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Abstract: The quality and the performance of hybrid perovskite (HP)’s films strongly depend on the
complete conversion into MAPbI3 of a spin-coated solution of methylammonium iodide (MAI) and
PbI2. Highly crystalline PbI2 on a substrate limits such a conversion and, consequently, the HP’s solar
cell performances. We investigate for the first time the use of short-chain organic acids as additives
in a non-complexing solvent like γ-butyrolactone (GBL), that can retard retard the crystallization of
PbI2. Based on XRD analyses of the spin coated films, the acetic acid is the most effective additive in
retarding the PbI2 crystallization, making Pb2+ available for a subsequent reaction with MAI. These
results open a new experimental path for fabricating perovskite films by single or sequential step
methods involving acid additives.
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1. Introduction

The study of hybrid perovskite (HP) structure and applications is extensively dominat-
ing the current photovoltaic scene due to their exceptional properties [1–3] along with low
production costs. However, HPs suffer from poor environmental and thermal stability, and
very often from inadequate quality of the polycrystalline films in terms of traps and grain
boundaries, which dramatically affect the performance of the photovoltaic devices [4,5].

A single step or a sequential two-step deposition method has been applied for the
fabrication of films of lead perovskites.

The single step uses a mixture of PbX2 and CH3NH3X in common solvents like
dimethyl sulfoxide (DMSO), dimethylformamide (DMF), and γ-butyrolactone (GBL), as
well as in combinations. The solvents used to prepare hybrid lead halide perovskites
strongly influence the crystallization process of perovskite [6]. Indeed, the coordination
and the binding ability of the solvents affect the formation of the intermediate adducts
with the metal ion. Moreover, the solvent’s boiling point controls the evaporation rate and
drives the nucleation/crystallization mechanism that strongly influences the film structures
and morphology [7].

However, obtaining thin films with suitable characteristics through low-cost solution
processing is not trivial because the uncontrolled deposition of the HP reagents can occur,
producing a significant variation in the morphology and the composition of the films reduc-
ing the prospects for practical applications [8]. In particular, PbI2 can remain after the ther-
mal treatment of the film as an unreacted residual or as a by-product of the CH3NH3PbI3
(hereafter called MAPI), degradation [9], whereas the organic cation CH3NH3I (hereafter
called MAI) volatilizes or decomposes at temperature above 110 ◦C [10].

In the two-step sequential deposition of MAPI, PbI2 is first deposited on a substrate
from a solution and subsequently transformed into the perovskite by exposing it to a
solution of CH3NH3I [11]. The arrangement of PbI2 on the substrate is essential for the
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quality of the resulting HP films. When PbI2 results in a uniform amorphous film it is ready
to completely react with the organic component (CH3NH3I) to generate perovskite crystals
at the second step within few minutes [11].

As reported in the literature, strong interactions between the solvent and Pb2+ and
the high solubility of PbI2 hamper the formation of crystalline PbI2 in the solvent and
consequentially in the film [11–14].

The PbI2 crystals can be separated from the reagent solution for either the one-step or
for the two-steps deposition.

For the first time in MAPI film fabrication, we investigated the use of complexing
organic agents able to sequestrate Pb2+ from the solution retarding the crystallization
of PbI2.

Long-chain carboxylic acids have been previously reported as a colloidal synthesis
strategy for lead halide nano-sheets with a thickness below 100 nm [15,16].

The tendency of the carboxylic group of each acid to interact with Pb2+ is strictly
connected with the polarity of the carboxyl group, which strongly influences the resulting
carboxylic acid constant (Ka, often reported as Cologarithm pKa) [17,18].

A very important factor that determines even considerable variations in the polarity
of carboxyl group and consequently in the pKa, is the type of group bound to the carboxyl:
the electron-attractors cause a decrease in pKa while the groups electron donors increase
it. Conversely, the alkyl groups (–CH3) are weakly electron-repulsive and they accentuate
the negative charge on the oxygen of the carboxylate ion, determining a decrease in acidity.
For this reason, the acetic acid (CH3COOH) is about one order of magnitude weaker than
formic acid (HCOOH) and for the same reason also, the pKa of the long-chain carboxylic
acids that were adopted for the synthetic colloidal strategy falls within the same 4–5 range
of pKa [17].

The anchoring effect of carboxylic acids on perovskite has recently attracted significant
attention in the production of more resistant hybrid perovskite for solar cells. In particular,
the formic acid is active in controlling the colloidal size and free ion concentration in
precursor solution towards the formation of large crystals in the functional films. Moreover,
the addition of fluorinated carboxylic acids plays a crucial role in modulating the grain
size, film quality, and crystallinity of perovskite films. Additionally, it improves the
hydrophobicity of the perovskite layer and increases the ambient stability of the device by
surface passivation [19–22].

Although the length of the carboxylic acid chain is determinant in developing the
colloidal suspension that determines the PbI2 arrangement in nano-sheets and peculiar
geometries [15,16], such as rings, the literature on the complexing effect of short-chain
carboxylic acids is more limited [19–21].

With the aim of controlling the generation of amorphous PbI2, we applied short-chain
carboxylic acids as additives in the single-step deposition of HP on the ITO substrate.
To select the best performing short-chain acid additive, we chose GBL as the solvent
because of its poor coordination properties on the precursors that do not interfere with the
improvement due to the coordination of the acid additive. Moreover, the low solubility
of the precursors in GBL can highlight the complexing effect of the additive. We chose
FORMIC ACID, ACETIC ACID and TRIFLUOROACETIC ACID, which are similar short-
chain acids in structure and dimensions but with significantly different acidity.

2. Results and Discussion

The morphology of the starting series of thin films prepared as reported in Table 1,
Materials & Methods section, was captured by scanning electron microscopy (Figure 1) at
two different magnifications.
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Table 1. Acid additives details.

Acid Name Structure Film Name Molar Mass
(g/mol)

Boiling
Temperature (◦C)

Density
(g/cm3) pKa * Added Acid

(µL)

NO-ACID O # # # # 0

Acetic
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Figure 1. SEM images (top view) at different magnifications of films prepared under the conditions
reported the Materials & Methods section. The films are named O (no acid additive), A (acetic acid),
B (formic acid), C (trifluoracetic acid).

From the SEM images, it is evident that the films are not uniform but consist of
round domains of sub-micrometer size, very often coalescing in larger islands. Despite the
differences in the acid additives, all the starting films are very similar in appearance.

It is worthy noting that SEM images at maximum magnification do not show micrometre-
sized PbI2 sheets or rings having a uniform hexagonal shape from 2 µm to 10 µm, as
reported in the case of PbI2 colloidal suspensions from long-chain carboxylic acids [15,16].

On these films, specular XRD patterns were recorded in air immediately after the
thermal treatment in controlled atmosphere (to limit the deterioration process). As reported
in Figure 2, the XRD patterns of all the deposited films in GBL, named A, B, C, O with and
without additives, show diffraction peaks corresponding to the 110, 211, 202, 220, 310, 224,
and 314 reflections of an orthorhombic perovskite crystalline structure. The analysis of the
relative intensity of the different reflections indicates that the majority of crystallites are
randomly oriented, with only weak preferential orientation with the (110) parallel to the
surface, as commonly observed in MAPI films [23]. Additionally, the presence of the peak
corresponding to the 001 reflection of PbI2 demonstrates that the conditions adopted for
the film fabrication produce a mixture of MAPI and PbI2.
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treatment in nitrogen atmosphere (RH 20 ± 3%). The films are named O (no acid additive), A (acetic
acid), B (formic acid) and C (trifluoracetic acid).

To evaluate if the acid addition could be an effective method of retarding the PbI2
crystallization and leave PbI2 available to react with the MAI in ambient conditions, we
followed the approach reported by J. Burschka et al. [11]. We tested all the films by dipping
them into a solution of MAI (10 mg ml−1) in anhydrous 2-propanol for 20 s followed by
rinsing in 2-propanol. Afterwards, the films were fast dried under nitrogen flux. All these
treatments were performed in ambient conditions. After the treatment the films were
named O1, A1, B1 and C1.

The XRD patterns recorded after the dipping treatment with MAI (Figure 3), show
that the O1, B1, C1 films maintained the PbI2 phase, present only in traces in the film A1.
In the film O1 the not complete MAPI formation is evidenced by the presence of MAI and
(CH3NH3)4PbI6•2H2O diffraction peaks, weakly visible also for C1.

We tried a second attempt with film O1, B1, C1 since the first attempt was not effective.
In the second treatment the time of immersion in MAI solution, was increased to 60 s.

The films treated for the second time were renamed in O2, B2 and C2.
As shown in Figure 4, strong peak corresponding to PbI2 phase is visible for all the

samples despite the additional treatment and the longer time of immersion.
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The vertical dimension of the coherently diffracting domains was estimated by the
analysis of the 110 peak, by using the Scherrer’s equation and assuming Gaussian diffraction
lines and a shape factor of 0.9. We obtain a vertical dimension of 47 nm for sample O, which
slightly decreases, more or less, depending on the specific treatment to 37 nm (O1 and O2),
36 nm (A1), 43 nm (B1 and B2) or 45 and 43 nm (C1 and C2). These results highlight that the
exposition time to anhydrous 2-propanol, in the investigated time range, does not affect
the crystalline size.

The relative amount of crystalline PbI2 is determined by considering the ratio of the
integrated area of the peak 100 of PbI2 and that of the peak 110 of MAPI. For such analysis,
Gaussian distribution functions are used to fit the diffraction peaks. The results of the
analysis are reported in Table 2.

For film A (acetic acid as additive), this ratio attains the lowest value, indicating a
lower content of crystalline PbI2, and it even falls below the detection threshold after the
treatment with MAI.

Since the same stoichiometry was used for all films, this points out to a reduced
crystallization of PbI2 in favor of the formation of amorphous PbI2.
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Table 2. Integrated areas of 100 of PbI2 and of 110 of MAPI and their ratio.

Film PbI2 100 Area
(arb. Units)

MAPI 110 Area
(arb. Units) PbI2 100/MAPI 110 (%)

O 42 112 38

A 29 135 21

B 53 118 45

C 59 112 53

O1 - 90 0

A1 - 157 0

B1 87 100 87

C1 34 122 28

O2 31 128 24

B2 90 101 89

C2 42 120 35

On the other hand, with the MAI treatment, the content of crystalline PbI2 in film C
(trifluoroacetic acid as additive) decreases but never reduces to zero, and in film B (formic
acid as additive), it even increases.

For the film prepared without additive the ratio decreases after the first treatment
with MAI solution in ambient conditions, because no PbI2 is observed but MAI and
(CH3NH3)4PbI6•2H2O are observed nevertheless a subsequent treatment induces
PbI2 crystallization.
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On the bases of the literature on the control of PbI2 crystallization [11,12], we can
conclude that in the conditions adopted in the experiments, only the acetic acid is effective
in retarding the PbI2 crystallization.

The acetic acid and the trifluoroacetic acid have the same chain length (as reported
in Table 1). On the other hand, the formic acid chain has only a slightly higher pKa than
the acetic acid as indicated by the different pka values: −1.25 of the TRIFLUOROACETIC
ACID (the strongest), 3.75 of the FORMIC ACID (intermediate acidity) and 4.74 ACETIC
ACID (lower acidity).

Although higher acidity corresponds to a higher polarity of the carboxylate groups,
the pKa does not seem to be the only factor in retarding the crystallization of PbI2, since the
most effective additive shows the highest pKa among the selected additives.

Conversely, acetic acid is the only one, among the selected acidis, with a boiling point
above the temperature, 110 ◦C, the temperature adopted for the thermal treatment of the
films. The other two acid additives have a boiling point below 110 ◦C. The values reported
for pure acids are not expected to increase significantly in an organic solvent according to
the ebullioscopic constants and the boiling point elevation theory.

Hence, the permanence in the solution of the carboxylic acid deserves to be taken
into account. In particular the evaporation of the acid additive upon thermal treatment at
110 ◦C of the spin-coated films has to be considered.

By fundamental chemical considerations, we can assert that in the same experimental
conditions, the acid-additive with the boiling temperature above the treatment temperature
(110 ◦C), remains longer in the liquid phase than the others. Hence, Pb2+ can stay longer
sequestered by the carboxylate, which retards its crystallization.

Comparative investigations are underway to define an optimized procedure with
acids of various boiling temperatures acids to implement the single and double-step
MAPI deposition.

In conclusion, we propose a new approach to MAPI film fabrication based on control-
ling the reactivity of PbI2 in the wet deposition through common acid additives.

We found that due to the physical characteristics, like its boiling temperature, acetic
acid as an additive can efficiently sequestrate the cation (Pb2+) from the reagent solution at
a temperature below its boiling point and release it as reactive PbI2 to the MAI. We believe
this method that is based only on the physical characteristics of the acid additives could
represent a novelty in solar cell fabrication.

3. Materials & Methods
3.1. Perovskite Film Preparation

Perovskite precursor solution was obtained by dissolving lead iodide (PbI2) and
methylammonium iodide (MAI) in γ-butyrolactone (GBL) at a concentration of 1 mol/L
in a 1:1 molar ratio. The reagents were kept under stirring at 60 ◦C overnight to dissolve
the salts. The solution was filtered using a nylon filter with 0.45-µm pore size to obtain
transparent solution hereafter called MAPI.

3.2. Adding Selected Acids

Following the literature, where acids were considered in the bulk crystallization, we
decided to add 5.3 × 10−4 moles of the selected acid per 1 × 10−3 moles of the reagents in
the equimolar GBL solution [24].

Each acid was added to 0.5 mL of the MAPI solution immediately before the deposition
by spin coating on ITO substrate. The chemical characteristics of the selected acids, together
with structures, and the amount of each acid added to 0.5 mL of MAPI, are reported
in Table 1.

3.3. Film Deposition

The deposition was performed in a glove box in a nitrogen atmosphere by spin coating
25 µL of each solution on 1 × 1 cm Fluorine doped tin oxide coated glass slide (FTO) as
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substrates. Afterwards they were placed in the middle of a preheated hot plate at 110 ◦C
for 70 min. The relative humidity in the glove box was 20 ± 3% during the entire process.

3.4. Film Characterization

Scanning electron microscopy (SEM) characterization.
SEM observations on as prepared samples were performed using a Zeiss FEG-SEM

LEO 1530 electron microscope at 5 kV equipped with an Oxford INCA energy dispersive
X-ray spectrometer for elemental analysis.

XRD measurements.
Film structure was characterized by performing specular XRD θ/2θ measurements

by using a SmartLab-Rigaku diffractometer, equipped with a rotating anode (CuKα1,
λ = 1.54180 Å) followed by a parabolic mirror, to collimate the incident beam, and a
series of variable slits (placed before and after the sample position) resulting in an angular
divergence of the diffracted beam of 0.03◦. A 0D point detector is used to collect the
diffracted beam.
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