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Abstract: Conductive electrochemically active metallopolymers are outstanding materials for en-
ergy storage and conversion, electrocatalysis, electroanalysis, and other applications. The hybrid
inorganic–organic nature of these materials ensures their rich chemistry and offers wide opportunities
for fine-tuning their functional properties. The electrochemical modulation of the nanomechanical
properties of metallopolymers is rarely investigated, and the correlations between the structure, stiff-
ness, and capacitive properties of these materials have not yet been reported. We use electrochemical
atomic force microscopy (EC-AFM) to perform in-situ quantitative nanomechanical measurements
of two Schiff base metallopolymers, poly[NiSalphen] and its derivative that contains two methoxy
substituents in the bridging phenylene diimine unit poly[NiSalphen(CH3O)2], during their polariza-
tion in the electrolyte solution to the undoped and fully doped states. We also get insight into the
electrochemical p-doping of these polymers using electrochemical quartz crystal microgravimetry
(EQCM) coupled with cyclic voltammetry (CV). Combined findings for the structurally similar poly-
mers with different interchain interactions led us to propose a correlation between Young’s modulus
of the material, its maximum doping level, and ion and solvent fluxes in the polymer films upon
electrochemical oxidation.

Keywords: schiff base metal complexes; metallopolymer; poly[NiSchiff], p-doping; electrochemical
quartz crystal microbalance; electrochemical atomic force microscopy; Young’s modulus

1. Introduction

Nickel(II) complexes with tetradentate N2O2 Schiff base ligands are used as monomers
in the preparation of polymeric functional materials poly[NiSchiff] for advanced elec-
trochemical energy storage cells, electrocatalytic systems, sensors, and electrochromic
devices [1–6]. A detailed understanding of the fundamental properties and functionality
of these polymers is key to designing materials with excellent performance characteris-
tics. Much research has been devoted to elucidating relationships between the structure
and electrochemical properties of metallopolymers obtained from Ni(II) Schiff base com-
plexes [1,2], whereas their mechanical properties have been rarely assessed. It has been
however acknowledged that understanding the factors affecting the mechanical integrity of
redox active conducting polymers is an essential prerequisite in realizing their applications
in electrochemical devices.

The p-doping of poly[NiSchiff] materials has been used as the basis of the majority of
their applications in electrochemical cells. Polymer-modified electrodes undergo repeated
charging/discharging accompanied by the ingress/egress of charge compensating anions
and often solvent to maintain the electroneutrality of the polymer network. Polymeric Schiff
base transition metal complexes show substantial swelling on anodic cycling due to the
counter ion and solvent uptake [7]. Constant changes in the film thickness can negatively
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affect the mechanical durability of the film and hence the stability of its electrochemical
performance. The procedure for screening these metallopolymers as functional materials
should therefore include not only the evaluation of electrochemical parameters such as
doping level, charge transfer rate, mass transfer regimes, etc., but also the assessment of
the ability of the polymer network to withstand multiple cycles of swelling/shrinking.
The latter is expected to be defined by the composition, morphology, and nanomechanical
properties of poly[NiSchiff] materials such as stiffness, hardness, plasticity, etc. It is also
critically important to establish the relationship between the electrochemical performance
and nanomechanical properties of conducting polymers.

Electrochemical quartz crystal microbalance (EQCM) is a valuable method for studying
ion transport processes in polymer films. It allows us to follow mass changes during
polymer switching between neutral and p-doped states. EQCM has been successfully used
to estimate the maximum achievable p-doping levels in poly[NiSchiff] films [8] and to
assess ion and solvent exchange between the polymer and the electrolyte solution upon
redox cycling [9–11].

Atomic force microscopy (AFM) offers a unique opportunity to map surface mechani-
cal properties of functional materials. The previous use of AFM in the research of Schiff
base polymer films [12–16] has been largely limited to the standard imaging modes that
provide high-resolution topographic information of the surface of the polymer film without
any quantitative information regarding its nanomechanical properties. The nanoscale maps
of stiffness, elastic modulus, adhesion force and other critical mechanical parameters of the
material can be obtained using advanced AFM tapping modes such as PeakForceTM [17]
and HybriDTM [18]. Both approaches are based on measuring the tip-sample force as a func-
tion of the tip-sample distance (an indentation curve). The analysis of the nanomechanical
properties may be performed by calculating the value of directly measured contact stiffness
from the slope of the indentation curve and using it to estimate the Young’s modulus by
applying one of the tip-sample contact models (Hertz, DMT, JKR). The HybriDTM mode en-
ables fast recording of the force-distance curves (more than 1000 curves per second) because
they are collected at the kHz rate as oscillatory motion of a sample is actuated by sine volt-
age wave. This allows real-time Quantitative nanomechanical measurements (QNM) that
yield high spatial resolution maps of nanomechanical properties of the studied samples.

A combination of AFM and electrochemical techniques (EC-AFM) makes it possi-
ble to in situ monitor the changes in the electrode surface topology and nanomechanical
properties during electrochemical reactions, which offers new opportunities in the char-
acterization of redox-active functional materials [19]. In a recent study [20], atomic force
microscopy in the PeakForceTM Quantitative Nanomechanical Mapping mode run under
electrochemical conditions was used to monitor variations in nanomechanical properties of
a redox-active film belonging to the family of poly[NiSchiff] polymers (poly[meso-N,N′-
bis-(salicylidene)-2,3-butanediaminonickel(II)], or poly(meso-Ni-SaldMe)) caused by the
ongoing oxidation-reduction. This method was combined with electrochemical piezoelec-
tric microgravimetry at EQCM for in-depth characterization of the polymer film under
electrochemical conditions.

In the present paper, we use EQCM and in-situ EC-AFM in the HybriDTM QNM
mode (EC-HD QNM AFM) in combination with cyclic voltammetry (CV) to investigate
the relationship between electrochemical and nanomechanical properties of poly[NiSchiff]
films critical to their practical applications, namely the maximum achievable p-doping level,
ion dynamics and stiffness of the polymer in different oxidation states in the electrolyte
solution. We focus on two polymers with aromatic imine bridges electrosynthesized from
the complexes [NiSalphen] and [NiSalphen(CH3O)2] (Figure 1). The synthesis and chemical
structure of [NiSalphen] have been previously reported [21–24]. [NiSalphen(CH3O)2] is
a novel complex that we recently synthesized and investigated [25]. The polymers with
Salphen type ligands have not been as widely studied as their Salen type analogues with
aliphatic imine bridges. However, adding another six-membered aromatic ring to the
monomer structure could be the key to multielectron redox behavior of corresponding
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metallopolymers [8,26,27], which is a desirable material property in many application
areas [28,29]. The electrochemical synthesis and p-doping of poly[NiSalphen] has been de-
scribed in previous studies [8,26,30], whereas poly[NiSalphen(CH3O)2] is a novel polymer
that we electrosynthesized from the respective monomer to investigate the effect of introduc-
ing two strongly electron donating methoxy substituents in the bridging phenylenediimine
unit on the functional properties of poly[NiSchiff] films.
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Figure 1. Molecular structures of [NiSalphen] (a) and [NiSalphen(CH3O)2] (b). 
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2. Results and Discussion
2.1. Electrochemical Synthesis of Polymer Films

The polymer films poly[NiSalphen] and poly[NiSalphen(CH3O)2] were synthesized
by oxidative electrochemical polymerization of corresponding monomers on the Pt-plated
quartz crystals and ITO electrodes that were later used for EQCM and EC-HD QNM
studies, respectively. The electropolymerization was performed under potentiodynamic
conditions (i.e., by cycling the potential of the working electrode in the monomer solution)
as they favor more reproducible growth of the polymer layers as compared to potentiostatic
electrode polarization [31]. The electrodeposition proceeded in a similar fashion on both
electrodes (albeit a small anodic shift of polymerization potentials) so the discussion below
is limited to the polymer growth on the platinum surface.

The starting monomers (Figure 1) differ only within the structure of the diimine
bridge: the novel complex [NiSalphen(CH3O)2] contains two strongly electron-donating
substituents in the bridging aromatic ring. The CH3O- substituents introduced into the
phenyl rings of the ligand have been previously shown to significantly affect the pa-
rameters of the electrodeposition process and electrochemical properties of the resulting
poly[NiSchiff] films [8,32]. The effect of placing methoxy groups on the aromatic diimine
bridge has not been reported.

In the first potential scan, the cyclic voltammetry (CV) curve of the working electrode
in [NiSalphen] solution (Figure 2a) displays two overlapping oxidation waves with peak
potentials at 1.09 V, and 1.18 V and a broad reduction peak at 0.85 V. In the second potential
scan, a new anodic wave appears in the potential range from about 0.80 to 0.98 V while the
peak current of the other waves increases. An increase in current continues through the
third cycle, which indicates that a conducting polymer film is deposited on the platinum
surface. The shape of the CV curves recorded in [NiSalphen(CH3O)2] solution (Figure 2b)
is overall similar to the potentiodynamic curves of the oxidative electropolymerization
of [NiSalphen]. The onset of oxidation is cathodically shifted with respect to the one of
[NiSalphen] and so is the first oxidation peak observed at 1.00 V. The peak potentials of the
second oxidation waves are identical (1.18 V). The cathodic peak is found at 0.80 V.
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Figure 2. Cyclic voltammograms showing polymerization of [NiSalphen] (a) and poly[NiSal-
phen(CH3O)2] (b) at a Pt-coated quartz crystal electrode (1.37 cm2) at a scan rate of 0.05 V s−1 in 3·10−4 
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Figure 2. Cyclic voltammograms showing polymerization of [NiSalphen] (a) and
poly[NiSalphen(CH3O)2] (b) at a Pt-coated quartz crystal electrode (1.37 cm2) at a scan rate
of 0.05 V s−1 in 3·10−4 monomer/0.1 M Et4NBF4/CH3CN. C.

Voltammetric responses of electrochemically active species undergoing electropoly-
merization are often quite complex, which makes it challenging to unambiguously identify
the nature of redox processes associated with the observed redox waves. The first anodic
peak in the CV curves of [NiSchiff] can be ascribed to the monomer oxidation. As seen
in Figure 2a,b, the first oxidation peak of [NiSalphen(CH3O)2] is shifted to more negative
potentials versus [NiSalphen] in accordance with the electron-donating nature of CH3O-
groups in the aromatic bridge.

The three voltammetric cycles of the working electrode in the [NiSalphen] and
[NiSalphen(CH3O)2] solutions in the potential range from 0 to 1.3 V resulted in the de-
position of similar polymer masses on the electrode surface (about 5 µg as determined
by microgravimetric measurements) (Table 1). The thickness of the polymer films was
in the 30–50 nm range. The obtained polymer layers completely covered the electrode
surface, maintained mechanical integrity through testing, and displayed sufficiently uni-
form morphology and a rather smooth surface. No large globules or irregularly shaped
domains were observed on top of the continuous polymer layers, which allowed to ascribe
the differences in the electrochemical and nanomechanical properties of the two studied
polymers to the different structure of their repeat units.

Table 1. The number of electrons exchanged by each repeat unit of the polymer film in the p-
doping/dedoping in 0.1 M Et4NBF4/PC, values of the effective molar mass of the electrolyte species,
and their proposed composition.

Polymer
Mass of Dry

Polymer Film,
m, µg (±0.1)

Number of
Electrons

Exchanged by
Each Monomer
Unit, n (±0.1)

Effective Molar
Mass of the
Electrolyte

Species,
M (±10), g mol−1

Proposed
Composition of
the Electrolyte

Species

poly[NiSalphen] 5.1 1.2 190 BF4
− + PC

poly[NiSalphen(CH3O)2] 4.9 1.5 245 BF4
− + 1.5 PC

2.2. Cyclic Voltammetry and EQCM Measurements

To gain a better understanding of electrochemical p-doping/dedoping of poly[NiSalphen]
and poly[NiSalphen(CH3O)2] and to identify the type of electrolyte species that contribute
to the redox charge balancing, the polymer films electrosynthesized on the Pt-plated quartz
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crystals were tested by a combination of CV and EQCM in 0.1 M Et4NBF4 solution in
propylene carbonate (PC), which matches the electrolyte solution used in EC-HD QNM
studies.

Figure 3 shows the CV responses of poly[NiSalphen] (curve 1, Figure 3a) and
poly[NiSalphen(CH3O)2] films (curve 1, Figure 3b) attributable to their electrochemical
switching between neutral and p-doped states. The cyclic voltammograms of both poly-
mers show a pair of pronounced redox peaks. The oxidation peaks appear at 1.12 V
for poly[NiSalphen] and 1.09 V for poly[NiSalphen(CH3O)2]. The reduction peaks are
located at 0.90 V and 0.88 V for poly[NiSalphen] and poly[NiSalphen(CH3O)2], respec-
tively. Contrary to the oxidation of the monomers, there appears to be very little effect of
CH3O- groups in the bridging unit on the position of redox peaks and the shape of the
voltammetric curves. The peak potentials of poly[NiSalphen(CH3O)2] are slightly shifted
to more negative values, which reflects the overall higher electron density of the polymer
containing electron-donating groups in the main chains. At the same time, as shown below,
methoxy-substituents influence the maximum doping level achievable in the investigated
polymer films.
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0.05 V s−1 in 0.1 M Et4NBF4/PC and the corresponding electrode mass variation vs. potential during 
the CV cycle of poly[NiSalphen] (a, red curve 2) or poly[NiSalphen(CH3O)2] (b, red curve 2). 
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Figure 3. Cyclic voltammograms of a Pt-coated quartz crystal electrode (1.37 cm2) modified with
poly[NiSalphen] (a, black curve 1) or poly[NiSalphen(CH3O)2] (b, black curve 1) at a scan rate of 0.05
V s−1 in 0.1 M Et4NBF4/PC and the corresponding electrode mass variation vs. potential during the
CV cycle of poly[NiSalphen] (a, red curve 2) or poly[NiSalphen(CH3O)2] (b, red curve 2).

We combined the results of electrochemical studies with the data on the mass of the
dry uncharged polymer film obtained by microgravimetric measurements to determine
the number of electrons n reversibly exchanged by repeat units of poly[NiSalphen] and
poly[NiSalphen(CH3O)2] films during redox switching using the following equation [8]:

n =
Q×M
F×m

where Q is the amount of charge passed in electrochemical reduction of a polymer film (C);
M is the molar mass of a repeat unit (g mol−1); F is the Faraday constant (96,485 C mol−1);
and m is the mass of a dry polymer film (g).

As shown in Table 1, both poly[NiSalphen] and poly[NiSalphen(CH3O)2] films are
able to exchange more than one electron per a monomer unit in the oxidation/reduction
processes. Each monomer possesses several redox-active sites, which justifies the discov-
ered multielectron redox processes in respective polymer films. A higher doping level is
achieved in the more electron-rich polymer poly[NiSalphen(CH3O)2].
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The EQCM responses accompanying p-doping/dedoping of poly[NiSalphen] (curve
2, Figure 3a) and poly[NiSalphen(CH3O)2] (curve 2, Figure 3b) show non-monotonic
variation of electrode mass ∆m with potential. In both cases, the polymer mass increases
during the oxidation and decreases during the reduction of the polymer film. The data
are consistent with the overall uptake of electrolyte species by the polymer network in
the charging process and their expulsion during discharging. Figure 4 shows the mass
change versus charge plots determined from the CV/EQCM measurements of the two
polymer films (the mass changes are quite symmetrical in the forward and backward scans
so the data for the reduction half-cycle are omitted for clarity). The linear segments of
these curves are used to calculate the effective molar mass M of the electrolyte species
exchanged during redox switching [9–11]. The ∆m−∆Q plots in Figure 4 show several
linear segments. In the context of this research, the ones corresponding to the ion dynamics
at more anodic potentials are of particular interest. As shown in previous studies [7], the
transition of poly[NiSchiff] materials into highly doped states may be accompanied by
dramatic volume changes (expansion on oxidation and contraction on the reduction). So the
uncharged and charged polymer films are expected to display most pronounced differences
in the nanomechanical properties. With respect to that, the values of M were calculated
from the slopes of the linear segments of ∆m−∆Q plots in the potential range from 0.9 to
1.3 V. The obtained data shown in Table 1 are consistent with the transfer of a BF4

− anion
(86.81 g mol−1) and a PC molecule (102.09 g mol−1) into the poly[NiSalphen] film, and one
BF4

− anion and 1.5 molecules of propylene carbonate into the poly[NiSalphen(CH3O)2]
film upon oxidation of high anodic potentials.
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0.1 M Et4NBF4/PC.

As follows from Table 1, there is a correlation between the maximum achievable doping
level and the amount of solvent ingress into the polymer network. The nanomechanical
properties of the polymer film should enable the reversible structural changes upon counter
ions and solvent exchange for stable electrochemical performance.

2.3. In-Situ Electrochemical Atomic Force Microscopy Measurements

Stiffness is an important parameter of a functional conducting polymer material as
it refers to its resistance to deformation. The material stiffness is directly proportional to
Young’s modulus: stiff materials have high Young’s modulii and vice versa. An EC-HD
QNM mode of AFM was used to investigate the changes in the elastic modulus of the
studied polymer films induced by p-doping/dedoping.
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Young’s modulus maps were obtained for poly[NiSalphen] (Figure 5) and
poly[NiSalphen(CH3O)2] (Figure 6) in the undoped and p-doped states. Due to data
variation across the scanned areas, the average values of Young’s modulus were recalcu-
lated from the data of the probe-sample contact stiffness signal using the nominal value of
the probe curvature RT = 10 nm (Table 2). For both polymers, they are in the hundreds of
MPa range, which agrees well with the previously published data [20].
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Table 2. Average Young’s modulus of polymer films in uncharged and charged states in 0.1 M
Et4NBF4/PC.

Polymer
Average Young’s Modulus, MPa

Uncharged State Charged State

poly[NiSalphen] 175 ± 8 108 ± 4

poly[NiSalphen(CH3O)2] 145 ± 5 95 ± 4

As follows from Table 2, the uncharged poly[NiSalphen(CH3O)2] is softer than the
poly[NiSalphen] film. The decrease in Young’s modulus of the polymer upon introducing
two CH3O- substituents into the aromatic bridges of their repeat units can be explained
by inhibited interchain interactions due to steric hindrance created by bulky methoxy
groups. In both cases, the polymer stiffness decreases upon electrochemical p-doping
due to the ingress of charge compensating anion and solvent into the space between
polymer chains: the Young’s modulus decreases by 38% for poly[NiSalphen] and by 34%
for poly[NiSalphen(CH3O)2]. The relative changes in the elastic modulus upon polymers
p-doping are similar, so the oxidized poly[NiSalphen(CH3O)2] film remains softer than
poly[NiSalphen], but the difference between the two doped polymers is less dramatic
than in the neutral (uncharged) state. Ultimately, the polymer stiffness depends on its
composition and doping level; the changes in the Young’s modulus of the polymer are
caused by ingress and egress of electrolyte species associated with the transfer of electric
charge.

The discussed EQCM/CV and in-situ EC-HD QNM AFM results suggest that the
changes in the polymer nanomechanical properties, ion dynamics, and pseudocapacitive
behavior with the state of charge are interrelated. It appears that softer polymers can accom-
modate higher additional electrolyte volume so they can be reversibly charged to higher
doping levels. Poly[NiSalphen(CH3O)2] has 17% lower Young’s modulus in the uncharged
state, higher apparent molar mass of transferred electrolyte species at anodic cycling (higher
solvent uptake), and 25% higher number of electrons exchanged by each repeat unit in
the electrochemical switching than poly[NiSalphen]. The discovered relationship between
the Young’s modulus of the polymer film and its pseudocapacitive properties is a novel
structure-property finding that could be as essential to designing advanced functional
materials for energy storage applications as the relationship between the material stiffness
and its durability in multiple charge/discharge cycles. Combined EQCM/CV and in-situ
EC-AFM studies of various series of poly[NiSchiff] films are currently under way in our
laboratory to further confirm the revealed relationships between their electrochemical and
nanomechanical properties.

3. Materials and Methods
3.1. Chemicals

1,2-phenylenediamine (Aldrich), 1,2-dimethoxybenzene (Aldrich), salicylaldehyde
(Aldrich), nickel(II) acetate (Aldrich), J.T.Baker® BIOANALYZED™ acetonitrile (Avan-
tor Performance Materials), and propylene carbonate (anhydrous, electrochemical grade)
(Sigma-Aldrich) were used as received without further purification. Tetraethylammonium
tetrafluoroborate Et4NBF4 (Sigma-Aldrich, 99%) was recrystallized from isopropyl alcohol
and dried at 65 ◦C for 72 h before use. The monomeric complexes [NiSalphen(CH3O)2]
and [NiSalphen] were synthesized according to the previously described standard pro-
cedure [33]. It involved the condensation of salicylaldehyde with appropriate diamine
to obtain the free ligand, which was then reacted with nickel(II) acetate to yield the final
product. The obtained complexes were recrystallized from ethanol and dried at 60 ◦C for
several hours. The details of [NiSalphen] synthesis and its structure verification by IR spec-
troscopy, 1H NMR spectroscopy, and elemental analysis are described in [24]. The details of
[NiSalphen(CH3O)2] synthesis and its structure determination by X-ray diffraction analysis,
IR, 1H and 13C NMR spectroscopy are reported in [25].
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3.2. Electrochemical Synthesis of Poly[NiSalphen] and poly[NiSalphen(CH3O)2]

The films were deposited onto ITO electrodes or Pt-plated quartz crystals by ox-
idative electropolymerization from 0.1 mol L−1 Et4NBF4/CH3CN solutions containing
0.0003 mol L−1 monomeric complex by three potentiodynamic cycles in the potential range
from 0.0 to 1.3 V vs. Ag/AgCl (sat′d KCl) at a scan rate of 0.05 V s−1. A customized three-
electrode electrochemical cell was used for the electropolymerization. After polymerization,
the polymer-modified electrode was rinsed with the acetonitrile and dried for 30 min before
further use.

3.3. Combination of Cyclic Voltammetry and EQCM Measurements

Electrochemical syntheses and examinations of the polymer films were performed
using VSP potentiostat-galvanostat (Bio-Logic Science Instruments, France). A 5 MHz
QCM100 Quartz Crystal Microbalance (Stanford Research Systems Inc., USA) connected
to an MXC 1600 frequency counter (Metex, Korea) was used to determine the mass of the
films deposited on the electrode.

The customized electrochemical cell was a closed single compartment three-electrode
cell, equipped with a platinum-plated quartz crystal (electrode area 1.37 cm2) as the working
electrode, a glassy carbon plate (12.5 cm2) as the counter electrode, and a non-aqueous
Ag/Ag+ reference electrode (MW-1085, BASi) filled with a 0.005 mol L−1 AgNO3 solution in
0.1M Et4NBF4/CH3CN. The potential of this reference electrode was +0.3 V vs. an Ag/AgCl
(sat′d KCl). The numerical values all potentials are referred to the Ag/AgCl (sat′d KCl)
reference electrode. All the experiments were performed at ambient temperature.

The oscillation frequency of the dry crystal was measured before and after polymeriza-
tion. In the latter case, the polymer-modified electrode was dried until the crystal reached
a constant oscillation frequency (for about 30 min). The mass of the dry film was then
calculated by using the Sauerbrey equation [34], which relates the mass change per unit
area at the electrode surface to the observed change in the oscillation frequency of the
crystal.

The cyclic voltammetry and EQCM characterization of the films was performed in a
0.1 mol L−1 Et4NBF4/propylene carbonate solution in the range of potentials from 0.0 V to
1.3 V at 0.05 V s−1.

3.4. In-Situ EC-HD QNM AFM

In-situ EC-HD QNM AFM measurements were performed using an Ntegra Aura
atomic force microscope (NT-MDT, Russia) and Epsilon potentiostat/galvanostat (BASi,
USA). The experimental setup consisted of a three-electrode cell (NT-MDT, Russia) equipped
with a polymer-modified ITO glass plate (1 cm2) as the working electrode, a platinum
wire (length 3 cm, diameter 1 mm) as the counter electrode and a Ag/AgCl wire (length
3 cm, diameter 1 mm) as the reference electrode. The cell was filled with a deaerated
0.1 mol L−1 Et4NBF4/propylene carbonate solution.

The mapping of the nanomechanical properties of a polymer film was carried out with
a high resolution high accuracy AFM probe HA_NC_B (NT-MDT, Russia) with nominal
spring constant kC = 4 N/m and nominal tip radius RT = 10 nm. The cantilever spring
constant was calibrated by thermal noise and Sader methods [35] before each measurement.
During the electrochemical experiment the probe was completely covered with electrolyte.

The polymer surface was scanned vertically over the area of 1 µm × 1 µm with a
scanning rate of 0.5 Hz, 256 points per line. The initial AFM image of the polymer surface
was captured at OCV (−0.03 V), the position of the polymer surface in this experiment was
set as a fixed scanning position. The following AFM images were captured with the same
set of parameters as the initial image.

The electrode was polarized at a constant potential of 0.0 V vs. Ag/AgCl,KCl(sat) to
capture the AFM image of the undoped polymer film. After that, the polymer was charged
by linear sweep voltammetry at 5 mV/s scan rate from 0.0 V to 1.0 V, followed by anodic
polarization at a constant potential of 1.0 V to capture the AFM image of the doped polymer
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film. After that, the polymer film was discharged to 0.0 V at 5 mV/s. The procedure was
repeated for at least 3 times. All experiments were performed at ambient temperature.

The images were post-edited by Gwyddion modular program, version 2.61 (http:
//gwyddion.net/ accessed: 7 June 2022). Images of 256 × 256 pixels were acquired at the
area of 1 × 1 µm, thus collecting a total of 65,536 force curves. Based on each curve, the
tip-sample contact stiffness kS was calculated using the measured force curve slope S as: ks
= kCS/(S0 − S) (S0 is the slope of the force curve on a solid substrate without a polymer
film). After that, the Young’s modulus, E, for every pixel of the image was evaluated
as E = kS/RT and average values of Young’s modulus were calculated for uncharged and
charged polymer films.

A tip-scratch method was used to measure the thickness of the polymer films on the
electrode surface.
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