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Abstract: Energy levels of pentacoordinate d5 to d9 complexes were evaluated according to the
generalized crystal field theory at three levels of sophistication for two limiting cases of pentaco-
ordination: trigonal bipyramid and tetragonal pyramid. The electronic crystal field terms involve
the interelectron repulsion and the crystal field potential; crystal field multiplets account for the
spin–orbit interaction; and magnetic energy levels involve the orbital– and spin–Zeeman interactions
with the magnetic field. The crystal field terms are labelled according to the irreducible representa-
tions of point groups D3h and C4v using Mulliken notation. The crystal field multiplets are labelled
with the Bethe notations for the respective double groups D’3 and C’4. The magnetic functions,
such as the temperature dependence of the effective magnetic moment and the field dependence
of the magnetization, are evaluated by employing the apparatus of statistical thermodynamics as
derivatives of the field-dependent partition function. When appropriate, the formalism of the spin
Hamiltonian is applied, giving rise to a set of magnetic parameters, such as the zero-field splitting D
and E, magnetogyric ratio tensor, and temperature-independent paramagnetism. The data calculated
using GCFT were compared with the ab initio calculations at the CASSCF+NEVPT2 level and those
involving the spin–orbit interaction.

Keywords: electronic terms; spin–orbit multiplets; zero-field splitting; pentacoordinate complexes

1. Introduction

A correct interpretation of electronic spectra for transition metal complexes (d-d
transitions), magnetometric data (magnetic susceptibility and magnetization), and spectra
of electron spin resonance requires appropriate theoretical support. A traditional approach
is represented by the crystal field theory, which is well elaborated for octahedral complexes
(Oh symmetry), even with tetragonal (trigonal) distortion (D4h, D3d) [1–5]. Analogously,
tetrahedral patterns (Td) and their distortion daughters to prolate and/or oblate bispheoids
(D2d) are also known. However, one is rather helpless when dealing with pentacoordination
in its limiting cases represented by trigonal bipyramids (D3h) and tetragonal pyramids
(C4v) and especially for intermediate geometries on the Berry rotation path (C2v).

A target of the present work is to elucidate a comprehensive view of the crystal
field terms and crystal field multiplets in the case of pentacoordinate d5 to d9 complexes.
Whereas multielectron crystal field terms are labelled according to Mulliken notation (A,
B, E, T), the involvement of the spin–orbit interaction requires a passage from common
symmetry point groups to double groups; therefore, crystal field multiplets are labelled
according to Bethe notation (Γ1 to Γ8).

Geometries belonging to point groups Oh, Td, D4h, or D2d are mostly omitted hereafter;
numerical computer-assisted treatment is necessary when ligands occupy arbitrary posi-
tions. This approach is slightly more complicated, involving algebra of complex numbers
due to the occurrence of complex spherical harmonic functions fixing the ligand positions.
The treatment used below is termed the Generalized Crystal Field Theory, as outlined
elsewhere [6].
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The eigenvalues of the model Hamiltonian refer to the energy levels at a given approx-
imation. The eigenvectors bear all information about the symmetry of the wave function;
therefore, they can be utilized to assign irreducible representations (IRs) either of the crystal
field terms |dn : (LS); G : Γγa〉 or the crystal field multiplets

∣∣dn : (J); G′ : Γ′γ′a′
〉
. The irre-

ducible representation within point group G is Γ, γ (its component when IR is degenerate),
and a (the branching (repetition) number). The same holds true for double group G′.

2. Results

The generalized crystal field theory (GCFT) applied below is fully described elsewhere,
along with the closed formulae for the matrix elements of the involved operators in the
basis set of the electronic atomic terms |Ψ〉 = |dn : νLSML MS〉, where the apparatus of the
irreducible tensor operators has been utilized [6,7]. (Here, the seniority number (ν) for the
terms can distinguish between terms possessing the same set {LS}; the quantum numbers
adopt their usual meaning [8]). These matrix elements refer to five operators:

(a) Interelectronic repulsion
〈
Ψ′
∣∣V̂ee

∣∣Ψ〉 parametrized by the Racah parameters BM and CM;
(b) Crystal field potential

〈
Ψ′
∣∣V̂cf

∣∣Ψ〉 depending upon crystal field poles (strengths) Fk(RL)
of the k-th order (k = 4, 2) for each ligand (L) and its position;

(c) Spin–orbit interaction
〈
Ψ′
∣∣V̂so

∣∣Ψ〉 depending upon the spin–orbit coupling constant (ξM);
(d) The orbital Zeeman term

〈
Ψ′
∣∣V̂lB(B)

∣∣Ψ〉, which eventually involves the orbital reduc-
tion factors; and

(e) The spin Zeeman term
〈
Ψ′
∣∣V̂sB(B)

∣∣Ψ〉, which contains the spin-only magnetogyric
(ge) factor.

The position of ligands (L) is arbitrary and fixed by the polar coordinates {ϑL, ϕL}. The
model Hamiltonian involves three important cases:

1. Diagonalization of (a) + (b) yields the energies of crystal field terms |dn : (LS); G : Γγa〉,
which span the IRs of point group G;

2. Diagonalization of (a) + (b) + (c) produces energies of the crystal field multiplets in
the zero magnetic field

∣∣dn : (J); G′ : Γ′γ′a′
〉
, which span the IRs of double group G′;

3. Diagonalization of (a) + (b) + (c) + (d) + (e) gives the magnetic energy levels in the
applied magnetic field.

The energy levels of crystal field multiplets for the half-integral spin (S = 1/2, 3/2, 5/2)
appear as Kramers doublets and remain doubly degenerate in the absence of a magnetic
field. This is the case of high-spin Fe(III), Mn(II), Co(II), and Cu(II) complexes.

Traditional crystal field theory operates with a set of collective parameters, such as
10Dq = ∆, Ds, Dt, etc., and is useful for cases certain symmetry, such as Oh, Td, and D4h, all
of which are derived from the crystal field poles (F4(L) and eventually F2(L)), e.g.,

• For Oh/D4h: 10Dq = (10/6)F4(xy);
• Dt = (2/21)[F4(xy) − F4(z)];
• Ds = (2/7) [F2(xy) − F2(z)]; and
• For Td: 10Dq = (20/27)F4(xy).

The crystal field poles originate in the partitioning of the matrix elements of the crystal
field potential into radial (R) and angular (A) parts in the polar coordinates (RK, ϑK, ϕK).〈

Ψ′(R, A)
∣∣V̂cf(R, A)

∣∣Ψ(R, A)
〉
=
〈
Ψ′(R)

∣∣V̂cf(R)
∣∣Ψ(R)

〉
·
〈
Ψ′(A)

∣∣V̂cf(A)
∣∣Ψ(A)

〉
(1)

The integration of the angular part yields some values (manually calculated for
some cases, such as Oh symmetry). This part contains the spherical harmonic functions
Yk,q(ϑK, ϕK) for the positions of ligand K, and in general, it is a complex number. The radial
part contains the metal–ligand distance (RK) and defines the crystal field poles:

Fk(RK) =

∞∫
0

R∗nl(r)
rk
<

rk+1
>

Rnl(r)r2dr ≈
〈

rk
〉

/Rk+1
K (2)
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(k = 0, 2, 4), where the integration runs over the electronic coordinates. The matrix elements
of the crystal field operators can be expressed as:〈

lnvLSML MS
∣∣V̂cf

∣∣lnv′L′S′M′L M′S
〉

= δS,S′δMS ,M′S

2l
∑

k=0,2,4

+k
∑

q=−k

[〈
l
∥∥∥Ck

∥∥∥l
〉(

4π
2k+1

)1/2 N
∑

K=1
zKFk(RK)·Y∗k,q(ϑK, ϕK)

]
·
[〈

lnvLS
∥∥∥Uk

∥∥∥lnv′L′S′
〉
(−1)L−ML ·

(
L k L′

−ML q M′L

)] (3)

where for the reduced matrix elements
〈

lnvLS
∥∥∥Uk

∥∥∥lnv′L′S′
〉

,
〈

l
∥∥∥Ck

∥∥∥l
〉

and the 3j symbols,
closed formulae exist [6,7] and can be evaluated with a desktop computer.

In practice, the crystal field poles are not subject to evaluation; they are taken as
parameters of the theory and depend on the quality of the ligand (halide, amine, phosphine,
cyanide, carbonyl, etc.), as well as the quality and oxidation state of the central atom. For
practical applications, the spectroscopic series is used according to the ∆-value [4]. The
values of ∆ can be deduced from the transitions observed in the electronic d-d spectra.
Moreover, the ∆ value can be estimated based on the empirically determined increments f L
for the ligands and gM for the central atoms

∆ = fL·gM (4)

However, the same ligand can produce different crystal field strengths depending on
the actual metal–ligand distance (cf. Equation (2)). For instance, the -NCS– group can be
attached at distance R(Ni–N) = 2.2 or 2.0 Å. In the second case, it produces a much stronger
crystal field.

For the hexacoordinate complexes, value of F4 = 5000 cm−1 refers to ∆(Oh) = 8300 cm−1,
which is a weak crystal field (appropriate for the halido ligand). Then, F4 = 15,000 cm−1 is
equivalent to ∆(Oh) = 25,000 cm−1, which refers to the strong crystal field (appropriate for
cyanido or carbonyl ligands). For tetrahedral complexes, F4 = 5000 (15,000) cm−1 refers to
∆(Td) = 3700 (11,100) cm−1.

2.1. Crystal Field Terms

Figure 1 displays the relative energies of the crystal field terms (not to scale) for
individual dn configurations. These result from the GCFT calculations using the weak
crystal field characterized by the crystal field poles F4(L) = 5000 cm−1 for each ligand. For
the tetragonal pyramid (C4v), the angle La-M-Le = 104 deg was maintained. The passage
from the fully rotation group R3 of a free atom to point group D3h or C4v is shown as the
splitting of the atomic terms by the crystal field. The literature outlines the branching rules
for such a reduction process [9].

The character tables for the point groups usually assign the dipole moment com-
ponents to the IRs; these are useful in determining the selection rules for the excitation
energies. For instance, within group D3h, the direct product of IRs is A′1 ⊗A′′2 = A′′2 ∈ z,
meaning that the z component of the dipole moment is active in transition A′1 → A′′2 ,
yielding the non-zero transition moment

〈
A′1|µz|A′′2

〉
6= 0 (orbitally allowed transition). On

the contrary, A′1 ⊗A′′1 = A′′1 /∈ x, y, z and thus transition
〈
A′1
∣∣µx,y,z

∣∣A′′1 〉 = 0 are forbidden.
In addition to the energy levels, Figure 1 also shows the allowed/forbidden polarized

electronic dipole transitions, which are displayed as solid/dashed arrows. These data can
be compared with the observations of the electronic d-d spectra [10].
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Figure 1. Crystal field terms for dn configurations (energies not to scale). The electronic terms
are labelled by exploiting the IRs of the point group, with the spin multiplicity as the superscript
index and degeneracy in parentheses, e.g., 4G(36). Dipole transitions: forbidden—dashed arrows,
allowed—solid arrows.
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2.2. Crystal Field Multiplets

The crystal field terms represent a starting point for the further precision of the energy
levels: upon introduction of the spin–orbit interaction, the crystal field terms are further spit
into a set of crystal field multiplets (energy levels in the zero magnetic field) [11,12]. The
basis set and the resulting multiplets contain 256, 210, 120, 45 and 10 members for electron
configurations d5 through d9, respectively. In this case, the energy levels are labelled using
the Bethe notation for the IRs within double group G’. These symbols involve Γ1 through
Γ8, and their degeneracy is shown parentheses, e.g., Γ4(2). (The IR tables for the double
groups are useful for practical reasons).

The spin and the orbital parts of the wave function are assessed independently. For
instance, in D3h the level, 6A1′ (6) transforms its spin according to {2Γ4 + (Γ5 + Γ6)}. The
orbital part matches A1 = Γ1. Finally, the spin–orbit wavefunction transforms according to
the direct product {2Γ4 + (Γ5 + Γ6)}⊗Γ1, and the result is {2Γ4 + (Γ5 + Γ6)}. In this special
case, the levels (Γ5 + Γ6) form a complex conjugate pair that can be abbreviated as Γ5,6(2)
or simply Γ5(2). To this end, upon passage from the D3h to double group D’3, the crystal
field term 6A1′ (6) is split into a set of {2Γ4(2) + Γ5,6(2)} multiplets. However, this part of the
theory says nothing about the relative energies of the final three Kramers doublets; these
result from numerical calculations by GCFT.

The principal result of the CGTF calculations with spin–orbit coupling in the complete
space spanned by dn configurations is the spectrum of the crystal field multiplets. The
lowest zero-field energy gaps are abbreviated as δ1, δ2, . . . , provided that the energy of the
ground multiplet (δ0) is set to zero (Table 1). For the non-degenerate ground state (A or B
type), the lowest multiplet gaps relate to the axial zero-field splitting parameter (D). For
d5-Fe(II) (and, analogously, d5-Mn(III)), the sequence of the spin–orbit multiplet does not
strictly follow D and 4D (there is a small difference (δa) around 4D). For Cu(II), the ground
electronic term is not split by the spin–orbit interaction; however, the spin–orbit multiplets
are slightly influenced by the spin–orbit coupling. The concept of the D parameter is strictly
related to the spin–Hamiltonian theory.

Table 1. Multiplet gaps (in cm−1) calculated by GCFT for pentacoordinate systems.

System D3h, Trigonal Bipyramid C4v, Square Pyramid

Fe(III), F4 = 15,000 cm−1 6A1′ : δ1(2) = 3.68 (4D), δ2(2) = 5.53 (6D) 6A1: δ1(2) = 1.50 (2D), δ2(2) = 4.51 (6D)
Fe(III), F4 = 5000 cm−1 6A1′ : δ1(2) = 0.29 (4D), δ2(2) = 0.44 (6D) 6A1: δ1(2) = 0.10 (2D), δ2(2) = 0.31 (6D)

Fe(II), F4 = 5000 cm−1
5E”: δ1(2) = 85, δ2(2) = 180,

δ3,3′ (2) = {270, 301}, δ4(2) = 400

5B2: δ1(2) = 0.31 (D),
δ2,2′ (2) = {1.64, 1.87} (~4D)

Co(II), F4 = 5000 cm−1 4A2”: δ1(2) = 84.7 (2D) 4E: δ1(2) = 220, δ2(2) = 389, δ3(2) = 697
Ni(II), F4 = 5000 cm−1 3E”: δ1(2) = 533, δ2(2) = 1191 3B2: δ1(2) = 27.4 (D)
Cu(II), F4 = 5000 cm−1 2A1: ∆ = 3020 2B1: ∆ = 1691

The effect of the spin-orbit interaction leading to the passage from the crystal-field
terms to the crystal-field multiplets is depicted in Figure 2.
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Figure 2. Crystal field multiplets for dn configurations (energies not to scale). The crystal field
multiplets are labelled by exploiting the IRs of the double group. Contributions to the Λ tensor:
forbidden—dashed arrows, allowed—solid arrows.
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2.3. Zero-Field Splitting

The concept of the spin Hamiltonian is a popular and very useful tool for interpre-
tation of the spectra of electron paramagnetic resonance, as well as for analysis of DC
magnetometric data. The key formulae of the spin Hamiltonian are based on consideration
of only the spin kets |S, MS〉 of non-degenerate ground term A or B. The second-order
perturbation theory offers the Λ tensor in the following form:

Λab = −}−2 ∑
K 6=0

〈
0
∣∣L̂a
∣∣K〉〈K∣∣L̂b

∣∣0〉
EK − E0

(5)

where K runs over all excited electronic terms, and the magnetic tensors are expressed
as follows:

• the κ tensor (reduced, temperature−independent paramagnetic susceptibility tensor):

κ
para
ab = µ2

BΛab (6)

• the g tensor (magnetogyric ratio tensor):

gab = geδab + 2λΛab (7)

• the D tensor (spin–spin interaction tensor):

Dab = λ2Λab (8)

This approximation fails in the case of orbital (pseudo) degeneracy. The matrix
elements of the angular momentum

〈
0
∣∣L̂a
∣∣K〉 can be assessed by exploiting the symme-

try of the ground and excited crystal field terms; the matrix element is non-zero only
if the direct product (Γ0 ⊗ ΓK = ΓLx,Ly,Lz + . . .) contains the irreducible representation
of at least one component of the angular momentum. For instance, within group D3h,
A′1 ⊗ E′′ = E′′ ∈ Lx,y and the common character tables indicate that the result contains the
irreducible representation of Lx and Ly.

The spin Hamiltonian parameters calculated via the GCFT are listed in Table 2. For
Fe(III) and Mn(II), the ground electronic term 6A does not allow transitions to excited terms
with different spin multiplicities. Therefore, D = 0, gi = ge in this approximation. In this
case, the spin Hamiltonian formalism is insufficient, so 6A1 + 4T1 terms must be considered
for the Oh symmetry [13].

Table 2. Calculated spin Hamiltonian parameters for pentacoordinate systems.

Center D3h, Trigonal Bipyramid C4v, Square Pyramid

D/hc/cm−1 gz, gxy χTIP/10−9 [SI] 1 D/hc/cm−1 gz, gxy χTIP/10−9 [SI] 1

Fe(II) undefined 2.002, 2.096 2.05 0.50 2.111, 2.121 3.77
Co(II) 42.8 2.002, 2.500 6.34 undefined 2.218, 2.494 7.62
Ni(II) undefined 2.002, 2.401 2.77 36.6 2.343, 2.576 5.16
Cu(II) undefined 2.002, 2.672 1.76 undefined 2.901, 2.294 1.95

1 SI unit for χTIP is m3 mol−1. Calculated according to the weak-field limit of F4 = 5000 cm−1.

The spin Hamiltonian is often presented in the following form:

Ĥzfs = [D(Ŝ2
z − Ŝ2/3) + E(Ŝ2

x − Ŝ2
y)]}−2 (9)

where the D tensor is considered diagonal and traceless, yielding only two independent
parameters: the axial zero-field splitting parameter (D) and the rhombic zero-field split-
ting parameter (E). This form is widely used for analysis of magnetometric and EPR data.
According to convention, the rhombic part is minor: |D| > 3E > 0. D serves as a measure
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of zero-field splitting. This energy gap can also be measured also by FAR-infrared spec-
troscopy (FIRMS and FDMRS techniques), inelastic neutron scattering, calorimetry, etc. [14].

As mentioned above, the case of d6-Fe(II) or d6-Mn(III) is specific, as for C4v geometry,
the sequence of the spin–orbit multiplets differs depending on the exact multiplet splitting
{0, δ1(2), δ22′ (1 + 1) and the spin Hamiltonian formalism {0, D(2), 4D(2)}; the number in
parentheses corresponds to the multiplicity. The ground crystal field term is 5B2; the
orbital and spin parts transform as B2 → Γ4, S = 2→ Γ1 + Γ3 + Γ4 + Γ5, and their direct
product is Γ4⊗(Γ1 + Γ3 + Γ4 + Γ5) = Γ1(1) + Γ2(1) + Γ4(1) + Γ5(2). Only Γ5(2) is doubly
degenerate, whereas the remaining multiplets are nondegenerate: Γ1(1), Γ2(1), and Γ4(1).
The GCFT calculations for d6-Fe(II) in the complete basis set of 210 kets obtains Γ4 as
the ground multiplet and the multiplet splitting E(Γ5) − E(Γ4) = δ1 = 0.31 cm−1; E(Γ1) −
E(Γ4) = δ2 = 1.64 cm−1; E(Γ2) − E(Γ4) = δ2′ = 1.87 cm−1. This feature is reflected in the
spectrum of electron paramagnetic resonance. Details about the symmetry rules are listed
in Supplementary Information.

Table 3 shows a comparison of the dn configurations from the viewpoint of the spin
Hamiltonian formalism. This table is also enriched by data for d1 to d4 configurations,
as well as data for the intermediate geometry with C2v symmetry and τ5 = 0.47. Table 4
analogously summarizes data for the hexacoordinate complexes.

Table 3. Review of the SH formalism for pentacoordinate systems 1.

System D3h, Trigonal Bipyramid
τ5 = 1

C2v, Intermediate Geometry
τ5 = 0.47

C4v, Square Pyramid
τ5 = 0

d1, Ti(III) 2E”, D—undefined 2A2, D—undefined 2B2, D—undefined
d2, V(III) 3A2”, D = 16 3B1, D = 19, E = 0.3 3E, D—undefined
d3, Cr(III) 4E”, D—undefined 4A2, 2D = −17, E = 0.6 4B2, 2D = 6.2
d4, Mn(III) 5A1′ , D = 3.2 5A1, D = 3.1, E = 0.4 5B1, D = −2.9
d5, Fe(III) 6A1′ , D—small 6A1, D—small 6A1, D—small
d6, Fe(II) 5E”, D—undefined 5A2, D = −8, E = 1 5B2, D = 0.5
d7, Co(II) 4A2”, 2D = 85 4B1, 2D = 102, E = 1 4E, D—undefined
d8, Ni(II) 3E”, D—undefined 3A2, D = −105, E = 7 3B2, D = 37
d9, Cu(II) 2A1′ , D—undefined 2A1, D—undefined 2B1, D—undefined

1 The Addison structural parameter (τ5 = (β − α)/60), where: β > α are the two greatest valence angles of the
coordination center [15]. Data on D and E in cm−1 calculated with F4 = 5000 cm−1.

Table 4. Review of the SH formalism for hexacoordinate systems with tetragonal distortion 1.

System D4h, Compressed Bipyramid Oh, Octahedron D4h, Elongated Bipyramid

d1, Ti(III) 2Eg, D—undefined 2T2g, D—undefined 2B2g, D—undefined
d2, V(III) 3A2g, D = 55 3T1g, D—undefined 3Eg, D—undefined
d3, Cr(III) 4B1g, 2D = −0.7 4A2g, D = 0 4B1g, 2D = 0.9
d4, Mn(III) 5A1g, D = 2.5 5Eg(JT), D—undefined 5B1g, D = −2.8
d5, Fe(III) 6A1g, D—small 6A1g, D—small 6A1g, D—small
d6, Fe(II) 5Eg, D—undefined 5T2g, D—undefined 5B2g, D = 16
d7, Co(II) 4A2g, 2D = 300 4T1g, D—undefined 4Eg, D—undefined
d8, Ni(II) 3B1g, D = −4.3 3A2g, D = 0 3B1g, D = 5.3
d9, Cu(II) 2A1g, D—undefined 2Eg(JT), D—undefined 2B1g, D—undefined

1 JT points to a strong Jahn–Teller effect, owing to which a spontaneous symmetry descent proceeds. Data on D in
cm−1 calculated with F4 = 5000 cm−1.

2.4. DC Magnetic Functions

The magnetic energy levels εi,a(Bm) result from the diagonalization of the interaction
matrix ((a) + (b) + (c) + (d) + (e)), which includes interelectronic repulsion, crystal field
potential, spin–orbit coupling, and orbital and Zeeman terms in the applied magnetic field.
Statistical thermodynamics offers formulae for magnetization and magnetic susceptibility
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when the partition function is evaluated for three reference fields: Bm = B0 − δ, B0, B0 + δ
(allowing numerical derivatives):

Za(T, Bm) = ∑
i

exp[εi,a(Bm)/kBT] (10)

Hence, the molar magnetization is:

(Mmol)a =
RT
Za

(
∂Za

∂Ba

)
T

(11)

The molar magnetic susceptibility is expressed as:

(χmol)ab = µ0

(
∂(Mmol)a

∂Bb

)
T

(12)

where the physical constants adopt their usual meaning. The index a refers either to the
Cartesian coordinates {x, y, z} or to the grid point over a sphere along which the magnetic
field is aligned, which is used to obtain the powder-sample average. Therefore, the magnetic
susceptibility and magnetization are functions of discrete parameters (atomic parameters
BM, CM, and ξM; ligand positions θL and ϕL; crystal field poles F4(L); and eventually F2(L)),
as well as the continuous parameters, such as the reference field (Bm) and temperature (T).

The modelling of the magnetization and susceptibility for pentacoordinate dn systems
is presented in Figures 3 and 4. A counterpart of these graphs for the tetragonally distorted
octahedral systems can be found elsewhere [16]. In the case of zero-field splitting with
an orbitally non-degenerate ground term, the effective magnetic moment in the high-
temperature limit of 300 K remains almost linear with zero slope; at low temperature, it is
reduced. This is the case of d5-D3h, d5-C4v, d6-C4v, d7-D3h, and d8-C4v. For d9-D3h and d9-
C4v, zero-field splitting is absent, so these systems follow the Curie law. The magnetization
saturates to the value of M1 = Mmol/(NAµB) = gavS when the zero-field splitting is small.
This is the case of d5-D3h, d5-C4v, d6-C4v, d9-D3h, and d9-C4v; exceptions are d7-D3h and
d8-C4v, with large zero-field splitting D parameters.

Systems with E-type orbitally doubly degenerate ground terms, such as d6-D3h, d7-
C4v, and d8-D3h behave differently. The effective magnetic moment is enlarged, and it
passes through a round maximum. The magnetization is also suppressed and does not
reach saturation until B = 10 T.

A positive slope of the effective magnetic moment reflects the effect of the low-lying
excited electronic terms mixed considerably with the ground term via the spin–orbit
interaction. This results in temperature-independent paramagnetism, χTIP > 0. This term,
along with the underlying diamagnetism (χdia < 0), need be subtracted from the measured
temperature dependence of the magnetic susceptibility. With respect to the underlying
diamagnetism, a method of additive Pascal constants is useful and frequently utilized.
However, for temperature-independent paramagnetism, the amount of information is
considerably limited [6,7].
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Figure 3. Magnetization functions at T = 2.0 K calculated by GCFT for a weak (strong) crystal field
with F4 = 5000 (15,000) cm−1.
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Figure 4. DC susceptibility functions at B = 0.1 T (Equation (12)) converted to the effective magnetic
moments as calculated by GCFT for a weak (strong) crystal field with F4 = 5000 (15,000) cm−1.
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2.5. AC Magnetic Susceptibility

In the oscillating magnetic fields (usually with a low amplitude of BAC = 0.3 mT and
a frequency range of f = 10−2–105 Hz), the measured magnetic moment of the specimen
has two components: in-phase and out-of-phase. This is easily transformed into two
components of AC susceptibility: χ′ (dispersion) and χ” (absorption). The absorption
component is a measure of the resistivity of the sample used to alter its magnetization;
it provides information about the relaxation time, which is a function of temperature,
frequency (f ), and the external applied field (BDC). The relaxation time can be inferred
from the position of the maximum at the out-of-phase susceptibility (f ”max) with the
following formula: τ = 1/(2πf ”max). It has been reported that the sample can exhibit two or
more relaxation channels and that their absorption curves can overlap or merge to form a
shoulder. The whole AC susceptibility can be fitted by exploiting the generalized Debye
equation [17,18]:

χ(ω) = χS +
K

∑
k

χk − χk−1

1 + (iωτk)1−αk
(13)

where K is the number of relaxation channels, χS is the common adiabatic susceptibility
(high-frequency limit), χk is the thermal susceptibilities, αk is the distribution parameters,
τk is the relaxation times, and the circular frequency is ω = 2πf. This complex equation can
be decomposed into a real and imaginary part.

The slow magnetic relaxation includes several mechanisms that can be collected to a
single equation for the reciprocal relaxation time:

τ−1 = τ−1
0 exp(−Ueff/kBT) + CRTn + CpbTl + ABmT + D1/(D2 + B2) (14)

The first term describes the thermally activated Orbach process, which is associated
with the height of the barrier to spin reversal (Ueff); the second is the Raman term, with
the temperature exponent typically n = 5–9; next is the phonon bottleneck term, with
l ~ 2; the fourth term describes the direct relaxation process, with m = 2–4; the last term
refers to the quantum tunnelling of magnetization throughout the barrier to spin reversal.
The reciprocating thermal behavior was recently registered with a term analogous to the
phonon bottleneck but a negative temperature exponent (l ~ −1) [18].

The effectiveness of the slow magnetic relaxation is, as a rule, evaluated by the value of
Ueff (when the Orbach process applies). It is assumed that it is related to the axial zero-field
splitting parameter (D), which must be negative, and the molecular spin (S) [19]:

Ueff =
∣∣∣D∣∣∣(S2 − 1/4), (15)

which holds true for Kramers systems with half-integral spin (e.g., S = 3/2 for CoII); for
non-Kramers systems with an integer spin, the factor 1

4 is dropped (e.g., S = 1, for NiII). It is
common practice for the Ueff and the pre-exponential factor (τ0) to be subtracted using the
Arrhenius-like plot ln(τ) vs. 1/T (Figure 5-left): a few high-temperature points are fitted by
the straight line, tangential of which refers to Ueff. However, “high-temperature points”
refer to the highest temperature among the data considered in our analysis, so there still
could be points yielding a higher tangential and thus Ueff. A preferred approach involves
plotting ln(τ) vs. ln(T), where the temperature exponent recovering the high-temperature
data refers to the slope (Figure 5, right). When the temperature coefficient is n > 9, instead
of the Raman process the Orbach process is applied.



Inorganics 2022, 10, 116 13 of 18

Figure 5. Contributions to the relaxation time. (Left): Orbach process (high-temperature, black,
Ueff/kB = 37 K). (Right): direct process (low-temperature, green, m ~ 1, Raman process; intermediate
temperature, blue, n > 5; red n < 9). Data adapted from [20] for a mononuclear FeIII complex.
Straight-line formula: y = b [0] + b [1]x.

For high-spin Co(II) complexes with S = 3/2, eqn (15) implies a relationship of
U = 2|D|. A collection of experimental data for a series of tetracoordinate CoII com-
plexes is shown in Figure 6 based on the analysis of higher-temperature, high-frequency
relaxation data in terms of the Orbach process. Evidently, a correlation of U vs. 2|D|
fails. D is a field-independent quantity, whereas the extracted value of U depends upon
the applied magnetic field. A positive value of D contradicts the D-U paradigm; however,
SIMs behavior can occur (the Raman mechanism is likely the leading term). With increased
barrier to spin reversal (U), the extrapolated relaxation time (τ0) is shortened, irrespective of
the sign of the D parameter. A violation of the D-U paradigm has been discussed elsewhere
with consideration of anharmonicity contributions [21].

Figure 6. Collection of relaxation data for tetracoordinate Co(II) complexes, S = 3/2. Full points for
D < 0, empty for D > 0. Dashed line—a hypothetical D-U paradigm. (1/kB) = 1.439 K/cm−1.
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3. Discussion

The GCFT approach enables fast and “continuous” mapping of the energy levels,
such as electronic terms and the spin–orbit multiplets: one is free to changing the ligand
positions {θL, ϕL} from regular coordination polyhedra to distorted polyhedra and to alter
the crystal field poles F4(L) and, eventually, F2(L). On the contrary, the modern ab initio
calculations provide high-quality data on energy levels but only for the unique geometry
of the complex under investigation. Therefore, it is interesting to utilize and compare
both approaches.

Ab initio calculations have been performed using ORCA software [22] with respect to
the experimental geometry of the complexes resulting from X-ray structural analysis (the
corresponding cif files are deposited in the Cambridge Crystallographic Data Centre). The
relativistic effects were included in the calculations with a second-order Douglas–Kroll–
Hess (DKH) procedure. An extended basis set TZVP of Gaussian functions was used, e.g.,
BS1 = [17s11p7d1f] and BS2 = [17s12p7d2f1g] for Ni(II). The calculations were based on
state-average complete active-space self-consistent field (SA-CASSCF) wave functions. The
active space of the CASSCF calculations comprised eight electrons in five metal-based d-
orbitals. The state-averaged approach was used, whereby all 10 triplet and 15 singlet states
were equally weighted. The spin–orbit effects were included according to quasi-degenerate
perturbation theory, whereby the spin–orbit coupling operator (SOMF) was approximated
according to the Breit–Pauli form. The electronic terms were evaluated at the CASSCF
+ NEVPT2 level, and the multiplets by considering the spin–orbit interaction (Table 5).
Effective Hamiltonian was used to evaluate the spin Hamiltonian parameters.

Table 5. Energy levels for representative Ni(II) complexes calculated by ab initio method 1.

System Donor Set,
Symmetry

SHAPE
Index

Reported
D/cm−1

∆/cm−1

NEVPT2
δ/cm−1

SOC
D/cm−1

E/D

[Ni(Me4cyclam)N3]ClO4
NiN4N′

C2v

vOC-5: 0.61
SPY-5: 0.72

+20, mag
+21, EPR

a3A: 0,
b3A: 5777

a3A→
0, 23, 27

25
0.08

[Ni(iPrtacn)Cl2] NiN3Cl2
τ5 = 0.42

vOC-5: 2.91
SPY-5: 3.53

+14.3, mag
+15.7, EPR

+15.9, FDMRS

a3A: 0,
b3A: 5815

a3A→
0, 17, 24

20
0.18

[Ni(iPrtacn)Br2] NiN3Br2
τ5 = 0.40

vOC-5: 2.83
SPY-5: 3.72

+11.0, mag
+13.9, EPR

+13.8, FDMRS

a3A: 0,
b3A: 6035

a3A→
0, 13, 21

17
0.21

[Ni(iPrtacn)(NCS)2] NiN3N′2
τ5 = 0.44

vOC-5: 2.56
SPY-5: 2.72

+13.8, mag
+16.1, EPR

+15.9, FDMRS

a3A: 0,
b3A: 5846

a3A→
0, 15, 27

25
0.28

[Ni(Me6tren)Cl]ClO4
NiN3N′Cl

C3v
TBPY-5: 0.61

−179, EPR
−110, FIRMS
−205, calc

a3E: 0, 26,
b3E: 5775, 5782

a3E→ 0, 5,
512, 538,

1162, 1162
-

[Ni(Me6tren)Br]Br NiN3N′Br
C3v

TBPY-5: 0.92 −147, calc a3E: 0, 5
b3E: 7100,7106

a3E→ 0, 3,
545, 550,

1196, 1196
-

[Ni(MDABCO)2Cl3]ClO4
NiCl3N2,

D3h, τ5 = 1 TBPY-5: 0.14 −311, mag
−535, EPR

a3E: 0, 342,
b3E: 6517, 6874

a3E→ 0, 0.3,
397, 735,

1243,1252
-

1 Abbreviations: mag—magnetometry, EPR—(high-field/high-frequency) electron paramagnetic resonance,
FDMRS—frequency-domain magnetic resonance spectroscopy, FIRMS—far infrared magnetic spectroscopy;
SHAPE index (consistency with the regular coordination polyhedron) [23]: TBPY—trigonal bipyramid, SPY—
square pyramid, vOC—vacant octahedron; electronic terms a3A—ground-spin triplet, b3A—first excited spin
triplet, a3E—ground-orbital doublet, b3E—first excited orbital doublet; ground spin–orbit multiplet at zero;
δ—separation of the lowest multiplets: three from term a3A (consistent with the spin Hamiltonian formalism), six
from a3E (beyond the spin Hamiltonian formalism). Structural and experimental data according to Refs. [24–28].
Ab initio calculations were carried out according to the same protocol.
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The ab initio calculations refer to in silico state, i.e., intermolecular interactions and
other solid-state effects are ignored. This is not the case for experimental magnetometric or
spectroscopic data, which could be influenced by the environment. The ab initio data, in
general, are consistent with those obtained by experimental techniques.

When comparing the CGTF calculations with ab initio calculations, calculated transition
energies can be assessed. With a proper set of crystal field poles, the CGTF can reproduce
first allowed transitions; however, the electronic spectrum, has a smaller width with respect
to ab initio data.

An extended set of similar pentacoordinate Ni(II) complexes based on the fixed skele-
ton of a pentadentate Schiff base (Figure 7) was investigated by magnetometry and ab initio
calculations with respect to the experimental geometry; these are listed in Table 6.

Figure 7. Schematic representations of pentacoordinate Ni(II) complexes. 1: R1 = R3= −CH3,
R2 = −C(CH3)3, R4 = H; 2: R1 = −CH3, R2 = R4 = H, R3= Br; 3: R1 = −CH3, R2 = R4 = H, R3= I; 4:
R1 = −CH3, R2 = R3 = −C(CH3)3, R4 = H; 5: R1 = −CH3, R2 = R3 = R4 = H; 6: R1 = R3 = R3 = H,
R4 = −CH3.

Table 6. Magnetometric and ab initio data for a set of pentadentate Ni(II) complexes comprising Schiff
base ligands 1.

System Addison
Index τ5

SHAPE
Index

D/cm−1

Magnetometry
δ/cm−1

SOC
D/cm−1

Calculations E/D

1 0.52 TBPY-5: 1.583, SPY-5: 1.664 −45.1 0, 4, 51 −49.1 0.045
2 0.62 TBPY-5: 0.899, SPY-5: 2.589 −64.0 0, 5, 55 −52.6 0.044
3 0.62 TBPY-5: 0.903, SPY-5: 2.598 −60.2 0, 5, 54 −52.0 0.047
4 0.47 vOC-5: 1.881, SPY-5: 1.508 −45.1 0, 6. 44 −41.7 0.068
5 0.60 TBPY-5: 1.050, SPY-5: 2.072 −49.3 0, 5, 66 −63.2 0.037
6 0.26 vOC-5: 0.909, SPY-5: 0.913 −12.7 0, 8, 30 −25.3 0.169

1 Data from ref. [29].

The experimentally reported and calculated D values cover a broad interval of positive
and negative values over a wide range of the τ5 parameters. These were used to plot D
vs. τ5, which can be termed the second magnetostructural D-correlation for Ni(II) complexes
(MSDC). (The first magnetostructural D correlation for hexacoordinate Ni(II) complexes
is outlined elsewhere [30].) The MSDC can be approximated by a straight line (Figure 8)
when the τ5 parameter guarantees that the ground electronic term is not orbitally quasi-
degenerate (the energy gap ∆ > 2000 cm−1). In the opposite case, the calculated D values
tend to diverge. The value of the D parameter switches between positive and negative
values at τ5 ~ 0.2–0.3. Furthermore, the E parameter plays a role that has not be considered
so far.
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Figure 8. Dependence of the D parameter in pentacoordinate Ni(II) complexes on the distortion pa-
rameter (τ5). Yellow squares—magnetometric data; red pica—ab initio calculations; solid—correlation
line, dashed—confidence intervals, dotted—prediction intervals.

4. Conclusions

Experimental data on magnetic susceptibility, magnetization, and electron paramag-
netic resonance require an appropriate model in order be analyzed correctly. For some
shapes of coordination polyhedra, such as octahedron Oh, tetragonal bipyramid D4h, trigo-
nal antiprism D3d, tetrahedron Td, and bispehoid D2d, the crystal field theory offers such a
support, and the spin Hamiltonian formalism defines relationships for the set of magnetic
parameters (D, E, gx, gy, gz, χTIP). A dearth in the literature with respect to pentacoordinate
systems, such as the trigonal bipyramid D3h and tetragonal pyramid C4v symmetry, is
filled by this publication. The working tool is the generalized crystal field theory in the
form of its fully numerical, computer-assisted tool [31]. The advantage of this approach is
that the positions of the ligands can be arbitrary, making it applicable to any geometry of
the chromophore and any ligands. Only the set of Racah parameters of the interelectronic
repulsion (BM and CM), the spin–orbit coupling constant (ξM), polar angles (or Cartesian
coordinates) of each ligand {θL, ϕL}, the crystal field poles F4(L) and, eventually, F2(L) are
required. This method enables evaluation of the energies of the multielectron crystal field
terms, spin–orbit crystal field multiplets, and the magnetic energy levels at the applied
magnetic field. Then, the magnetic susceptibility and magnetization can be evaluated as
functions of the temperature field via derivatives of the partition function. The eigenvectors
provide complete information about the symmetry and can be used to automatically label
terms/multiplets.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/inorganics10080116/s1, Tables S1–S5: Reduction and selec-
tion rules for d5–d9 configurations; Table S6: Reduction of the (2S + 1) states; Table S7: Decomposition
of the direct product.
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31. Boča, R. Program MIF&FIT; University of SS Cyril and Methodius: Trnava, Slovakia, 2022.

http://doi.org/10.1002/chem.200701243
http://www.ncbi.nlm.nih.gov/pubmed/18000920
http://doi.org/10.1039/C5DT00600G
http://www.ncbi.nlm.nih.gov/pubmed/25919125
http://doi.org/10.1021/ic202108j
http://www.ncbi.nlm.nih.gov/pubmed/22029404

	Introduction 
	Results 
	Crystal Field Terms 
	Crystal Field Multiplets 
	Zero-Field Splitting 
	DC Magnetic Functions 
	AC Magnetic Susceptibility 

	Discussion 
	Conclusions 
	References

