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Abstract: Removing organic dyes from contaminated wastewater resulting from industrial effluents
with a cost-effective approach addresses a major global challenge. The adsorption technique onto
carbon-based materials and metal oxide is one of the most effective dye removal procedures. The
current work aimed to evaluate the application of calcium oxide-doped carbon nitride nanostructures
(CaO-g-C3N4) to eliminate basic fuchsine dyes (BF) from wastewater. CaO-g-C3N4 nanosorbent were
obtained via ultrasonication and characterized by scanning electron microscopy, X-ray diffraction,
TEM, and BET. The TEM analysis reveals 2D nanosheet-like nanoparticle architectures with a high
specific surface area (37.31 m2/g) for the as-fabricated CaO-g-C3N4 nanosorbent. The adsorption
results demonstrated that the variation of the dye concentration impacted the elimination of BF
by CaO-C3N4 while no effect of pH on the removal of BF was observed. Freundlich isotherm and
Pseudo-First-order adsorption kinetics models best fitted BF adsorption onto CaO-g-C3N4. The
highest adsorption capacity of CaO-g-C3N4 for BF was determined to be 813 mg. g−1. The adsorption
mechanism of BF is related to the π-π stacking bridging and hydrogen bond, as demonstrated
by the FTIR study. CaO-g-C3N4 nanostructures may be easily recovered from solution and were
effectively employed for BF elimination in at least four continuous cycles. The fabricated CaO-g-
C3N4 adsorbent display excellent BF adsorption capacity and can be used as a potential sorbent in
wastewater purification.

Keywords: calcium oxide-doped carbon nitride nanostructures; basic fuchsine; elimination
mechanism; π-π stacking

1. Introduction

Water pollution is one of the most important environmental hazards in the modern
world, caused by wastewater discharge, insufficient treatment methods, and leakage into
the natural water cycle [1,2]. Depending on the source, such as industrial plants, wastewater
streams can contain excessively polluting components. Organics [3] (phenolic compounds,
dyes, halogenated compounds, oils, etc.) and heavy metals (Hg, Cd, Pb, Cr, Ag, etc.) [4]
are potential contaminants in wastewater, as they are biodegradable, volatile, and recycled
organic compounds, suspended particles, pathogens, and parasites. Most chemical dyes
are probable carcinogens [5]. Thus, before discharging wastewater, it is important to lessen
or remove the presence of these potentially fatal substances.

Among these dyes, basic fuchsin BF is a triarylmethane dye that is inflammable and
has antibacterial and fungicidal characteristics [6,7]. It is commonly employed as a colorant
in textile and leather goods as well as in the staining of collagen and tubercle bacillus [8].
Because of its low biodegradability and its toxicity, carcinogenicity, and unsightliness [9–11],
Basic Fuchsin removal from wastewater systems is a major concern that should be studied
and executed as soon as possible.
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In addition to the traditional biological, electrochemical, and photocatalytic oxidation
and decomposition routes, physical processes (such as adsorption) are common methods
that have also been developed and are used to remove organic pollutants from wastewater
streams [12–14]. Even though these technologies can turn organic pollutants into non-
hazardous molecules and can be used in various ways, their inability to be scaled up is a
significant problem from an engineering point of view.

More specifically, the adsorption method was widely regarded as the most effective
way to treat dye wastewater because of its significant adsorption capacity, low cost, good
selectivity, and ease of operation [15–18]. Therefore, many researchers invest a lot of
time and effort into creating new adsorbents, as well as adsorption mechanisms and
treatment technology, in the hopes that they would be more useful in the treatment of dye
wastewater [19–21].

Besides, graphitic carbon nitride (g-C3N4) nanosheet has been identified as an indis-
pensable material for two-dimensional structures due to its graphitic-like structure and
high stability under ambient circumstances [22]. It is composed of carbon and nitrogen
and is most commonly employed for energy conversion and storage. Its π conjugated poly-
meric metal-free semiconducting 2D structure is composed of graphitic planes composed
of sp2-hybridized carbon and nitrogen [23]. Because g-C3N4 contains a sufficient number
of edge amino and amino groups (NH/NH2), it can supply several binding sites. There-
fore, g-C3N4 is regarded as a suitable adsorbent for removing pollutants from wastewater.
Nevertheless, g-C3N4 nanosheets capability to adsorb is limited by its small surface area
and few functional groups [24].

Therefore, the development of g-C3N4-containing compounds with higher photonic ef-
ficiency, such as TiO2 and ZnO, piqued the curiosity of a vast number of researchers [25,26].
This was accomplished by combining g-C3N4 with another semiconductor and decorating
g-C3N4 with noble metals [27–31]. Construction of heterojunctions comprised of g-C3N4
mixed with another type of compound, such as CaO nanomaterials, and preparation of
a Ca-O doped with g-C3N4 with an improved surface texture by selecting the optimal
preparation method are the most beneficial means of enhancing the adsorption properties
of g-C3N4.

In the current study, a mesoporous CaO@g-C3N4 nanocomposite was successfully
produced using a simple sonochemical process and evaluated as a promising adsorbent
material for adsorbing the basic fuchsin dye from a contaminated aqueous phase. The
physicochemical relationship between characterizations and measurements of equilibrium
and kinetics was studied. Adsorption isotherm data were also modeled, and the adsorption
performance of CaO@g-C3N4 nanocomposite for basic fuchsin was investigated.

2. Experimental
2.1. Chemicals

Sodium hydroxide (NaOH, ≥99%), sodium chloride (NaCl, ≥99%), basic fuchsin (BF,
≥85%), urea (CH4N2O, ≥98%) and calcium carbonate (CaCO3, ≥99%) purchased from
Merck Company were used without further purification. The required dyes concentrations
(25, 50, 100, 150, 200, and 300 ppm) were obtained by diluting BF stock solution (500 ppm).

2.2. CaO-g-C3N4 Nanosorbent Fabrication

The nanosheets of g-C3N4 were produced through the thermal breakdown of urea.
In a typical technique, 0.075 moles of a carbamide compound were placed in a covered
pot and tempered with a heating rate of 10 ◦C/min at 723 K for 120 min. The produced
yellow raw g-C3N4 was then cooled, pulverized, and stored in a dark container. Thermally
decomposing carbonate salts created calcium oxide (CaO) nanoparticles. Two grams of
calcium carbonate salts were weighed, placed in a crucible, and annealed at 1073 K for
one hour. CaO-g-C3N4 nanoparticles were produced using a step-by-step ultrasonication
technique aided by an organic solvent (ethanol). In 125 mL of ethanol, 2.76 mg of g-C3N4
was sonicated for 15 min. CaO nanoparticles were added to the g-C3N4 ethanolic solution
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along with an additional 45 min of sonication. The yellowish solution generated was
evaporated at 368 K for 1440 min. CaO-g-C3N4 nanosorbent was ultimately tempered at
453 K for 60 min.

2.3. CaO-g-C3N4 Nanosorbent Characterizations

The nanosorbent CaO-g-C3N4 was studied using a variety of analytical and spectro-
scopic techniques. Energy dispersive X-ray (EDX) spectroscopy was used to calculate the
elemental composition of the CaO-g-C3N4 nanosorbent. The transmission electron micro-
scope (Tecnai G20-USA) was used to make morphological observations, and the stimulating
voltage was set at 200 kV. X-ray diffraction (XRD) was used to analyze the phase structure
using a Bruker D8 Advance diffractometer Cu-K (λ = 1.540) radiation source. An ASAP
2020 device was used to evaluate the accurate analysis of the surface area. Before and after
the BF dye elimination, Fourier transformed infrared (FTIR) spectra were recorded using a
Nicolet 5700 spectrometer equipped with a KBr pellet.

2.4. BF Dye Removal Experiments

By mixing 25 mL of BF dye solution with 10 mg of CaO-g-C3N4 nanosorbent at varying
starting concentrations (5–300 mg/L), batch removal tests of BF dye were conducted. In
order to attain equilibrium, the set mixture was stirred for 24 h at 400 rpm. After centrifu-
gation, a clear solution was produced. The dye volumes and beginning concentrations
were 100 mL and 250 ppm, respectively, for the kinetic experiment, and the CaO-g-C3N4
nanosorbent mass was 40 mg. The test was conducted in the dark with magnetic stirring.
Later, 10 mL of the suspension was withdrawn and centrifuged for 10 min to measure the
remaining concentration of BF dye.

Using a spectrophotometer, the concentration of dye was determined, and equilibrium
dye capacity (qe) was calculated using the following equation:

qe =
C0 − Ce

m
· v (1)

where qt (mg·g−1) is the quantity of dye removed by a unit mass of nanosorbent m (g) at
a specified interval of time (min), V is the volume of the solution (L), C0 is the initial dye
concentration, and Ct is the concentration at time t (mg L–1). A similar calculation was used
to compute the amount adsorbed at equilibrium, qt:

qt =
C0 − Ct

m
· v (2)

The influence of the dye’s elimination on the pH of the aqueous media was investigated
by setting the initial pH value of dye solution from 3 to 11 pH range by using either NaOH
(0.1 mole·L−1) or HCl (0.1 mole·L−1). The pH of zero-point charge (pHzpc) for CaO-g-C3N4
nanosorbent was evaluated by the salt addition approach. A fixed amount of CaO-g-C3N4
nanosorbent (20 mg) was added in each flask containing 20 mL NaCl solution (0.01 M)
with pH initial (pHi) values raised from 2 to 12 (by adjustments using 0.1 M NaOH or HCl
solutions). The mixture was stirred for one hour, and the final pH (pHf) was calculated after
eliminating CaO-g-C3N4 by filtration. For the reusability test, the CaO-g-C3N4 nanosorbent
used after the adsorption experiments was recovered by filtration and then calcined at
773 K. for one hour. After that, the recovered CaO-g-C3N4 nanosorbent was reused for
further adsorption tests.

3. Results and Discussion
3.1. CaO-g-C3N4 Nanosorbent Characterizations

The scanning elemental mapping analysis for Ca, N, O, and C in the CaO-g-C3N4
nanosorbent aggregates (Figure 1a–e) indicates an overall homogeneous dispersion, as
shown in Figure 1b–e. On the elemental maps, a brighter zone implies a higher elemental
ratio. The CaO-g-C3N4 nanocomposite has created a homogenous distribution, according
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to this observation. An image taken using EDX identifies the individual components that
are present in CaO-g-C3N4 nanosorbent material. As a result, it is clear from the findings
of the EDX performed on CaO-g-C3N4 nanosorbent that the surface is composed of carbon
(C), nitrogen (N), calcium (Ca), and oxygen (O). These findings are because the results
depict bands corresponding to each component (Figure 1a–f).
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Figure 1. (a–e) Elemental mapping distribution and (f) EDX graph of CaO-g-C3N4 nanosorbent.

The TEM micrograph was utilized to investigate the textural qualities of the fabricated
CaO-g-C3N4 nanosorbent. The TEM photographs of the CaO, g-C3N4, and CaO-g-C3N4
nanostructures are depicted in Figure 2. The TEM image of CaO (Figure 2a) presents
like-sheets shape nanoparticles. On the other hand, the TEM image of g-C3N4 (Figure 2b)
displays layers with soft surface sheets as a typical graphitic nanostructure [32]. Further-
more, the images with different magnifications obtained from the TEM of the CaO-g-C3N4
demonstrated that the morphology had an apparently random appearance, as given in
(Figure 2a–d). The CaO-g-C3N4 nanosorbent exhibits characteristic 2D nanosheet-like
nanoparticle architectures, as seen in (Figure 2a–d). The average particle size of the CaO
nanoparticles integrated into the CaO-g-C3N4 nanosorbent is around 20–60 nm. CaO
are observed to be well disseminated on the g-C3N4 surface, forming an abundance of
self-active sites on the nanosorbent surface.

Figure 3 depicts the typical peaks at 12.92◦ and 27.64◦ for g-C3N4 in the XRD pattern.
The first peak corresponds to the in-plane packing of tris-triazine units with a d-spacing
of 0.685 nm, which agrees with the distance between holes in the nitride pores. However,
the great peak at 27.64◦ is associated with C–N aromatic stacking units separated by
0.322 nm, which corresponds to the 002 interlayer layering plane of the connected aromatic
system [33]. Alternatively, the peaks 32.14, 37.25, 53.77, 64.00, and 67.30◦ correspond to
the (110), (200), (202), (311), and (222) planes of the cubic phase of CaO (XRD file JCPDS
77-2376) [34]. Besides the CaO peaks, Ca (OH)2 and CaCO3 peaks are seen at 18,00◦, 29,32◦,
47.39◦, and 48.40◦, respectively. The presence of calcite (CaCO3) and hydroxide peaks
indicates incomplete pyrolysis of the precursor and fast carbonation and hydrolysis of CaO
by ambient CO2 and water vapor. Literature indicates that CaO nanoparticles have a strong
potential for capturing greenhouse gas CO2 [35]. Finally, the XRD pattern obtained from
the fabricated indicates the presence of the g-C3N4 and CaO peaks (Figure 3), implying the
construction of the target nanosorbent.
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Nanomaterials utilized as adsorbents are profoundly influenced by their particular
surface area and porous structure, which can provide additional adsorption and reac-
tive sites. The N2 absorption-desorption isotherms of CaO-g-C3N4 nanosorbent, which
may be categorized as type IV according to the IUPAC system, were determined [36].
Figure 4a,b displays the BET surface isotherms and pore size distribution of the CaO-g-
C3N4 nanosorbent as manufactured. According to the results, the CaO-g-C3N4 nanosorbent
absorption-desorption graphs fit isotherm type IV and the hysteresis loop (H2) for relative
pressures between 0.0 and 1.0. This result confirmed the mesoporous nature of the CaO-g-
C3N4 nanosorbent [37,38]. Due to the presence of several active sites on the surface, the
CaO-g-C3N4 nanosorbent increased surface area, demonstrated by a higher specific surface
area (37.31 m2/g) with a pore volume of 0.136 cc/g, will improve the sorption capacity [39].
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The chemical condition of the elements on the surface of the CaO@g-C3N4 nanostruc-
ture was determined by XPS analysis; see Figure 5a–d. CaO exists because the Ca 2p peaks
at 349 and 352.6 eV correspond to the divalent oxidation states of calcium oxygen molecules
(Ca-2p3/2 and Ca-2p1/2) [40,41]. Ca-O and hydroxyl groups in water molecules corre-
spond to the three O 1s peaks detected at 532.6, 533.7, and 534.4 eV which correspond to the
lattice oxygen of the layer-structured Ca-O, and adsorbed H2O or surface hydroxyl oxygen,
respectively (Figure 5b) [42]. As shown in Figure 4c, carbon in the C-C and N-C=N states is
attributed with two distinct contributions at 285.8 and 288.2 eV, respectively. According
to the XPS analysis, only Ca, O, C, and N are present. The peaks at 398.8 and 400.3 eV
(Figure 5d) for N 1s which indicate, respectively, the sp2 hybridized carbon–nitrogen bond-
ing in (C–N) and N-O of the CN and the binding energy of the N atoms in C-N-C [43]. The
absence of other impurity peaks supports the results of the XRD and EDS studies.

3.2. BF Removal onto CaO-g-C3N4 Nanosorbent
3.2.1. Impact of Variation pH on BF Removal by CaO-g-C3N4 Nanosorbent

The solution’s pH controls the adsorbent’s sorption affinity by adjusting the surface
charge and the ionizing strength of the adsorbent [44]. Adsorption experiments of CaO-g-
C3N4 nanosorbent were conducted under various initial pH values in order to demonstrate
the impact of pH value on the adsorption of BF dyes (from 3 to 11). Figure 6a illustrates
the influence of pH on BF uptake. It was discovered that BF dyes may be stably adsorbed
without observable alterations. The zero-point charge experiment was performed to explain
the acquired results. The pHzpc of CaO-g-C3N4 nanosorbent is determined to be 10.6, as
shown in Figure 6b. At lower pH, the surface of the CaO-g-C3N4 nanosorbent is positively
charged and becomes negative at pH greater than pHpzc (=10.6). The pH studies showed
that the adsorption is pH-independent, indicating that the electrostatic interactions do not
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control the adsorption mechanism. The adsorption was likely due to the formation of H
bonding between -OH and -NH2 onto the CaO-g-C3N4 surface with BF dye molecules [45].
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3.2.2. Influence of the Initial BF Dye Concentration and Doping

The influence of the initial BF dye concentration in the range of 5–300 mg/L on the
adsorption efficiency of CaO-g-C3N4 nanosorbent was scrutinized under the following
operating conditions: contact time 1440 min, room temperature, pH 7, 400 rpm stirring
speed, and a CaO-g-C3N4 sorbent dose of 10 mg. As shown in Figure 6c, increasing the
initial BF concentration from 5 to 300 mg/L improved the adsorption capacity significantly
from 60.61 to 738.08 mg/g. These results indicate that BF molecules in the reaction medium
interact more strongly with the top layer of the CaO-C3N4 sorbent particles at lower
concentrations due to a large amount of vacant active sites. Conversely, the ratio of
accessible sites for BF molecules declines with a further rise in the concentration attributed
to saturation. To compare the BF dye adsorption capacities of g-C3N4 and CaO-g-C3N4, a
series of adsorption experiments were conducted at different initial BF concentrations and
a pH value of 7. The obtained results are also shown in Figure 6c. It is interesting to remark
that CaO-g-C3N4 exhibits higher BF adsorption capacity than the respective capacities
of pure g-C3N4 for the different initial BF concentrations. This result demonstrates that
g-C3N4 nanosheets have the capability to adsorb is limited by its small surface area and
few functional groups. The doping of g-C3N4 by CaO enhances the adsorption properties
of g-C3N4 by improving surface texture.

3.2.3. Adsorption Equilibrium of BF Dyes onto CaO-C3N4 Nanosorbent

The greatest amount of BF absorbed by CaO-g-C3N4 nanosorbent is a crucial charac-
teristic for assessing the high adsorption capacity exhibited. To estimate the absorption
capacity of CaO-g-C3N4 nanosorbent, two adsorption isotherm models (Freundlich and
Langmuir) were utilized to assess the adsorption data, as depicted in Figure 7a,b. Table 1
contains the formulas corresponding to each isotherm model and the derived parameters.
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As can be noted from the isotherm graphs and the experimental data for BF adsorption
over CaO-C3N4 nanosorbent, the Freundlich adsorption isotherm has the highest R2 = 0.996.
These findings indicate that the Freundlich adsorption isotherm curve is more accurate to
fit the experimental data.
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Table 1. Used equilibrium isotherm models for the adsorption of BF onto CaO-g-C3N4 nanosorbent.

Equilibrium Models Linear Form Parameter Value

Langmuir [46] Ce
qe

= 1
qmKL

+ Ce
qm

qm (mg/g) 813.0
KL (mg/g) 0.212
RL (L/mg) 0.0015

R2 0.842

Freundlich [47] lnqe = lnKF + 1
n lnCe

n 0.97
KF (L/mg) 88.89

R2 0.996

The greatest sorption capacity of CaO-g-C3N4 nanosorbent for BF dyes is found to be
813 mg·g−1, as given in Table 1.

3.2.4. BF Contact Time and Adsorption Kinetic Studies

Figure 8a shows the relationship between contact time and BF adsorption on the
surface of the CaO-C3N4 nanosorbent. Adsorption capacity is seen to increase with longer
contact times, reaching equilibrium after 25.9 min. Beyond this equilibrium threshold,
the adsorption capacity and the amount of BF adsorbed are in dynamic equilibrium. BF
molecules were rapidly adsorbed by CaO-C3N4 nanosorbent for the first 25.9 min, after
which the adsorption rate declined until it reached its maximum value at around 1440 min.
The initial adsorption rates are relatively high due to the abundance of active sites on the
surface of the CaO-g-C3N4. After attaining equilibrium, the active site concentration falls,
and dye adsorption does not occur.
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The adsorption kinetics measures the rate of solute adsorption at the solid–liquid
interface and gives essential information on the equilibrium period for the design and
management of an adsorption process [48]. As shown in Figure 8b,c, the BF adsorption
kinetics by the CaO-g-C3N4 nanosorbent was investigated using pseudo-first-order (PFO)
and pseudo-second-order (PSO) kinetic models (b and c). The form of the relevant nonlinear
equations is shown in Table 2.

Table 2. Kinetics models for BF adsorption onto CaO-g-C3N4 nanosorbent.

Kinetics Models Kinetic Equations Parameter Value

PFO [49] qt = qe

(
1− e−1k1t

) Qm (exp) (mg/g) 375.69
Qe (mg/g) 376.49
K1 (min−1) 0.080

R2 0.984

PSO [49] qt =
t k2q2

e
k2qet+1

Qe (cal) (mg/g) 397.13
K2 (g/mg·min) 0.0003

R2 0.930

Intra-particle Diffusion [50] qt = kdi f
√

t + C

Kdif1 (mg. min1/2/g) 72.78
C1 33.53
R2 0.987

Kdif2 (mg·min1/2/g) 0.04
C2 372.83
R2 0.643

The computed model parameters under the experimental conditions tested are sum-
marized in Table 2. The PFO model might adequately describe the experimental adsorption
kinetics data. It claims that the ratio of the square of the number of accessible sites to the
rate of adsorption site occupancy. The form formula for the PFO nonlinear linear model is
shown in Table 2. Using the computed model parameters in Table 2, the extraordinarily
high R2 value of 0.984 is determined. Compared to the PSO, the PFO equation provides a
perfect fit, as shown by the findings. For the tested BF concentrations, there is only a small
difference between the experimental Qmax values and the model-estimated Qmax values. As
a result, the PFO model’s best fit implies that the kinetic adsorption may be mathematically
described using the concentration of BF in solution [44,51].

Through the intra-particle diffusion/transport mechanism, the BF elimination may be
transferred from the bulk of the solution to the solid phase of the CaO-g-C3N4 nanosor-
bent. In some circumstances, the step of the adsorption process known as intra-particular
diffusion is restrictive. The diffusion pattern developed by Weber and Morris supports
the notion of intra-particulate diffusion [52,53]. As qt and t1/2 are compared linearly, the
removal of BF onto the CaO-C3N4 surface demonstrates the efficacy of the intra-particle
diffusion kinetic pattern. In addition, the intra-particle mode of diffusion is characterized
by the regression coefficient (R2 = 0.987). The diameter of the boundary layer is represented
by parameter C’s value. The higher percentages of the constants in Table 2 demonstrate the
solution boundary layer’s strong influence on the removal of BF dyes [52,53]. It can be seen
that the first stage of sorption has a larger rate than the second phase, which is shown by
kdif1 > kdif2 (Table 2). The high value of the rate produced by the first step may be explained
by the movement of the dye mover through the solution and onto the surface of the outer
CaO-g-C3N4 that is generated by the boundary layer. Comparatively, the subsequent phase
describes the last equilibrium step, when intra-particle diffusion begins to diminish due to
the solute’s modest concentration gradient and the restricted number of holes and pores
available for diffusion [54].

3.3. Regeneration and Reusability Study

By removing BF from the surface of the nanomaterial, the reusability and regeneration
of CaO-g-C3N4 sorbent were investigated. Following the adsorption experiment, the BF
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was removed from the CaO-g-C3N4 by heating it in an oven at 773 K for a one hour. The
recovered CaO-g-C3N4 was then reapplied to the BF elimination process. CaO-g-C3N4 has
been used efficiently for the removal of BF for at least four continuous cycles, as shown
by the reusability results (Figure 9a). As shown, there was no obvious decrease in the
elimination effectiveness during four adsorption–desorption cycles, and only 4%, 7%, and 9%
of the adsorption capacity for BF declined at the second, third, and fourth cycles, respectively.
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3.4. Comparison Study

As shown in Table 3, the calculated adsorption capacity of CaO-g-C3N4 for BF using
the Langmuir isotherm model is 813.00 mg·g−1. It is to one’s advantage to evaluate the
CaO-g-C3N4 adsorption capacity in relation to the diverse sorbents that can be utilized
for BF elimination. Table 3 shows the various sorbents with high adsorption capacities for
BF removal. Compared to previously reported sorbents like MgO and modified activated
carbons, CaO-g-C3N4 has a higher capacity for adsorption. This finding confirmed that
CaO-g-C3N4 is an efficient BF dye adsorbent.

Table 3. Observation of adsorption capacities of the CaO-g-C3N4 using various nanomaterial adsorbents.

Adsorbents qe (mg g−1) Best pH BET Surface Area (m2/g) References

Fe-MgO/kaolinite 10.36 9.0 - [55]
YZnO nanoparticles 75.53 11 20.26 [56]
Al/MCM-41 54.44 3–9 997 [57]
Euryale ferox Salisbury seed shell 19.48 6.0 - [58]
ESM 47.85 6.0 11.56 [59]
Fe/ZSM-5 251.87 5.0 399 [60]
Modified activated carbons 238.10 8.5 613 [61]
MgO 493.90 11 12.22 [62]
MgOg-C3N4 1250 7.0 84.2 [63]
CaO-g-C3N4 813.00 Independent 37.31 Current study

3.5. Adsorption Mechanism

The adsorption mechanism of BF dyes by nanosorbent has been elucidated using
FTIR analysis. Figure 10a depicts the FTIR spectra of nanosorbent prior to and following
BF adsorption. CaO-g-C3N4 spectrum reveals a number of distinguishable bands: the
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bandwidth between 3000 and 3600 cm−1 corresponds to the stretching vibration modes
of O–H and NH. The absorption bands at 1242, 1326, and 1412 cm−1 are associated with
aromatic C–N stretching, while the absorption bands at 1578 and 1640 cm−1 are associated
with C≡N stretching. The band at 884 cm−1 corresponds to the triazine ring mode, a
frequent carbon nitride mode. The characteristic band located at 805 cm−1 is assigned to
Ca-O vibration mode [64]. After adsorption, as can be observed in Figure 10a, many typical
BF bands form and move around with respect to the free molecules, suggesting that CaO-g-
C3N4 and BF molecules may interact. Also, following the adsorption of BF dyes, several
vibration bonds of CaO-C3N4, such as aromatic C–N stretching and triazine ring modes,
have shifted position. This study demonstrated that delocalized electron systems of C3N3
and functional groups of CaO-g-C3N4 were responsible for the adsorption of BF molecules.
In addition, the O–H and NH stretching vibration modes were shifted, demonstrating
the interaction of BF molecules with CaO-g-C3N4 nanosorbent via hydrogen bonds. Lie
et al. demonstrate that sorbents containing pyrazine and imine groups are beneficial to
the formation of π-π stacking and hydrogen bonds interactions with organics dyes [65].
Also, the examination of the pH’s effect indicates that the electrostatic attraction could not
dominate (control) the adsorption mechanism of BF onto the CaO-g-C3N4 nanosorbent. The
suggested BF adsorption mechanism (Figure 10b) onto the CaO-g-C3N4 involves hydrogen
bonds and the π-π stacking bridging [66].
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Figure 10. (a) FTIR spectra of BF, CaO-g-C3N4 and CaO-g-C3N4 @BF and (b) Possible adsorption
mechanism of BF dyes onto CaO-g-C3N4.

4. Conclusions

Mesoporous CaO-g-C3N4 nanosorbent was created using the ultrasonication tech-
nique, and it was subsequently employed as an adsorbent to remove BF dyes from wastew-
ater. CaO-g-C3N4 nanosorbent removal efficiency was studied by adjusting pH, contact
time, and BF concentration. The greatest adsorption capacity observed was 813 mg·g−1, in-
dicating that the reported data demonstrated outstanding elimination effectiveness toward
BF dye. The BF elimination by CaO-g-C3N4 nanosorbent was evaluated employed different
adsorption and kinetic models, and the best-fitting was committed by the Freundlich ad-
sorption isotherm and PFO kinetics models. The suggested BF adsorption mechanism onto
the CaO-g-C3N4 involves hydrogen bonds and the π-π stacking bridging. CaO-g-C3N4
nanostructures may be easily recovered from solution and were effectively employed for
BF elimination in at least four continuous cycles.
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