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Abstract: Pressure-induced amorphization (PIA) has drawn great attention since it was first observed
in ice. This process depends closely on the crystal structure, the size, the morphology and the
correlated pressurization environments, among which the morphology-tuned PIA remains an open
question on the widely concerned mesoscale. In this work, we report the synthesis and high-pressure
research of VO2(B) nanobelts. XRD and TEM were performed to investigate the amorphization
process. The amorphization pressure in VO2(B) nanobelts(~30 GPa) is much higher than that in
previous reported 2D VO2(B) nanosheets(~21 GPa), the mechanism is the disruption of connectivity
at particular relatively weaker bonds in the (010) plane. These results suggest a morphology-tuned
pressure-induced amorphization, which could promote the fundamental understanding of PIA.

Keywords: vanadium dioxide; high-pressure; amorphization; morphology

1. Introduction

Amorphous materials without long-range order present unique physical properties
compared to their crystalline counterparts, which is the prime motivation behind research
on materials science. Since the first observation of transforming crystalline materials into
amorphous phase by applying pressure (pressure-induced amorphization, PIA), PIA has
attracted considerable interest because of the disordering process and diverse properties of
amorphous phase, and this phenomenon has been observed in many materials like H2O,
TiO2, SiO2, Y2O3 and CaAl2Si2O8 [1–6]. From a certain point of view, PIA is a unique
kind of pressure-induced phase transition, whose process depends closely on the crystal
structure, the size, the morphology and the correlated pressurization environments of
the materials. For example, size-dependent amorphization has been found in Y2O3 [5].
Apart from this, non-hydrostatic induced amorphization has been observed in B4C [7] and
MAPbBr3 [8]. Recent high-pressure study on several nanomaterials with different mor-
phology show morphology-tuned high-pressure phase transitions. For example, a different
phase transition routine has been found in one-dimensional (1D) Si [9], AlN [10], ZnS [11],
ZnO [12], SnO2 [13], BaTiO3 [14], LiMn2O4 [15] and Zn2SnO4 [16] in contrast to their bulk
materials or two-dimensional (2D) nanomaterials. For morphology-tuned amorphization,
although one-dimensional TiO2 nanorods and nanorices show different onset pressures
in pressure-induced amorphization revealed by synchrotron WAXS at atomic scale [17],
open questions remain regarding the amorphization and morphology of typical oxide
materials as a function of pressure on the widely concerned mesoscale. Determining the
amorphization process is one of the crucial parameters required for understanding nano-
materials properties as the structure-function relationship, while the morphology-tuned
pressure-induced amorphization remains unclear for the functional materials.
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VO2 is a representative polymorphic material with various conventional structures
at ambient conditions, including tetragonal VO2(A), monoclinic VO2(M1) and VO2(B).
Besides, VO2 nanomaterials with different morphology have been synthesized in recent
years, providing an ideal model for investigating the morphology effect on the structure
transitions of nanomaterials [18–22]. Recent high-pressure study on VO2(M1) suggest a
M1→Mx transition in bulk materials [23], and a transition sequence of M1→M’1→X up to
61.2 GPa in nanobelts [24], but no PIA is observed. For VO2(A) phase, nanorods transform
into an amorphous state at ~32 GPa [25], but lack of contrast in other initial morphology.
VO2(B) is an important polymorph at ambient condition owning a monoclinic symmetry
C2/m and a layered structure composed of edge and corner-sharing VO6 octahedra [19].
Recently, PIA has been found in 2D VO2(B) nanosheets at ~21.1 GPa [26], inspired by this
result, it is reasonable to explore the phase transition process in VO2(B) nanomaterials, and
further clarify the potential morphology-tuned amorphization. The study of morphology
effect on the PIA of VO2 could potentially allow a more comprehensive understanding of the
order–disorder transformation mechanism. This nanomaterial has a preferred orientation
and a large L/D ratio (length/diameter ratio). Rods along axial direction can be regarded
as micrometer material, while rods along radial direction can be regarded as nanomaterial.
This could lead to an anisotropy of pressure effect between axial direction and radial
direction, and finally result in various transition processes. An example is how the high
mechanical stability of ZnS nanobelts results in an explosive mechanism for the wurtzite-to-
sphalerite phase transformation, which is totally different with that in bulk and nanoparticle
materials [11]. The strain energy of Si nanowires also generates a lower phase transition
pressure (~2 GPa) and a larger bulk modulus (25%) than bulk Si [9].

Here we demonstrate the morphology-tuned pressure-induced amorphization in one
dimensional VO2(B) nanobelts using in situ X-ray diffraction and TEM measurements.
The crystal-amorphous transition is completed at ~30 GPa, much higher than ~21 GPa in
2D VO2(B) nanosheets [26], and the unique morphology-tuned amorphization mechanism
has been carefully discussed. These results are different from previous work on VO2(B)
nanosheets, providing not only an experimental understanding of order–disorder transfor-
mation mechanism, but also a synthetic guideline for functional amorphous materials from
their crystalline phases.

2. Experimental
2.1. Preparation of VO2(B) Nanobelts

VO2(B) nanobelts were synthesized by a hydrothermal method using V2O5 as the
source of vanadium and oxalic acid (H2C2O4 2H2O) as a reducing agent. All the chemical
reagents in our experiments were of analytical grade and used without further purification.
In a typical reaction, a certain amount of V2O5 (0.18 g) and oxalic acid (H2C2O4 2H2O)
(0.252 g) were added into 100 mL distilled water at room temperature to form a suspension
solution. The suspension was continuously stirred until a clear orange transparent solution
was formed, after which the solution was placed in a 50 mL Teflon cup with a filling ratio
0.6 and then heated in a sealed autoclave with a stainless steel shell at 180 ◦C for 1 day.

After hydrothermal treatment, the autoclave was cooled down naturally to room
temperature. The resulting black precipitates were collected by centrifuge tubes, washed
with distilled water and dehydrated alcohol for several times by centrifuging, and then
dried in vacuum freeze dryer for 2 days.

2.2. Morphology and Crystal Structure Characterizations

The morphology and crystal structure of VO2(B) nanobelts were characterized using
Transmission Electron Microscope (TEM, 200 KV, HITACHI, H-8100IV), High Resolution
Transmission Electron Microscope (HRTEM, 80 KV, JOEL, JEM-2200FS), Raman (Renishaw
in Via) with 514.5 nm laser excitation and X-ray diffraction (XRD) with Cu Kα radiation
(λ = 0.15418 nm). High pressure measurements were generated by a diamond anvil
cell (DAC)In situ angle-dispersive synchrotron XRD (ADXD) measurements under high
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pressures were carried out at 4W2 beamline of Beijing Synchrotron Radiation Facility
(BSRF). The wavelength is 0.6199 Å. The X-ray beam size is 26 × 8 µm2. The position
and orientation of the detector to the X-ray beam were calibrated using the diffraction
pattern of a CeO2 standard. The culet size of DAC is ~400 µm in diameter. The gasket was
T301 stainless steel that was pre-indented to ~20 GPa. A hole with a diameter of ~150 µm
was drilled to serve as the sample chamber by a laser drilling system at the center of the
gasket indent. The powder was pre-pressed into a thin pellet and cut into flakes with
proper sizes for DACs. Then, the tiny flake was loaded into a DAC along with a tiny ruby
ball. Argon was used as the pressure-transmitting medium (PTM), which was loaded by
cryogenic loading method. The background scattering was collected at each pressure point
by shining the X-ray beam on the empty area inside the sample chamber, which only passed
through the pressure medium and two diamond anvils. The exposure time was set at 30 s.
One-dimensional (1D) XRD patterns were obtained by integrating the 2D patterns along
the azimuth angle from 0◦ to 360◦ with the Dioptas software [27] The resulting diffraction
patterns were refined using the GSAS package [28]. The pressures were determined from
the pressure dependent shift of the R1 line fluorescence of ruby [29]. For the HRTEM of
the recovered sample, the powder samples were dispersed in ethyl alcohol and picked up
using a holey carbon grid. HRTEM experiments were carried out using the Field Emission
Electron Microscope (JEM-2200FS) in Jilin University. An accelerating voltage of 80 kV was
used to minimize the possible electron irradiation effect on the sample structure.

3. Results and Discussion

The crystal structure and phase composition of the obtained products were revealed
by XRD. As shown in Figure 1a, all the diffraction peaks match well with the standard
XRD pattern of a monoclinic phase (space group: C2/m, JCPDS No. 81-2392) and no peaks
of any other vanadium oxide phases or impurities were detected. The strong and sharp
diffraction peaks suggest high crystallinity. The lattice parameters of our sample refined by
GSAS are a = 12.166 Å, b = 3.655 Å, c = 6.423 Å, β = 105.78◦, which are in good agreement
with JCPDS No. 81-2392 (a = 12.09 Å, b = 3.702 Å, c = 6.433 Å, β = 106.6◦) and previous
work [21,30]. Raman spectra of as-prepared VO2(B) nanobelts are shown in Figure 1b. The
peaks located at 193, 270, 313, 405, 512, 699 and 904 cm−1 are attributed to Ag, Bg, Ag,
Ag, Bg, Bg and B2g modes, respectively. Our Raman results match well with previous
work [31–33].

From Figure 1c we can see that all the as-prepared products are belt-like morphology.
The diameters of the belts are in a short range between 140 nm to 240 nm, and the length
of the nanobelts are estimated to be several micrometers. In Figure 1d, the selected-area
electron diffraction (SAED) pattern (inset) taken from the individual nanobelt demonstrates
that the synthesized samples are single-crystal. In Figure 1e, the HRTEM image of the
individual nanobelt of Figure 1d clearly exhibits lattice fringes, demonstrating that the
synthesized nanobelts are single-crystal with a preferred [010] orientation. Our results
correlate well with previous work in VO2(B) nanowires and nanorods [34–36].

The crystal structure of VO2(B) belongs to a space group of C2/m, which consists of a
three-dimensional framework of VO6 octahedra. The VO2(B) structure can be considered
as formed by two identical layers of atoms along b, and the second layer is shifted with
respect to the first one by 1/2, 1/2, 0. The pressure evolution of the XRD patterns of
VO2(B) nanobelts are shown in Figure 2a. All the Bragg peaks shift to larger angles,
showing the shrinkage of the VO2(B) lattice. The diffraction peaks of argon appear at
2.7 GPa and last till the highest pressure 40 GPa, which is similar to Santilla’n’s work in
Mn2O3 [37]. Upon compression to 20 GPa the diffraction peaks of the sample broaden
dramatically, the intensity of these diffraction peaks decrease sharply and several weak
peaks disappear without occurring any new peak. With increasing pressure to 29.6 GPa, the
disappearance of VO2(B) peaks signifies that the sample transformed into an amorphous
state completely. This amorphous state lasts till the highest pressure 40 GPa. Upon
decompression, the peaks of Ar disappear and no new peak emerges when the pressure is
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released to ambient condition, suggesting an irreversible amorphization. This PIA is similar
to the previous study in VO2(B) nanosheets [26] and high pressure structural transition of
VO2(A) in our previous work [25], but totally different with the crystal-crystal structural
transition in VO2(M1) [23,24,38]. It is noticeable that the amorphization pressure in this
work is significantly higher than that in VO2(B) nanosheets [26], similar to that in VO2(A)
nanorods. Furthermore, we have refined the bulk modulus of VO2(B) nanobelts by the
Birch–Murnaghan equation, bulk modulus B0 = 132.9 GPa, pressure derivative B0

′ = 4, and
the zero-pressure volume V0 = 274.3 Å3, the observed bulk modulus is slightly higher than
that in nanosheets (B0 = 129.1 GPa, B0

′ = 4).
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From the pressure dependence of the d value of three selected peaks (001), (020) and
(200) upon compression in Figure 2b, we can find a nonlinear variation of (020) peak
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at 12 GPa in contrast to the linear dependence of (001) peak and (200) peak. The low
compressibility of (020) planes above 12 GPa reveals that the movement of the atoms
along the b axis becomes difficult. The pressure transmitting medium in this experiment is
argon, whose highest hydrostatic pressure differs from ~12 GPa [39] to ~30 GPa [40] in the
previous research, if the aeolotropy of pressure effect by the [010] orientation is derived
from the non-hydrostatic effect at higher pressures, similar discontinuity should also be
observed in the [001] and [100] orientation, but Figure 2b shows a linear dependence of
(001) peak and (200) peak. Thus, the aeolotropy of pressure effect by the [010] orientation
at ~12 GPa has no relationship with the non-hydrostatic effect of PTM, and it is reasonable
to speculate that this aeolotropy is related to the unique crystal structure, especially the
orientation of the VO6 polyhedra in the crystal lattice.

The crystal structure of VO2(B) is shown in Figure 3. There are two identical layers
of atoms along b in a unit cell, the second layer is shifted with respect to the first one by
1/2, 1/2, 0, and VO6 octahedra are connected with each other by corners or edges. For the
circled regions in Figure 3b, the large empty spaces are relatively easier to be compressed
than the solid octahedra. On the other hand, the connection between corner-shared VO6
octahedra is much weaker than the connection between edge-shared VO6 octahedra. From
the mechanical-stability point of view, breaking the connection of octahedra in the (010)
plane is much easier than that in the (100) plane and the (001) plane [41]. Therefore, the
coherence along the [010] direction may break first at a critical pressure.
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For the various compressibility in three dimensions of VO6 octahedra, we can find
that the structure of VO2(B) is formed by two identical layers of atoms along the b axis, the
VO6 octahedra along the b axis are all edge-shared, and the VO6 octahedra arrangement
is relatively dense. While along the a axis and c axis, there are some corner-shared VO6
octahedra, and the VO6 octahedra arrangement is relatively sparse. This can explain the
discontinuity of (020) peak in Figure 2b, indicating a lower compressibility along the b axis
than the other two axes.

To further reveal the structure change of VO2(B) nanobelts during amorphization, we
carried out high-resolution transmission electron microscopy (HRTEM) and selected area
electron diffraction (SAED) analysis for the pristine sample and samples released from 15
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and 30 GPa, respectively. For the sample released from 15 GPa, there is a small amount of
amorphous segments in the crystalline lattice in contrast to the pristine one, as marked by
rectangles in Figure 4b. Moreover, many diffraction points become weak and disappear
and an amorphous halo emerges in Figure 4e. Hence, in the regions marked by rectangles,
the local structure of sample is expected at the beginning stage of amorphization. For the
sample released from 30 GPa, no crystalline lattice is observed in Figure 4c and only an
amorphous halo emerges in Figure 4f. This indicates that the amorphization was completed
and the sample transformed to the amorphous state totally at 30 GPa. The whole process is
clear and in good agreement with XRD data.
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Figure 4. HRTEM images and SAED patterns of VO2(B) nanobelts from (a,d) pristine sample and
recovered samples from (b,e) 15 GPa and (c,f) 30 GPa, respectively. Disorder regions are marked by
rectangles. The diffraction spots with red circles can be defined, respectively.

Combining the above data, we propose that the amorphization is possibly induced by
the disruption of connectivity between the octahedra in the (010) plane. From Figure 1d,e,
we can find the nanobelts in our experiments own a [010] growth orientation, the amount
of edge-shared VO6 octahedra along this orientation, in other words, along the b axis, is
much larger than that along the a axis and c axis, making a higher amorphization pressure
than nanosheets, indicating a morphology-tuned pressure-induced amophization.

4. Conclusions

In summary, observations of PIA in VO2(B) nanobelts have been performed using
high pressure XRD and HRTEM analysis. The initial monoclinic phase transformed into
an amorphous form at ~30 GPa. Upon decompression, the amorphous retained until the
ambient condition. We propose that the PIA is due to the disruption of connectivity at par-
ticular, relatively weaker bonds in the (010) plane, which is helpful and powerful to probe
into the implications on the nature of morphology-tuned amorphization. Further, such
pressure-induced amorphous nanomaterials hold great promise for numerous applications
in the future, and the corresponding synthetic guideline would motivate us to discover
more pressure-induced amorphous materials.
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