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Abstract: Biaryl monophosphines are important precursors to active catalysts of palladium-mediated
cross-coupling reactions. The efficiency of the phosphine-based transition metal complex catalyst
has its origin in the electronic structure of the complex used and the sterical hindrance created by
the ligand at an active catalyst site. The aim of this paper is to shed some light on the multiverse of
coordination modes of biaryl monophosphine ligands. Here, we present the analysis of the X-ray
single crystal structures of palladium(II) complexes of a family of biaryl monophosphine ligands
and the first crystallographic report on a related phosphine sulfide. Despite the common biaryl
monophosphine ligand motif, they show diverse coordination modes (i) starting from the activation
of aromatic C atoms and producing a C,P metallacycle, through (ii) the O,P chelation to Pd(II) ions
with a simultaneous demethylation reaction of one of the methoxy groups, ending up with (iii) the
monodentate coordination to metal cations via P atoms or (iv) via S atoms in the case of phosphine
sulfide. We relate our results to the crystal structures found in the Cambridge Structural Database to
show the multiverse of coordination modes in the group of biaryl monophosphine ligands.

Keywords: biaryl monophosphine ligand; Pd coordination modes; cross-coupling reactions

1. Introduction

Biaryl monophosphines are not frequently used ligands for coordination chemistry
itself. However, such voluminous ligands were designed to be used in difficult cross-
coupling reactions under mild and sustainable reaction conditions [1–5]. They are versatile
ligands due to their steric and electronic properties, which can be fine-tuned by modifying
the structure of the aryl groups [6,7]. The presence of the phosphorus (P) atom and properly
located aromatic system allow these ligands to chelate transition metals (TMs), forming
stable complexes in which the P–TM bond is strong and the P–C bond is weak since
the formation of the last one destroys the aromaticity [1,3]. The resulting metal–ligand
complexes exhibit enhanced reactivity towards the electron pair donors, which may lead
to C–Hal or C–H bond activation. On the other hand, the steric hindrance caused by the
voluminous substituents at the phosphorus atom in the biaryl molecular core enhances the
reaction selectivity. Thus, in many types of cross-coupling reactions, such ligands promote
both the oxidative addition and reductive elimination steps [8,9]. The field of biaryl
monophosphine ligands has seen a significant development during recent years, including
the design and synthesis of numerous derivatives with tailored catalytic properties. Such
biaryl monophosphine ligands have been applied successfully in various cross-coupling
reactions to facilitate carbon–carbon or carbon–heteroatom bond formation [10–12].
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Palladium-catalyzed C,P cross-coupling reactions enable a simple and practical route
for syntheses of various tertiary aryl-substituted phosphine derivatives. Cross-coupling
reactions are at the center of interest in many industries such as pharmaceuticals, agrochem-
istry, or natural products [13–15]. New sustainable strategies for palladium catalysis are
still required; therefore, an understanding of the coordination behavior of biaryl monophos-
phine ligands may be useful in designing new synthesis routes [16–18].

We report here three new crystal structures of palladium(II) complexes with biaryl
monophosphine ligand MeOSym-Phos (Figure 1) and its derivatives. We compare our
results with a previously reported Pd(II) complex with a differently substituted biaryl
fragment (Nap-Phos) [3,19] to show the changes in coordination upon changing the ligand’s
structure. The analyzed ligands show a wide range of coordination modes including: (i) C,P
chelation with the forming of palladacycles, (ii) O,P chelation, (iii) monodentate P ligation,
and (iv) monodentate S ligation. The coordination preferences of biaryl monophosphine
ligands were also examined by a structural search of the Cambridge Structural Database
(CSD) [20]. The aim of this paper is to present the multiverse of coordination modes of
biaryl monophosphine-based ligands.
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Figure 1. Structure of the MeOSym-Phos ligand.

2. Results

The MeOSym-Phos ligand (1) was obtained from inexpensive starting materials by a
synthetic protocol similar to that reported previously [2]. The phosphine sulfide MeOSym-
PhosS (5) was next subjected to a desulfuration reaction by treatment with Ni-Raney
reagent [21] to give ligand 1 in an almost quantitative yield (Scheme 1).
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Alternatively, the same ligand could be obtained through the reduction of a corre-
sponding phosphine oxide MeOSym-PhosO. The several-step reduction protocol is as
follows: deoxodichlorination with COCl2 followed by the reduction of phosphonium salt
with LAH or reduction via LiBH4 treatment to form phosphine borane and deprotection
of the phosphorus atom through hydrazine treatment (Scheme 2). The typical reduction
reagents (HSiCl3, PhSiH3, and TMDS/Ti(OBu)4) were ineffective.
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The MeOSym-Phos ligand presented here has a special coordination feature. The treat-
ment of 1 with dichloropalladium complex Pd(t-BuCN)2Cl2, at a relatively low temperature
(35 ◦C) in acetonitrile, according to our assumptions leads to complex 9. The Pd(II) cation
activates the aromatic C atom from 1,3,5-trimethoxybenzene to bind it directly. This behav-
ior is similar to other C,P ligands. Nevertheless, in poorly coordinating dichloromethane,
the obtained complex is unstable and in the presence of an excess amount of the ligand, at
a slightly higher temperature (40 ◦C), complex 9 is no longer formed as the main product.
Instead, demethylation of one of the methoxy groups in the 1,4-dimethoxynaphthalene
fragment occurs. This transformation leads to complexes 10 and 11 instead, which consti-
tute a very interesting material to study the diversity of the coordination modes of biaryl
monophosphine-based ligands (Scheme 3).
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We managed to isolate as single crystals and characterize the complexes of demethy-
lated product 10 and its derivative 11. In the case of 10 and 11, instead of C,P coordination,
O,P chelation to Pd(II) is observed (Scheme 3). Additionally, in the crystal of 11, the other
biaryl monophosphine ligand is ligated monodentately via the P atom.

A monodentate coordination mode is also present in a sulfide derivative MeOSym-
PhosS (5), via an S atom, however. Such a complex was isolated from the reaction of 5 with
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the Pd(II) source run for 40 min in dichloromethane at 40 ◦C. Two ligand molecules formed
a typical monodentate ligand dimer bridged by halogen atoms (Scheme 4).
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Scheme 4. Synthesis of phosphine sulfide palladium complex 5.

It is interesting that such coordination diversity tuned by the synthesis conditions
was not observed in the case of our previously studied biaryl monophosphine ligand
Nap-Phos [3,19]. The palladium complex of Nap–Phos (13) was obtained with the uti-
lization of tris(acetonitrile)chloropalladium tetrafluoroborate [22]. The ortho-substituted
methoxy groups in the complex of 14 limited the free rotation around the biaryl junc-
tion and prevented the formation of a palladacycle. The Pd(II) cation linked the biaryl
monophosphine ligand only via the P atom supplementing the coordination sphere by
small solvent molecules and a Cl− anion (Scheme 5). No other coordination modes were
observed in the case of this ligand.

Inorganics 2023, 11, x FOR PEER REVIEW 4 of 20 
 

 

We managed to isolate as single crystals and characterize the complexes of 
demethylated product 10 and its derivative 11. In the case of 10 and 11, instead of C,P 
coordination, O,P chelation to Pd(II) is observed (Scheme 3). Additionally, in the crystal 
of 11, the other biaryl monophosphine ligand is ligated monodentately via the P atom. 

A monodentate coordination mode is also present in a sulfide derivative MeOSym-
PhosS (5), via an S atom, however. Such a complex was isolated from the reaction of 5 
with the Pd(II) source run for 40 min in dichloromethane at 40 °C. Two ligand molecules 
formed a typical monodentate ligand dimer bridged by halogen atoms (Scheme 4). 

 
Scheme 4. Synthesis of phosphine sulfide palladium complex 5. 

It is interesting that such coordination diversity tuned by the synthesis conditions 
was not observed in the case of our previously studied biaryl monophosphine ligand Nap-
Phos [3,19]. The palladium complex of Nap–Phos (13) was obtained with the utilization 
of tris(acetonitrile)chloropalladium tetrafluoroborate [22]. The ortho-substituted methoxy 
groups in the complex of 14 limited the free rotation around the biaryl junction and 
prevented the formation of a palladacycle. The Pd(II) cation linked the biaryl 
monophosphine ligand only via the P atom supplementing the coordination sphere by 
small solvent molecules and a Cl− anion (Scheme 5). No other coordination modes were 
observed in the case of this ligand. 

 

Scheme 5. Synthesis of phosphine palladium complex 14. 

2.1. Analysis of Crystalographic Data Recorded for Single Crystals of 9–12 
The single crystals for complexes 9–12 were studied by the X-ray diffraction method. 

A summary of the conditions for data collection and the crystal structure refinement 
parameters are given in Table 1. The geometry of the inter- and intramolecular 
interactions of structures 9–12 is given in Table 2. Crystallographic data for 9–12 have been 
deposited at the Cambridge Crystallographic Data Centre: CCDC 2278031-2278034. These 
data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/or 
(accessed on 29 July 2023) by contacting the Cambridge Crystallographic Data Centre, 12, 
Union Road, Cambridge CB2 1EZ, UK. 

  

Scheme 5. Synthesis of phosphine palladium complex 14.

2.1. Analysis of Crystalographic Data Recorded for Single Crystals of 9–12

The single crystals for complexes 9–12 were studied by the X-ray diffraction method.
A summary of the conditions for data collection and the crystal structure refinement
parameters are given in Table 1. The geometry of the inter- and intramolecular interactions
of structures 9–12 is given in Table 2. Crystallographic data for 9–12 have been deposited
at the Cambridge Crystallographic Data Centre: CCDC 2278031-2278034. These data can
be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/or (accessed on
29 July 2023) by contacting the Cambridge Crystallographic Data Centre, 12, Union Road,
Cambridge CB2 1EZ, UK.

Table 1. Crystal data and structure refinement for complexes 9–12.

Identification Code 9 10 11 12

Empirical formula C71H98Cl6O11P2Pd2 C66H86Cl2O10P2Pd C65H87ClO12P2Pd C87H110Cl4O10P2Pd2S2
Formula weight 1615.06 1278.68 1264.14 1796.41
Temperature/K 120 290 290 100
Crystal system monoclinic monoclinic triclinic orthorhombic

Space group C2/c P21 P-1 Pbca

https://www.ccdc.cam.ac.uk/structures/or
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Table 1. Cont.

Identification Code 9 10 11 12

a/Å 18.4535(2) 11.6734(16) 12.263(1) 22.926(5)
b/Å 15.1832(1) 17.0922(19) 13.884(1) 12.246(2)
c/Å 26.2221(2) 16.7564(19) 20.773(1) 29.303(6)
α/◦ 90 90 88.53(1) 90
β/◦ 97.482(1) 107.391(14) 85.29(1) 90
γ/◦ 90 90 65.98(1) 90

Volume/Å3 7284.44(11) 3190.5(7) 3219.5(5) 8227(3)
Z 4 2 2 4

ρcalcg/cm3 1.4725 1.3309 1.304 1.450
µ/mm−1 6.886 0.481 0.438 0.715

F(000) 3364.6 1343.6 1332.0 3736.0
Crystal size/mm3 0.12 × 0.08 × 0.02 0.35 × 0.15 × 0.15 0.3 × 0.15 × 0.08 0.35 × 0.2 × 0.08

Radiation
Cu Kα Mo Kα Mo Kα Mo Kα

(λ = 1.54184) (λ = 0.71073) (λ = 0.71073) (λ = 0.71073)
2Θ range for data

collection/◦ 6.8 to 135.36 5.4 to 50.48 5.16 to 50.48 4.68 to 50.48

Index ranges −22 ≤ h ≤ 22, −18 ≤ k ≤
18, −28 ≤ l ≤ 31

−13 ≤ h ≤ 14, −20 ≤ k ≤
20, −20 ≤ l ≤ 20

−14 ≤ h ≤ 14, −16 ≤ k ≤
16, −24 ≤ l ≤ 24

−16 ≤ h ≤ 27, −14 ≤ k ≤
9, −35 ≤ l ≤ 32

Reflections collected 38,734 20,908 38,607 29,292

Independent reflections 6599 [Rint = 0.0408,
Rsigma = 0.0261]

7543 [Rint = 0.0728,
Rsigma = 0.1356]

11639 [Rint = 0.0963,
Rsigma = 0.1492]

7433 [Rint = 0.1199,
Rsigma = 0.2016]

Data/restraints/parameters 6599/0/428 7543/0/730 11,639/0/720 7433/7/427
Goodness-of-fit on F2 1.05 0.971 1.302 0.825

Final R indexes [I>=2σ (I)] R1 = 0.0354 R1 = 0.0595 R1 = 0.0911 R1 = 0.0513
wR2 = 0.0792 wR2 = 0.1138 wR2 = 0.2315 wR2 = 0.1236

Final R indexes [all data]
R1 = 0.0389 R1 = 0.0595 R1 = 0.1509 R1 = 0.1307

wR2 = 0.0819 wR2 = 0.1138 wR2 = 0.2502 wR2 = 0.1691
Largest diff.

peak/hole/e Å−3 1.48/−0.93 1.27/−0.65 1.64/−1.98 1.17/−1.22

Flack parameter – −0.03(3) – –
CCDC No. 2278033 2278034 2278032 2278031

Table 2. Geometry of intra- and intermolecular interactions in the crystals of complexes 9–12 [Å, ◦].

Complex D-H. . .A D-H D...A H...A <D-H...A

9 C25-H25A. . .O4 i 0.97 3.263(4) 2.641(4) 122(1)
C6-H6. . .Cl2 ii 0.93 3.521(3) 2.716(3) 145(1)

10 C38-H38. . .O9 iii 0.93 3.46(1) 2.67 143(1)
C43-H43A. . .O1 0.96 3.41(1) 2.65 136(1)
C47-H47. . .O2 iv 0.93 3.55(1) 2.63 170(1)

11 C44-H44B. . .Pd1 0.96 3.36(1) 2.73 124(1)
C62-H62B. . .Pd1 0.97 3.20(1) 2.54 126(1)
C21-H21B. . .O5 v 0.96 3.456(18) 2.65 142(1)
C40-H40. . .O4 v 0.93 3.375(16) 2.56 147(1)

12 C27-H27A. . .Pd1 1.00 3.322(7) 2.42 152(2)
C21-H21A. . .O1 vi 0.98 3.444(10) 2.63 141(1)

C8-H8. . .O5 vii 0.95 3.492(9) 2.62 153(1)
C7-H7. . .O2 vii 0.95 3.354(9) 2.75 122(1)

C40-H40B. . .O4 viii 0.98 3.605(14) 2.74 148(1)
C40-H40A. . .Pd1 0.98 3.712(14) 2.81 153(1)

Symmetry codes: (i) 1 − x,1 − y,1 − z; (ii) x, 1 − y, 1/2 + z; (iii) x − 1, y, z; (iv) 2 − x, 1/2+−y, −z; (v) −x + 1,
−y + 1, −z; (vi) −x + 1/2 + 1, +y + 1/2, +z; (vii) −x + 1/2 + 1, +y − 1/2, +z; (viii) −x + 1, −y + 1, −z.

2.1.1. C,P Chelation in Five-Membered Palladacycle 9

Complex 9 crystallizes in a C2/c monoclinic space group as a solvate of diethyl ether
and dichloromethane. The phosphine molecule acts as a C,P chelating ligand forming a
five-membered metallacycle as presented in Figure 2, with the Pd1-C13 distance being
2.199(3) Å. The coordination sphere of the Pd(II) cation is supplemented by two chloride
anions. The square coordination polyhedron is only slightly distorted from planarity. The



Inorganics 2023, 11, 399 6 of 20

hybridization of the C13 atom in the complex changes from sp2 to sp3, perturbing the
aromaticity of this system.
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2.1.2. O,P Chelation with Simultaneous Demethylation to Form Five-Membered
Palladacycle 10

The crystal structure of 10 (chiral space group P21) is a salt composed of a methylphos-
phonium cation and an anionic complex of Pd(II) (Figure 3). The proximity of the palladium
atom, which is a p-electron acceptor, enhances the electrophilicity of the methoxy group
located at the ortho- to phosphorus atom position. Because of this, the MeOSym-Phos ligand
present in excess in the reaction mixture undergoes P-methylation. As a result, an anionic
complex is formed in which Pd(II) coordinates to O and P atoms. The –CH3 group is
transferred to the phosphine molecule, forming a phosphonium cation (Figure 3). Similar
to structure 9, the coordination sphere of Pd(II) is supplemented by two Cl– anions.
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2.1.3. Additional Monodentate P Ligation by Five-Membered Palladacycle 11

The chloride anions in the palladium(II) coordination sphere showed themselves to be
quite easily replaced with other ligands, for example, by an additional molecule of the phos-
phorus ligand. In such a way, electrically neutral complex 11 was formed. 11 crystallizes
in a centrosymmetric space group P-1. The charge of the planarly tetracoordinated Pd(II)
cation is neutralized by one chloride anion and deprotonated at the O1 atom phosphine
ligand. The demethylated organic ligand forms an O,P coordinated chelate similar to
10 and a second molecule of MeOSym-Phos binds palladium(II) as a monodetate ligand
through the P atom (Figure 4). Two phosphorus centers in the coordination sphere are in
trans positions following the trans rule. It is worth noticing that the two large phosphine
ligands are arranged mutually in a head-to-head fashion with voluminous cyclohexyl
groups turned in the same direction. This spatial arrangement favors an intramolecular
agostic interaction [23] between Pd1 and the H44B atom from a methoxy group of the



Inorganics 2023, 11, 399 7 of 20

non-demethylated phosphine ligand (d(Pd1. . .C44) = 3.36(1) Å) (Table 2). It may be re-
garded as a preactivation stage of the demethylation reaction. The agostic interactions have
been proven to play an important role in many transition metal complexes and in catalytic
chemical reactions [24–29].
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2.1.4. Monodentate S ligation of Biaryl Monophosphine Sulfide 12

The outstanding basicity of a phosphorus atom in MeOSym-Phos enhances the nu-
cleophilicity of a sulfur atom of the corresponding phosphine sulfide MeOSym-PhosS (5)
and contributes to efficient palladium coordination. This is the first report on the crystal
structure of a palladium(II) coordination compound of a biaryl monophosphine sulfide.
The crystal of 12 is a toluene solvate (orthorhombic space group Pbca). Only half of the
molecule is symmetrically independent (Z’ = 0.5). One of the solvent molecules occupies
a special position in the center of inversion. The phosphine sulfide used in 11 as a ligand
binds monodentately via the S atom only. However, the coordination sphere of Pd(II) is
supplemented by three Cl– anions, forming a planar dinuclear core with two chloride
bridges (Figure 5). The space below and above each metal ion is occupied by two H atoms.
One of the C–H groups in the cyclohexyl substituent interacts with the metal center by
forming a directional interaction that can be regarded as an agostic one, with the C27. . .Pd1
distance being 3.322(7) Å (Table 2). From the other side, the methyl group of toluene
approaches the metal center but with a longer distance of 3.712(14) Å.
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2.1.5. Monodentate P Ligation of Nap-Phos in 14 with Unusual C–H. . .Pd Contacts

14 crystallizes as a cationic complex in an orthorhombic space group P212121 with
two symmetrically independent molecules in the unit cell, and BF4 ions neutralize the
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electric charge [3,19,22]. The coordination sphere of the Pd(II) ion is composed of a mon-
odentate P-ligating phosphorous ligand, one chloride anion, and two acetonitrile molecules
(Figure 6). The biaryl monophosphine ligand has only two methoxy groups substituted in
the ortho-position regarding the aryl–aryl bond. This creates a rotation barrier; however,
the steric hindrance is smaller than in the MeOSym-Phos ligand. It is interesting that, analo-
gously to the structure of complex 12, here, the Pd(II) ion is also surrounded by two C–H
contacts, with one coming from the cyclohexyl substituent (with the C30. . .Pd1 distance
being 3.33(1) Å), and the other even shorter (with the C12. . .Pd1 distance being 2.93(1) Å)
coming from the aromatic ring. This may suggest that this complex tends to undergo an
intramolecular C–H activation reaction leading to the six-membered palladacyclic complex
(see Section Six-Membered Palladacycles) more willingly than to interact with the π-electron
density of the aromatic methoxyphenyl moiety [3].
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2.2. Multiverse of Coordination Modes of Biaryl Monophosphine Ligands Based on the
CSD Survey

To gain a broader view of the coordination preferences of biaryl monophosphine
ligands in coordination with palladium, a search in the CSD (ver. 5.43 with updates)
was performed [20]. It gave 277 hits of palladium complexes with biaryl monophosphine
derivatives. The particular coordination modes are discussed below. One remark should be
made here before the discussion. According to the IUPAC regulations, the term metallacycle
should be used for a strictly defined group of compounds [30,31]. However, there are many
examples in the literature where this term is used in a “wider sense” to describe the
analyzed cyclic coordination compounds regardless of their bonding type [32–34]. Such
interpretation is used in the present discussion.

2.2.1. C,P Chelation—Four- and Five-Membered Metallacycles

The activation of the C atom is one of the characteristic features of Pd. The four-,
five-, or six-membered metallacycles involving the coordination via the phosphine P atom
with simultaneous formation of a direct C–Pd bond are of great importance in transition
metal-catalyzed cross-coupling reactions. In the CSD, there are reports on only 8 four-
membered and 8 five-membered palladacycles, and 62 hits for six-membered ones. A
structural characterization of some examples is presented below.

Four-Membered Palladacycles

Four-membered palladacycles are rare, and they are usually formed in the way of
an ortho-palladation reaction [35]. The phosphorus-containing palladacycles have been
observed in only eight structures. Five of them were previously mentioned dimeric species
doubly bridged by chloride ions, one was bridged by an acetate anion, whereas two of
them were mononuclear, supplementing the metal coordination sphere by acetonitrile or
trifluoroacetate molecules. As for their application, Montgomery et al., for example, re-
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ported the great performance of the palladium(II) complex with ortho-biphenyl phosphines
S-Phos with the acetate bridge (Figure 7) CSD Refcode NIXTIA) [36].
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Figure 7. Four-membered palladacyclic complex of S-Phos (CSD Refcode NIXTIA) [36].

Allgeier et al. reported the X-ray structures of such a four-membered palladacyclic
complex of the tBuXPhos catalyst (Figure 8) (CSD Refcode ZEJKEG) [37] and the products
of its degradation.
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The four-membered ring formation has also been reported by Christmann et al. (Fig-
ure 9) (CSD Refcode REHPEA) [38]. They studied a catalytic amination of aryl chlorides.
The formation of strained four-membered Pd(II) cyclometallates was reported to depend
on the nature of the phosphine substituents and the kind of halides used, which tend to
bridge the four-membered palladacycles in dimeric units.
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Figure 9. Dimeric four-membered dichloropalladacyclic complex of PtBu2(Bph-Me) (CSD Refcode
REHPEA) [38].

An analogous µ-chloro Pd(II) dimer was characterized by Toriumi et al. (Figure 10)
(CSD Refcode EBEFAW) [39]. They studied the mechanism of the visible light-induced
carboxylation of aryl halides and triflates. The obtained complex was a by-product in the
course of the synthesis of the desired photoredox catalyst, but instead, the C–H activation
reaction yielded the four-membered dichloropalladacyclic complex.
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Figure 10. Dimeric four-membered dichloropalladacyclic complex of tBuXPhos (CSD Refcode EBE-
FAW) [39].

Five-Membered Palladacycles

Five-membered palladium metallacycles are more widespread than the four-membered
ones. There are 62 hits for such molecular architecture in the CSD and their geometry
is very similar. An interesting example was presented by Lalloo et al. where the au-
thors discussed the decarbonylative fluoroalkylation process (Figure 11) (CSD Refcode
JAKQOF) [40]. Based on their findings one may conclude that the Pd(II) ion is responsible
for the C–H activation within the aromatic biphenyl part. Additionally, the metal core
may also affect the transmetalation reaction by enhancing the F2C–H. . .X intramolecular
interaction. The carbonyl de-insertion reaction was slow for X = difluoroacetate where
no F2C–H. . .X contacts were found but fast with X = F, where a hydrogen bond could
be formed.
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Refcode JAKQOF) [40].

Six-Membered Palladacycles

Six-membered metallacycles similar to the four-membered ones are not frequent.
Among the 277 biaryl monophosphine Pd complexes, there are only nine hits. An example
may be the cyclopalladated biaryl derivative reported by Pratap et al. during studies on
aryl amination and C−C bond-forming reactions (Figure 12) (CSD Refcode WULGOA) [41].
The 2-(dicyclohexylphosphino)biphenyl was proven to catalyze the C−C bond formation,
but it was ineffective in the aryl amination of nucleosides.
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2.2.2. Chelation via Heteroatoms Forming Seven-Membered Rings

The substitution at the 2,2′-positions in a biaryl moiety offers the possibility to form
seven-membered rings, including ligation through the phosphine P atom and an additional
C, N, O, or S atom coming from the proper substituent. However, there are only eight
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structures in the CSD with such molecular architecture. An example of the practical use of a
seven-membered ring arrangement was demonstrated by Buchwald et al. for the synthesis
of biaryl amides with axial chirality (Figure 13) (CSD Refcode XUZWIZ) [42]. They showed
that the stereoselectivity in this case was supported not only by the steric hindrance caused
by the aryl molecular fragments but the weak C–H. . .O interactions also made their own
contribution to the C−C coupling reaction.
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A seven-membered ring with P,O coordination was present in a complex being an
intermediate state in a decarbonylative cross-coupling process which was reported to run
easily at room temperature (Figure 14) (CSD Refcode GOCLES) [43]. The advantage of this
complex is the weak O(isopropoxy)–Pd linkage, which may break easily in the presence
of (DMPU)2Zn(CF2H)2 (where the DMPU is N,N′-dimethylpropyleneurea). The formed
empty coordination site is prone to accept a carbonyl ligand. However, the authors empha-
size that the chloro complex is quite stable itself. It does not undergo any decarbonylation
up to 120 ◦C, but once the Cl ligand is replaced by the difluoromethyl one, decarbonylation
runs rapidly even below room temperature (7 ◦C). It seems once again that the weak
F2C–H. . .X interactions may favor the palladium-catalyzed cross-coupling reactions.
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GOCLES) [43].

2.2.3. Monodentate P Ligation

The simplest monodentate ligation by only the P atom was found in nearly half
of all structures (112 hits). This type of ligation is possible when the Pd coordination
sphere is preoccupied with other strongly binding ligands, usually chelating ones. Such a
type of complex was described by Bruno et al. during their studies on a new palladium
mesylate precatalyst for C–C and C–N cross-coupling reactions (Figure 15) (CSD Refcode
WETDAC) [44]. They proposed a hypothesis that it would be possible to incorporate larger
ligands into the Pd(II) coordination sphere by increasing the electron deficiency of the metal
center. They managed to do so in the course of replacing the chloride with a more electron-
withdrawing mesylate anion. The complexes shown in Figure 15 with chloride and mesylate
anions do not differ significantly in geometry. However, the mesylate anion proved to be
more labile in a chloroform solution which was confirmed by 31P NMR spectroscopy.
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Figure 15. Representative examples of the monodentate coordination of palladium by a biaryl
monophosphine ligand tBuXPhos (CSD Refcodes WETDAC—left and WETDOQ—right) [44].

One of the interesting features of monodentate P ligation is that it may result in the
formation of dinuclear palladium cores bridged by various linkers such as halogen atoms,
OH ions, or even larger molecules like 4-methylaniline (32 hits). Such a molecular arrange-
ment was found in a group of halogen-bridged dinuclear palladium precatalysts used in
selected coupling reactions [45]. It is also considered as the first intermediate stage in the
cross-coupling reaction catalytic cycle—the oxidative addition step [9]. An interesting chlo-
ride bridged structure was presented by Biscoe et al. in studies on the catalytic selectivity
of biaryl monophosphine ligands (Figure 16) (CSD Refcode JIMMEY) [46]. They focused
on the role of the electronic properties of amines and their acidity in catalytic arylation
reaction selectivity.
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Figure 16. Dinuclear palladium complex of S-Phos as a monodentate ligand (CSD Refcode
JIMMEY) [46].

2.3. Coordination Modef of Phosphine Sulfides

There is no report in the CSD on any crystal structure of a palladium complex with a
biaryl monophosphine sulfide; our report is the first one. Such catalysts are less frequently
studied. However, we can compare our results with five hits containing palladium com-
plexes of biaryl biphosphine sulfide derivatives studied by Faller and Wilt in the search for
a catalyst for asymmetric allylic amination [47]. The coordination motive was chelation via
P and S atoms, as shown in Figure 17 (CSD Refcode LAYWIS) [48]. The sulfur atom was
incorporated into the eight-membered palladacycle. The remaining coordination sites of
palladium were filled with two chloride anions or dienyl derivatives, forming η3 coordi-
nation compounds. The catalysts showed high regioselectivity in the asymmetric allylic
amination of acyclic allylic carbonates.
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LAYWIS—left and LAYWOY—right) [48].

3. Materials and Methods
3.1. Chemistry

The reagents were purchased from commercial suppliers and used without further pu-
rification. The solvents were dried and distilled under argon before use. All of the reactions
involving the formation and further conversion of phosphines were carried out under argon
atmosphere with the attempted complete exclusion of air from the reaction vessels and
solvents, including those used in the work-up. Nuclear magnetic resonance (NMR) spectra
were recorded on Bruker AV300 (1H 300 MHz, 31P 121.5 MHz, and 13C NMR 75 MHz) and
Bruker AV500 (1H 500 MHz, 31P 202 MHz, and 13C NMR 126 MHz) spectrometers (Bruker;
Billerica, MA, USA). All spectra were obtained in CDCl3 solutions unless mentioned oth-
erwise, and the chemical shifts (δ) are expressed in ppm using internal reference to TMS
and external reference to 85% H3PO4 in D2O for 31P. Coupling constants (J) are given in
Hz. The abbreviations of signal patterns are as follows: s—singlet, d—doublet, t—triplet,
q—quartet, m—multiplet, b—broad, and i—intense. Thin-layer chromatography (TLC)
was carried out on silica gel (Kieselgel 60, F254 on an aluminum sheet, Merck, Rahway,
NJ, USA). All separations and purifications by column chromatography were conducted
by using Merck Silica gel 60 (230–400 mesh) unless noted otherwise. HPLC-MS spectra
were performed in methanol using high-performance liquid chromatograph Agilent 1200
conjugated with Agilent 6120 or Agilent 6538 UHD Accurate-Mass Q-TOF spectrometers
(Agilent Technologies, Inc., Santa Clara, CA, USA). For separation, a stationary flow of ace-
tonitrile/water was applied, with a rate of 0.3 mL/min on a ReproSil-Pur Basic-C18, 3 µm,
100 × 2 mm column (Dr. Maisch, High Performance LC GmbH, Ammerbuch-Entringen,
Germany) at 23 ◦C. Electrospray ionization (ESI) was applied, and the data were acquired
in positive and negative ion modes.

The phosphine sulfide 5 was obtained in a similar manner to that published in [2]:
the oxide of dicyclohexylphosphine was replaced in this case by dicyclohexylphosphine
sulfide. And phosphine 1 was obtained according to the desulfuration protocol presented
in [21].

Alternatively, 1 was obtained starting with its oxide 6 [2], and then treated with oxalyl
chloride, which afforded the phosphonium salt 7. Last, it could be transformed: (a) to 5 in
the reaction with lithium sulfide or (b) to 1 in the reaction with LiAlH4 or (c) to phosphine
borane 8 in the reaction with LiBH4.

3.1.1. Synthesis of Dicyclohexyl[1,4-dimethoxy-3-(2,4,6-trimethoxyphenyl)naphthalen-2-yl]
phosphane sulfide (5)

Approximately 1.1. g (4.8 mmol) of dicyclohexylphosphine sulfide (obtained as de-
scribed [49]), 1.1 g (3.4 mmol) of 4 (obtained as described [2]), and 50 mg (2 mol%) of
bismuth(III) trifluoromethanesulfonate were added to 20 mL of DMF. The vial was sealed
with a glass stopper and the reaction mixture was stirred for 24 h at 90 ◦C. After that time,
the reaction mixture was cooled down to 10 ◦C. Next, 1.8 g (5.5 mmol) of cesium carbonate,
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0.5 g (12.5 mmol) of 60% sodium hydride, and 100 mg (8 mol%) of tetrabutylammonium
hydrogen sulfate were added to the reaction vessel. The mixture was stirred and protected
with a slow flow of argon as long as hydrogen liberation occurred. Subsequently, 1.5 mL
(24 mol) of iodomethane was added, and the vial was sealed with a glass stopper, secured
with a metal clamp, and stirred for 24 h at 30 ◦C. Next, 100 mL of cold water was added,
the crude product was extracted with dichloromethane 3 × 20 mL, the organic phase was
separated and dried by magnesium sulfate, and product 5 was isolated by chromatography
on a SiO2 column using the hexane/acetone = 6/1 to 3/1 solvent mixtures to elute the
substances. Yield 1.8 g (92%). HPLC-MS (CH3CN/H2O = 65/35, 0.3 mL/min, rf 17.2 min):
measured 583.26 Da (71%), 584.26 Da (28%) [C33H43O5PS+H+], calculated 583.26 Da and
583.27 Da; 1H NMR (500 MHz, CDCl3): 8.12 (m, 2H), 7.56 (m, 2H), 6.16 (s, 2H), 4.13 (s,
3H), 3.88 (s, 3H), 3.65 (s, 6H), 3.57 (s, 3H), 2.68 (tdt, J = 11.3, 11.3, 7.6, 3.7, 3.7, 2H), 1.62 (m.
16H), 1.3 (m, 4H), 1.19 (m, 4H), 0.86 (m, 4H); 13C NMR (126 MHz, dept 135, CDCl3): 127.17,
125.72, 123.73, 123.56, 90.08, 62.83, 61.10, 55.33, 55.14, 41.23, 40.83, 27.68, 27.67, 27.12, 27.11,
26.93, 26.86, 26.75, 26.55, 26.43, 25.83, 25.82; 31P NMR (202 MHz, CDCl3): 66.3.

3.1.2. Synthesis of Dicyclohexyl[1,4-dimethoxy-3-(2,4,6-trimethoxyphenyl)naphthalen-2-yl]
phosphane (1)

To a mixture of 5 g of Ni-Raney and 10 mL of ethanol, a solution of 750 mg of 5
in 50 mL of benzene was added. The air in the vessel was replaced with argon. The
vessel was sealed with a glass stopper, and the reaction mixture was stirred at ambient
temperature for 16 h. The Ni-Raney reagent was removed by filtration, and the solvent was
evaporated under reduced pressure to give phosphine 1 in 99% yield (700 mg). HPLC-MS
(CH3CN/H2O = 80/20, 0.3 mL/min, rf 2.9 min): measured 551.29 Da (75%), 552.30 Da
(35%) [C33H43O5P+H+], calculated 551.29 Da and 552.30 Da; 1H NMR (500 MHz, C6D6):
8.27 (d, J = 7.6 Hz, 1H), 8.01 (d, J = 7.6 Hz, 1H), 7.26 (m, 2H), 6.25 (s, 2H), 3.71 (s, 3H), 3.62
(s, 3H), 3.43 (s, 6H), 3.39 (s, 6H), 2.29 (m, 2H), 2.05 (m. 2H), 1.86 (m, 2H), 1.74 (m, 2H), 1.67
(m, 4H), 1.28 (m, 10H); 13C NMR (126 MHz, dept 135, C6D6): 127.98, 125.93, 125.08, 123.34,
90.09, 62.22, 60.52, 54.45, 54.39, 35.73, 35.61, 33.38, 33.17, 30.94, 30.85, 27.54, 27.48, 27.37,
27.26, 26.76; 31P NMR (202 MHz, C6D6): 4.2.

3.1.3. Synthesis of Chloro(dicyclohexyl)(1,4-dimethoxy-3-phenylnaphthalen-2-yl)
phosphonium chloride (7)

To the flame-dried Schlenk tube filled with argon 556 mg (1 mmol), 6 and 8 mL of
absolute CPME (CPME could be replaced with DME) was added. The Schlenk tube was
closed with a rubber septum and cooled down to 0 ◦C, and a solution of 400 mg of C2O2Cl2
in 5 mL of toluene was slowly added via a septum. After 15 min of stirring at 0 ◦C, the
reaction was allowed to warm up to ambient temperature and was stirred for the next
30 min. The progress of the reaction was controlled by 31P NMR. 31P NMR (202 MHz, D2O
capillary): 97.5. The reaction mixture quenched by water gave exclusively phosphine oxide
6. 31P NMR (202 MHz, D2O capillary): 50.4.

3.1.4. Transformation of 7 to 5

To a solution of 7 stirred at 0 ◦C, as presented above, the solution of 250 mg of
anhydrous Li2S in 10 mL of anhydrous acetonitrile (which could be replaced by DME) was
added via a syringe. The reaction was allowed to warm up to ambient temperature and
was left stirring for the next 16 h. Next, 100 mL of cold water was poured in. The crude
product was extracted with dichloromethane 3 × 20 mL, the organic phase was separated
and dried by magnesium sulfate, and product 5 was isolated by chromatography on a SiO2
column using the hexane/acetone = 6/1 to 3/1 solvent mixtures to elute the substances.
Yield 0.47 g (80%).
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3.1.5. Transformation of 7 to Dicyclohexyl[1,4-dimethoxy-3-(2,4,6-trimethoxyphenyl)
naphthalen-2-yl]phosphane borane 8

To a solution of 7 stirred at 0 ◦C, as presented above, the solution of 3 mL of 2M
LiBH4 in THF was added via syringe. The reaction was allowed to warm up to ambient
temperature and was stirred for the next 16 h. Next, 100 mL of cold water was poured in,
the crude product was extracted with dichloromethane 3 × 20 mL, the organic phase was
separated and dried by magnesium sulfate, and product 8 was isolated by chromatography
on a SiO2 column using the hexane/acetone = 6/1 to 3/1 solvent mixtures to elute the
substances. Yield 0.5 g (90%). 1H NMR (500 MHz, C6D6): 8.12 (m, 2H), 7.55 (m, 2H), 6.18
(s, 2H), 4.13 (s, 3H), 3. 87 (s, 3H), 3.66 (s, 6H), 3.55 (s, 3H), 2.50 (m, 2H), 1.89 (m, 2H), 1.79
(m, 2H), 1.60 (m, 4H), 1.42 (m, 4H), 1.24 (m, 8H), 0.01 (m, 3H); 31P NMR (202 MHz, CDCl3):
35.9; 11B NMR (160 MHz, CDCl3): 41.9.

3.1.6. Transformation of 7 to Dicyclohexyl[1,4-dimethoxy-3-(2,4,6-trimethoxyphenyl)
naphthalen-2-yl]phosphane 1

To a solution of 7 stirred at 0 ◦C, as presented above, 30 mmol of LiAlH4 in 20 mL
of DME (which could be replaced by CPME) was added via a syringe. The reaction was
allowed to warm up to ambient temperature and stirred for the next 16 h. Next, the reaction
mixture was cooled down to −15 ◦C, 30 mL of Et2O was added followed by the addition of
saturated solution of NH4Cl. Next, 100 mL of cold water was poured in and the organic
phase was separated and dried by magnesium sulfate. The solvent was evaporated under
reduced pressure to furnish 1 in an quantitative yield and 98% purity. The product was
purified chromatographically on a short and degassed SiO2 flash column eluted with
benzene to give 465 mg of 1 (85%).

3.1.7. Transformation of 8 to 1

Approximately 564 mg 8 was dissolved in 5 mL of hydrazine and 5 mL of benzene
mixture. The air in the vessel was replaced with argon. The vessel was sealed with a
glass stopper, and the reaction mixture was stirred at 80 ◦C for 16 h. Next, the reaction
mixture was cooled down to ambient temperature, and 100 mL of cold water was added.
The product was extracted with 20 mL of E2O, the organic phase was separated dried by
magnesium sulfate, and solvents were evaporated under reduced pressure to yield 0.6 g
(95%) of 1.

3.1.8. Synthesis of Complex 9

The mixture of 123 mg of 1, 51 mg of Pd(CH3CN)2Cl2 (the precursors Pd(PhCN)2Cl2
and Pd(t-BuCN)2Cl2 could be used instead of Pd(CH3CN)2Cl2 with a similar outcome for
the reaction) and 3 mL of DCM was subjected to ultrasound irradiation for 1 h at 25 ◦C
and left stirring for 16 h at ambient temperature. The solution was filtered through a
0.45 µm PTFE syringe filter. Solvents were evaporated under reduced pressure, and the
obtained solid was crystalized from CH3CN to yield 107 mg (74%) of 9 as an orange–brown
crystalline powder. 1H NMR (500 MHz, CDCl3): 8.17 (m, 1H), 7.99 (m, 1H), 7.61 (m, 2H),
6.14 (s, 2H), 4.11 (s, 3H), 4. 09 (s, 3H), 3.76 (s, 6H), 3.49 (s, 3H), 3.00 (bq, J = 12.1, 2H), 2.34
(m, 2H), 1.91 (m, 4H), 1.80 (m, 6H), 1.68 (m, 2H), 1.28 (m, 6H); 13C NMR (126 MHz, dept
135, CDCl3): 127.75, 126.33, 123.70, 123.48, 92.89, 63.11, 61.80, 57.51, 56.07, 37.98, 37.76,
29.38, 29.23, 27.51, 27.40, 27.26, 27.16, 25.93. 31P NMR (202 MHz, CDCl3): 68.73. HPLC-MS
(CH3CN/H2O = 80/20, 0.3 mL/min, rf 3.3 min): measured 701.1869 Da [C34H43O7PPd]+,
calculated 701.1869 Da, which corresponds to the cation in which Cl− is replaced with a
formate anion from the one used as a mobile phase additive (formic acid).

3.1.9. Synthesis of Complex 10

The reaction mixture of 246 mg of 1, 51 mg of Pd((CH3)3CCN)2Cl2 and 3 mL of DCM.
was subjected ultrasound irradiation for 1 h at 25 ◦C and left stirring for 24 h at 40 ◦C. The
solution was filtered through a 0.45 µm PTFE syringe filter. Solvents were evaporated under
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reduced pressure, and the obtained solid was crystalized from a mixture of DCM/Et2O
to yield 70 mg (30%) of 10 as an orange–brown crystalline powder. 1H NMR (500 MHz,
CD2Cl2): 8.36 (d, J = 8.2, 1H), 8.23 (d, J = 7.9, 1H), 8.20 (d, J = 7.9, 1H), 7.77 (m, 2H), 7.48 (t,
J = 7.6, 1H), 7.35 (t, J = 7.6, 1H), 6.36 (s, 2H), 6.30 (s, 2H), 4.32 (s, 3H), 3.97 (s, 3H), 3.93 (s,
3H), 3.75 (s, 6H), 3.74 (s, 6H), 3.59 (s, 3H), 3.51 (s, 3H), 2.85 (m, 4H), 1.0–2.00 (m, 40H); 31P
NMR (202 MHz, CD2Cl2): 76.34 (MeP+), 37.37 (PPd-); HPLC-MS (CH3CN/H2O = 80/20,
0.3 mL/min, rf 2.7 min): measured 565.3065 Da [C34H45O5P]+, calculated 565.3077 Da,
and −721.1341 Da [C33H41O7PClPd]−, calculated −721.1319 Da which corresponds to the
anion in which Cl− is replaced with a formate anion from the one used as a mobile phase
additive (formic acid).

3.1.10. Synthesis of Complex 11

The reaction mixture of 50 mg of 10, 50 mg of 1, and 3 mL of DCM was subjected to
ultrasound irradiation for 1 h at 25 ◦C and left stirring for 7 days at 40 ◦C. The solution was
filtered through a 0.45 µm PTFE syringe filter. Solvents were evaporated under reduced
pressure and obtained solid crystallized from a mixture of DCM/Et2O to yield 27 mg
(50%) of 11 as an orange–brown crystalline powder. HPLC-MS (CH3CN/H2O = 80/20,
0.3 mL/min, rf 2.5 min): measured 682.1926 Da [C34H43NO5PPd]+, calculated 682.1908 Da,
and less intense 723.21 Da [C36H46N2O5PPd]+, calculated 723.21 Da which corresponds to
the cations in which Cl− and the phosphine ligand were replaced under ESI conditions with
one or two molecules of highly coordinating mobile phase (CH3CN). 1H NMR (500 MHz,
CD2Cl2): 8.26 (d, J = 8.8, 1H), 8.15 (d, J = 8.2, 1H), 8.07 (d, J = 8.2, 1H), 7.85 (d, J = 8.2, 1H),
7.68 (d, J = 8.8, 1H), 7.56 (t, J = 8.2, 1H), 7.48 (m, 2H), 7.36 (t, J = 8.8, 2H), 7.27 (t, J = 7.6,
1H), 6.81 (t, J = 7.6, 1H), 6.36 (s, 1H), 6.30 (s, 2H), 6.28 (s, 1H), 4.40 (s, 3H), 3.98 (s, 3H), 3.94
(s, 3H), 3.93 (s, 3H), 3.79 (s, 3H), 3.76 (s, 3H), 3.73 (s, 6H), 3.65 (s, 3H), 3.59 (s, 3H), 3.58 (s,
3H), 3.54 (s, 3H), 3.45 (s, 3H), 1.00–2.50 (m, 100H). 31P NMR (202 MHz, CD2Cl2): 64.05 (d,
Jpp = 445.3, 1P), 31.53 (d, Jpp = 445.3, 1P).

3.1.11. Synthesis of Complex 12

To the mixture of 100 mg in 5 and 2 mL of DCM, a solution of 33 mg of Pd(PhCN)2Cl2
in 2 mL of DCM was added. The reaction mixture was subjected to ultrasound irradiation
for 1h at 25 ◦C. The solution was filtered through a 0.45 µm PTFE syringe filter. Solvents
were evaporated under reduced pressure, and the obtained solid was crystalized from a
mixture of DMC/Et2O to yield 100 mg (76%) of 12 as an orange–brown crystalline powder.
1H NMR (500 MHz, DMSO-d6): 8.17 (d, J = 7.7, 1H), 8.00 (dd, J = 7.6, 1.1, 1H), 7.64 (m, 2H),
6.12 (s, 2H), 4.09 (s, 3H), 3. 82 (s, 3H), 3.53 (s, 6H), 3.42 (s, 3H), 2.63 (m, 2H), 1.72 (m, 4H),
1.59 (m, 6H), 1.31 (m, 6H), 1.10 (m, 4H); 13C NMR (126 MHz, dept 135, DMSO-d6): 128.13,
126.62, 124.33, 123.24, 90.38, 63.63, 60.91, 55.52, 55.21, 27.80, 27.21, 26.61, 26.50, 26.35, 26.24,
26.05. 31P NMR (202 MHz, DMSO-d6): 65.79. The MS spectrum of the complex dominates
the signal of the free ligand 583.26 Da [C33H43O5PS+H+].

3.1.12. Synthesis of Complex 14

Ligand 13 and its complex 14 were obtained as reported previously [3,19].

3.2. Crystallography

The monocrystals, used for X-ray diffraction analysis, were grown from the super-
saturated solutions of the corresponding complexes, which were obtained as a result of
the partial evaporation of solvent under reduced pressure at 40 ◦C, followed by cooling to
ambient temperature in sealed vessels and storage for the necessary time. The diffraction
intensities for the crystal of 9 were measured at 120 K, for 10 and 11 at room temperature,
and for 12 at 100 K. Data were collected on a SuperNova Rigaku Oxford Diffraction diffrac-
tometer (CuKa radiation λ = 1.54184 Å) for 9 and on an Oxford Diffraction Xcalibur CCD
diffractometer (MoKa radiation λ = 0.71073 Å) for 10, 11, and 12. The ω scan technique
was applied for data collection using programs CrysAlis CCD and CrysAlis Red [50] for
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data collection, cell refinement, and data reduction. The structures were solved by direct
methods using SHELXS-97 and refined by the full-matrix least-squares on F2 using the
SHELXL-97 [51] implemented in Olex2 [52]. Non-hydrogen atoms apart from the atoms of
solvent molecules in 9, 11, and 12 were refined with anisotropic displacement parameters.
The H atoms were positioned geometrically and were allowed to ride on their parent
atoms, with U iso (H) = 1.2 U eq (C) and 1.5 for methyl groups. In 9 the diethyl ether and
dichloromethane molecules are located at special positions around the twofold axis. 11
crystallizes as a dihydrate. The studied compounds are voluminous and the quality of the
single crystals was low; however, it was possible to determine the crystal and molecular
structures of each complex without any doubts.

Crystallographic data for 14 were reported previously [3].

4. Conclusions

The biaryl monophosphine-based transition metal catalysts belong to efficient and
selective ones. The voluminous cyclohexyl substituents at the P atom are supposed to
protect it from oxidation and enhance reductive elimination. On the other hand, the biaryl
fragment provides the catalytical selectivity. To prevent the formation of palladacycles,
the ortho-substituents at the biaryl moiety are frequently incorporated. Despite the large
size of substituents at the phosphorous atom, this group of compounds exhibits a wide
range of coordination behaviors which should be taken into consideration when designing
new catalysts.

We have presented here an interesting example of a series of complexes based on a
biaryl monophosphine ligand MeOSym-Phos and its sulfide derivative MeOSym-PhosS.
Depending on the synthesis conditions, the ligand may form various complexes:

(i) Under mild conditions (35 ◦C), a C,P chelated Pd(II) complex of 9 is formed;
(ii) At a slightly higher temperature (40 ◦C), a by-product complex 10 is obtained through

demethylation of one of the methoxy groups at the 1,4-dimethoxynaphthalene fragment;
(iii) 11 can serve as an example of an intermediate stage of P-methylation;
(iv) 12 is the first report on a palladium(II) coordination compound of biaryl monophos-

phine sulfide and shows monodentate S ligation.

It is worth noting that we also observed in two structures (11 and 12) a special molec-
ular arrangement favoring C–H. . .Pd agostic interactions, which may be regarded as an
important preactivation stage of the demethylation reaction. However, this problem re-
quires further computational studies.

To summarize the knowledge on the coordination modes of biaryl monophosphine
palladium complexes, we compared our experimental results with the structural data found
in the CSD. This short literature review together with our experimental results shows that
particular attention should be paid during the preparation of catalysts, since variation
in the reaction conditions and small structural changes in the ligand core may lead to
different complexes, which are not necessarily catalytically active or stable. The presented
studies may be helpful in rationally designing new, efficient, and highly selective catalysts
in the future.
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