IC concentrations at time zero and t (min), while k1 is the
first-order rate constant. The photocatalytic elimination of IC in water fitted the first-
order model with a good agreement (R2 = 0.934, and a k1 = 1.83 × 10−2 min−1). 93% of
the IC was degraded efficiently within three hours, while the complete elimination of
the IC was accomplished within four hours. Compared to previous literature findings,
the sonochemical-BiOI possessed competitive results (Table 1). Furthermore, the BiOI
photocatalyst was tested for reuse in degrading IC in four consecutive batches of spiked
water (Figure 9b). The used BiOI was filtered, washed with 100 mL of distilled water, and
reused again. Compared to the virgin batch, only a 30 min delay was found within the
reuse durations. These results demonstrated that the sonochemical-BiOI is highly effective
for degrading IC in polluted water. Possibly, some degradation products suppressed part
of the active photocatalyst sites, resulting in this typical slight reduction [63,64].
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Table 1. Compares the photocatalysts’ photodegradation with the sonochemically fabricated BiOI in
this study.

Nanomaterial Pollutant Photodegradation
Percentage/Time Reference

BiOI Indigo carmine 93% within 180 min This study
BiOI Rhodamine B 81% within 180 min [65]
BiOI Methyl orange 40% within 180 min [44]
BiOI Phenol 87% in 180 min [21]
BiOI Tetracyclene 33% within 120 min [63]

CuFe2O4 Indigo carmine 35% within 120 min [66]
CuFe2O4-1% Zr Indigo carmine 46% within 120 min [66]
CuFe2O4-3% Zr Indigo carmine 55% within 120 min [66]
CuFe2O4-5% Zr Indigo carmine 71% within 120 min [66]

3.8. Mechanism of Photocatalytic Degradation

The TOC was used to investigate the photocatalytic degradation of IC, and the Perkin
Elmer 2400 CHNS organic elemental analyzer (USA) was employed for this purpose. The
standard 50 mg L−1 results for carbon and nitrogen were 0.12% and 0.02%, respectively.
Following degradation, an aliquot was filtered, while a second aliquot containing the BiOI
suspension was analyzed to determine the fate of the adsorbed IC. After degradation,
both samples showed a 0.0% carbon and nitrogen content. These findings indicated that
The IC had been mineralized to CO2 and H2O. Based on the TOC findings, the visible
light irradiation may generate holes (h+) and electrons (e-) in the valence and conduction
bands (VBs and CBs) of the BiOI nanoparticles. The h+ may interact with H2O/OH− and
produced hydroxyl radicals (OH•) known for their capability to degrade IC in water [67,68].
The following Scheme 1 illustrates a possible route for the mineralization of IC.
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Scheme 1. The proposed degradation route for IC dye under visible light using the prepared
BiOI nanoparticles.

4. Conclusions

An energy-saving and fast sonochemical method was successfully used to prepare
BiOI nanoparticles entirely at room temperature. This method eliminated the time- and
energy-consuming incubation step in mutual preparation practices. The resulting BiOI was
about 20 nm in diameter, with a surface area of 34.03 m2 g−1 and an energy gap of 1.887 eV.
The adsorption of IC on BiOI fitted the PSFO, and the intraparticle diffusion step controlled
the adsorption. Moreover, the BiOI showed an adsorption capacity of 185 mg g−1. The
thermodynamic data indicated that the sorption was spontaneous and exothermic. In
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addition, the BiOI showed an excellent photocatalytic activity by degrading 93% of the IC
within 180 min under visible light. The consistent high efficiency indicated the feasibility of
using BiOI within the four reuse cycles. The TOC results revealed that IC was completely
mineralized under artificial visible light using the Sonochemically prepared BiOI.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/inorganics10050065/s1, Table S1: The obtained parameters for the
adsorption kinetics, isotherms, and thermodynamics of the IC sorption on the BiOI nanoparticles.

Author Contributions: Conceptualization, M.R.E. and B.Y.A.; methodology, N.Y.E., F.A.A. and
A.H.A.; software, B.Y.A.; investigation, K.H.I., N.Y.E. and F.A.A.; writing—original draft preparation,
review and editing, M.R.E. and B.Y.A.; supervision, and funding acquisition, M.R.E. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was supported by the Deanship of Scientific Research, Imam Mohammad Ibn
Saud Islamic University, Saudi Arabia, Grant No RG-21-09-74.

Data Availability Statement: The data of this article is available from the corresponding author
under reasonable request.

Conflicts of Interest: The authors declare that they have no known competing financial interest or
personal relationship.
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