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Abstract: We present the first detailed study of optical absorption coefficients (OACs) in a GaAs
quantum dot confined with a Woods–Saxon potential containing a hydrogenic impurity at its center.
We use a finite difference method to solve the Schrödinger equation within the framework of the
effective mass approximation. First, we compute energy levels and probability densities for different
parameters governing the confining potential. We then calculate dipole matrix elements and energy
differences, E1p − E1s, and discuss their role with respect to the OACs. Our findings demonstrate
the important role of these parameters in tuning the OAC to enable blue or red shifts and alter its
amplitude. Our simulations provide a guided path to fabricating new optoelectronic devices by
adjusting the confining potential shape.

Keywords: optical absorption coefficient; spherical quantum dots; Schrödinger equation; hydrogenic
impurity; Woods–Saxon potential

1. Introduction

The tunability of energy levels in low dimensional systems such as quantum wells
(QWs), quantum wires (QWRs), and quantum dots (QDs) enable a multitude of opto-
electronic devices, such as quantum cascade lasers, optical modulators, optical switches,
and infrared photodetectors [1–4]. In addition, QDs are used in the creation of universal
memory elements due to their spatial distribution of free carriers that are confined in
three dimensions [5–8]. Generally, the position of different energy levels is determined
via the geometrical shape of the confining potential of the quantum structure, such as
square, parabolic, semi-parabolic, Gaussian, Razavy, Konwent, and Manning shapes [9–14].
QDs are of particular interest in optical applications due to their luminescence, poten-
tial to emit different frequencies with intense efficacies, high extinction, and prolonged
lifetimes [15–17]. For these reasons, QDs are used in other technological applications such
as light-emitting diodes (LEDs), electronic transistors, medical laser imaging, biosensors,
quantum cascade lasers, and quantum computing architectures [18–25].

QDs generally show larger energetic separations between different levels compared
to QWs and QWRs due to the three-dimensional confinement of carriers. They also give
more intense density of states (DOS) than other quantum systems, which enables them to
be used in amplifier applications. In addition to the geometry and shape of the confining
potential, the incorporation of a hydrogenic impurity in QDs can modulate electronic
and optical absorption coefficients (OACs) due to the electrostatic attraction between the
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free electrons and the impurity [26–32]. Previous work on OACs in QDs has focused
on both theoretical and experimental studies [33–36]. For instance, Schrey et al. studied
the optical absorption of quantum dots in photodetectors and analyzed the effect of QD
size on their minibands [37]. Bahar et al. calculated OACs of a QD with a hydrogenic
impurity in a Mathieu potential and found that the OAC and refractive index were affected
by hydrostatic pressure and temperature variations [38]. Batra and coauthors examined
structural parameters and the optical response of a QD with a tunable Kratzer confining
potential [39]. Bassani et al. treated the effects of donor and acceptor impurities on
OACs in a spherical QD [40]. The process of intraband and interband absorption in an
InGaAs/GaAs QD was studied by Narvaez et al. [41], and the effects of size and distance
separating QDs were evaluated by Stoleru et al. [42] The oscillator strengths between lower
energy state transitions in a spherical QD with a hydrogenic impurity were calculated by
Yilmaz et al. [43]. Kirak and coauthors evaluated the effect of an applied electric field on
the OAC in a spherical QD with a parabolic potential under the influence of a hydrogenic
impurity [44]. Fakkahi et al. studied OACs and oscillator strengths in multilayer spherical
QDs under the influence of a radial electric field and hydrogenic impurities. Other works
on OACs in multiple spherical QDs are also discussed in references [45–48].

Motivated by these studies, we investigate the electronic and optical properties of
electrons confined in a GaAs quantum dot with a radial confinement described by the
Woods–Saxon confining potential. The functional form of this potential was first proposed
to describe and interpret interactive forces in the nuclear shell model [49]. Furthermore, this
confining potential describes a smooth interface structure and gives an accurate description
of aluminum diffusion from the AlGaAs barrier towards the GaAs quantum well. Our study
commences with a calculation of the 1s and 1p energy levels and their probability densities
as a function of structural parameters in the Woods–Saxon potential. We then analyze the
dipole matrix elements (DMEs) and OACs as the parameters of the Woods–Saxon potential
are varied in the presence of a hydrogenic impurity. Further details and approximations of
our theoretical model are given in Section 2. In Section 3, our findings and the resulting
physical observables are discussed. Finally, Section 4 summarizes our results.

2. Theoretical Modeling
2.1. Woods–Saxon Potential Form

We begin this section by discussing the confining potential and its structural parame-
ters. These parameters alter the geometrical form of the potential and affect the position of
different energy levels. When the confining potential is spherically symmetric, the carrier’s
motion is quantized and described by angular and magnetic quantum numbers, with
the associated wave functions being expressed as a function of the well-known spherical
harmonics. The form of the radial electronic wavefunctions is mainly determined by the
geometrical shape of the confining potential. Since the energy separation, E1p − E1s, be-
tween the initial and final states, plays a major role in the OAC expression, we examine its
dependence on QD size, the structural parameters of the confining potential, or both.

We first examine the radial Woods–Saxon potential, which is given by [45]

Vws(r) =
V0

1 + exp[(R0 − r)/γ]
+

V0

1 + exp[(R0 + r)/γ]
. (1)

V0 is the height of the Woods–Saxon potential and R0 = R/2, where R denotes the QD
radius, and γ is a parameter characterizing the slope between the well and barrier regions.

Figure 1 depicts a schematic of the quantum dot, which consists of a GaAs core with
radius R = 25 nm surrounded by an AlGaAs barrier. This latter has an external radius of
Rext = 2R.
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Figure 1. Schematic structure of spherical GaAs quantum dot surrounded by an AlGaAs barrier.

Before studying the optical properties of our structure, we plot the geometrical de-
pendence of the Woods–Saxon potential on the parameter γ in Figure 2a–d. The radius
of the QD is R = 25 nm. For γ = 5 Å, the Woods–Saxon potential resembles a square
quantum well since it takes a flat form between 0 and 5 Å. However, when γ increases, the
bottom of the potential becomes more parabolic. Furthermore, the top of the well becomes
more curved as γ increases. For instance, the potential reaches 1500 meV at r = 10 nm for
γ = 5 Å (Figure 2a); however, it reaches this value at r = 15 nm for γ = 20 Å in Figure 2d.
Increasing the parameter γ influences the distribution of the confined energy levels and
consequently affects the energy separation and OAC.
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Figure 2. Woods–Saxon potential profile for (a) γ = 5 Å, (b) γ = 10 Å, (c) γ = 15 Å, and
(d) γ = 20 Å. The radius of the QD is fixed at R = 25 nm with R0 = R/2, V0 = 0.228 eV, and
Rext = 2R.

2.2. Calculation of Electronic and Optical Properties

An electron in a spherical QD with a hydrogenic impurity within the effective mass ap-
proximation can be completely described by solving the radial Schrödinger
equation [10,43,44]:[

−}2

2

→
∇r

(
1

m∗(r)

→
∇r

)
+

l(l + 1)}2

2m∗(r) r2 −
Z e2

ε r
+ Vws(r)

]
Rnl(r) = Enl Rnl(r), (2)
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where m∗(r) is the position-dependent mass of the electron, } represents the reduced Planck
constant, ε is the dielectric constant, and l is the angular quantum number. Furthermore,
Rnl(r) and Enl are the radial wavefunction and energy eigenvalue, respectively.

The first term in Equation (2) represents the kinetic energy, whereas the second term
containing l(l + 1) denotes the centrifugal contribution of the potential due to the spher-
ical symmetry of the Woods–Saxon potential. The third term represents the electron-
impurity attraction. The two cases, Z = 0 and Z = 1, correspond to the absence and
presence of the hydrogenic impurity, respectively. Vws(r) represents the Woods–Saxon
potential which is a radial confinement term. To compute Enl and Rnl(r), we discretized
Equation (2) using the finite difference method and transformed it into a linear eigenvalue
equation of the form AX = λX, where A is a tridiagonal matrix, X represents Rnl(r), and
λ denotes Enl . The 1D discretization of the radial Schrödinger equation was carried out
with a finite difference method (FDM). Thus, Equation (2) takes the linear form:

Rnl(j + 1)
[
− }2

2m∗rj(∆r) −
}2

2m∗(∆r)2

]
+ Rnl(j)

[
}2

m∗(∆r)2 +
l(l+1)

m∗(rj .∆r)
2 + VWS(j)

]
+Rnl(j− 1)

[
}2

2m∗rj(∆r) −
}2

2m∗(∆r)2

]
= EnlRnl(j),

(3)

where rj = j∆r (j = 1, . . . , N) and ∆r = R
N is the mesh discretization. Equation (3) is of the

form Hx = λx, where λ is the energy Enl , x is the radial wavefunction Rnl(j), and H is a
tridiagonal matrix with elements given by

Hij =



}2

m∗(∆r)2 +
l(l+1)

m∗(rj .∆r)
2 + VWS(j), if j = i

}2

2m∗rj(∆r) −
}2

2m∗(∆r)2 , if j = i− 1

− }2

2m∗r(∆r) −
}2

2m∗(∆r)2 , if j = i + 1

0, otherwise

. (4)

In our study, we assume that the radial wavefunction at the external boundary point
(N + 1) is zero. The dimension of matrix H is (N × N), and in all of our calculations, we
set N = 1200 with the boundary condition Rnl(r = Rext) = 0.

Optical absorption in the QD occurs when an electron in its initial level Ei is excited to
a final energy E f after absorption of a photon with energy }ω =

(
E f − Ei

)
. According to

Fermi’s golden rule, the OAC can be written as [45]

α(}ω) =
16π2δFSPi f

nrVcon
}ω
∣∣∣Mi f

∣∣∣2δ(E f − Ei − }ω), (5)

where Pi f , δFS, and Vcon represent the electron population difference, the fine structure,
and the confinement volume, respectively. nr represents the refractive index of the GaAs
semiconductor, and

∣∣∣Mi f

∣∣∣ denotes the DME of the transition. Furthermore, the ∆l = ±1
selection rule satisfied by the quantum number l is taken into consideration.

In the present paper, we address only the transition between the 1s and 1p states.
Furthermore, the δ-function in the previous equation is substituted with a Lorentzian
profile:

δ
(
E f − Ei − }ω

)
=

}Γ

π
[(

E f − Ei − }ω
)2

+
(
}Γ
)2
] , (6)

where }ω is the energy of the incident photon, and }Γ is the width at half height of the
Lorentzian function. In the next section, and for simplicity of notation, we consider the

initial state (i = 1) to be 1s and the final state ( f = 2) to be the 1p state, so the term
∣∣∣Mi f

∣∣∣2
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in Equation (3) is simply designated as |M12|2. In our study, the electromagnetic radiation
is polarized along the z-axis, and |M12|2 is given by the following expression [50–52]:

|M12|2 =
1
3

∣∣∫ ∞

0
R1s(r)r3R1p(r)dr

∣∣2, (7)

where the 1
3 pre-factor arises from integration of the spherical harmonics. In addition

to the optical absorption, we have evaluated the impurity binding energy of the neutral
donor, defined as Eb = Ez=0

n,l − Ez=1
n,l , where Ez=0

n,l and Ez=1
n,l denote the energy levels for QDs

without and with the impurity, respectively.

3. Results and Discussion

Atomic units (} = e = m0 = 1) are used throughout the rest of this work, which
defines the Rydberg energy (1Ry ∼= 5.6 meV) and Bohr radius (1aB ∼= 100 Å). In addition,
V0 is set at 0.228 eV, which corresponds to the band offset between GaAs and AlxGa(1−x)As
with x = 0.3. Additional physical parameters used in our simulation are }Γ = 3 meV,
m∗ = 0.067m0, and ε = 13.11ε0. The radius of the QD is fixed at R = 25 nm.

Figure 3a–d displays the probability densities of the 1s and 1p states with the confining
potential in the absence of the hydrogenic impurity (i.e., Z = 0) for four values of the struc-
tural parameter (γ = 5, 10, 15, and 20 nm) with R0 = R/2. Increasing γ also increases
the amplitudes of the probability densities of the 1s and 1p states and widens the spatial
extent of the wavefunctions. For instance, when γ = 5 nm, the 1s and 1p densities decay to
zero at r = 15 and 20 nm, respectively; however, when γ = 20 nm, both densities decrease
to zero at r = 24 nm. This behavior is due to the slope of the Woods–Saxon potential
decreasing with increasing γ (see Figure 2a–d). The spread in Vws(r), especially near its
top, enhances the amplitudes of the densities and enlarges their geometrical distribution
along the r axis. This, in turn, modifies the energy levels and DMEs between the 1s and 1p
wavefunctions since their overlap is now modified. Figure 4a–d plots these densities with
an on-center hydrogenic impurity. In this case, there are two confining contributions. The
first one is due to the geometrical behavior of the Vws(r) potential due to the increase in
the parameter γ, and the second one arises from the electrostatic attraction between the
hydrogenic impurity and the electron in different states. This is reflected in the decrease in
the amplitudes in the 1s and 1p probabilities. Note that the amplitude for the 1s density
is less sensitive than that of 1p for γ = 15 and 20 nm. For these values, the impact of
geometrical confinement becomes negligible compared to that of the electrostatic attraction,
and no additional changes are observed for γ > 20 nm.
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Figure 3. Confining potential and probability densities of the ground and first excited state for
different values of γ: (a) γ = 5 nm; (b) γ = 10 nm; (c) γ = 15 nm; (d) γ = 20 nm. All results do
not include the impurity (Z = 0). R0 = R/2, V0 = 0.228 eV, and Rext = 2R.
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Figure 4. Confining potential and probability densities of the ground and first excited state for
different values of γ: (a) γ = 5 nm; (b) γ = 10 nm; (c) γ = 15 nm; and (d) γ = 20 nm. All results
include the impurity (Z = 1). R0 = R/2, V0 = 0.228 eV, and Rext = 2R.

Figure 5 plots the energy levels E1p and E1s, which increase with γ. At low values of γ,
the energy levels are well separated from each other; however, for higher values of γ, their
separation is considerably reduced. The decrease in the energy difference between E1p
and E1s, with and without the presence of hydrogenic impurity, is responsible for the red
shift of the OAC, which we discuss later. Furthermore, for all values of γ, the energy levels
in the presence of the hydrogenic impurity are less than those without the hydrogenic
impurity. This is due to the attraction between the electron and the impurity, which causes
the electron to be near the impurity at the center of the QD.
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Figure 5. Variation of E1s and E1p for different values of γ with (Z = 1) and without (Z = 0) impurities.
R0 = R/2, V0 = 0.228 eV, and Rext = 2R.

From Equation (5), the OAC is proportional to |M12|2, which controls the amplitude
of the OAC and explains the overlap between the 1s and 1p wavefunctions. Figure 6 plots
its variation with the energy separation

(
E1p − E1s

)
as a function of γ. For γ = 5 nm, the

values of |M12|2 with (Z = 1) and without impurity (Z = 0) are similar. However, when
γ is increased, |M12|2 increases and takes higher values for Z = 0 than for Z = 1. This



Inorganics 2023, 11, 401 7 of 14

result is due to the change in the overlap between the 1s and 1p wavefunctions. In addition,
Figure 5 shows that the energy separation

(
E1p − E1s

)
decreases for both cases (with and

without impurity), resulting in a red shift in the OAC.
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Figure 6. Variation of the energy separation
(
E1p − E1s

)
and dipole matrix element |M12|2 as a

function of the parameter γ for Z = 0 (solid line) and Z = 1 (dashed line). R0 = R/2, V0 = 0.228 eV,
and Rext = 2R.

Figure 7 plots the OAC as a function of photon energy for γ = 5, 10, and 20 nm. We
report results for two cases: with (Z = 1) and without (Z = 0) the hydrogenic impurity.
The OAC amplitudes move towards lower energies (red shift) with increasing γ. This
variation is in accordance with the variation of

(
E1p − E1s

)
, previously shown in Figure 5.

In addition, we note that the OAC amplitudes in the presence of the hydrogenic impurity
are always smaller than those without the hydrogenic impurity. This is due to the difference
in the DME with and without the presence of the impurity, as shown in Figure 5.

Inorganics 2023, 11, x FOR PEER REVIEW 9 of 19 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7. OAC as a function of incident photon energy for different 𝛾  values with (𝑍 = 1) and 
without (𝑍 = 0) impurities. 𝑅଴ = 𝑅/2, 𝑉଴ = 0.228 eV, and 𝑅ୣ୶୲ = 2𝑅. 

Figure 8 plots the binding energies of the 1s and 1p states as a function of 𝛾. Both 
states gradually decrease with 𝛾. For lower values, they decrease rapidly; however, for 
higher values (𝛾 > 15 nm), the binding energies show a small variation. This behavior in 
binding energy for the 1s and 1p states is explained by the strong aĴraction near the center 
of the QD; however, for higher values of 𝑟, this aĴraction is reduced compared to the 
geometrical confinement, and consequently, the binding energy remains constant for all 
higher values of 𝑟. 

 
 
 
 
 
 
 
 
 
 

Figure 7. OAC as a function of incident photon energy for different γ values with (Z = 1) and without
(Z = 0) impurities. R0 = R/2, V0 = 0.228 eV, and Rext = 2R.

Figure 8 plots the binding energies of the 1s and 1p states as a function of γ. Both states
gradually decrease with γ. For lower values, they decrease rapidly; however, for higher
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values (γ > 15 nm), the binding energies show a small variation. This behavior in binding
energy for the 1s and 1p states is explained by the strong attraction near the center of the
QD; however, for higher values of r, this attraction is reduced compared to the geometrical
confinement, and consequently, the binding energy remains constant for all higher values
of r.
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Rext = 2R.

We now turn our attention to the effect of R0. Figure 9a–d plots the probability
densities of the lowest electronic states 1s and 1p with the confining potential in the absence
of the hydrogenic impurity (i.e., Z = 0) for R0 = 7, 12, 17, and 22 nm, with γ = 10 nm.
Increasing R0 enlarges the potential and minimizes its values at the center and surface of
the quantum dot. Consequently, the two probability densities maintain the same spread;
however, their amplitudes increase with R0. The amplitude of the 1p density is more
sensitive than that of 1s when R0 increases. The influence of the hydrogenic impurity
on these densities is shown in Figure 10a–d. The densities have the same spread along
the radius of the quantum dot, but their amplitudes are reduced due to the electrostatic
attraction introduced by the hydrogenic impurity. To evaluate the effect of the on-center
impurity on the OAC, Figure 10 plots its variation as a function of the incident energy
for three values of R0. The OAC peak moves towards higher energy (blue shift) when
R0 increases from 8 to 18 nm. Subsequently, it moves in the direction of low energies,
exhibiting a red shift. This double behavior can be interpreted via the variation in the
energy separation between the 1s and 1p energy levels.

Figure 11 plots the variation of the 1s and 1p energy levels as a function of R0, which
shows a gradual decrease for the two cases (with and without impurity). This decrease is
due to the enlargement of the confining potential with R0 as shown in Figures 9 and 10.
However, the slope of this decrease is slightly different. Figure 12 plots the energy separa-
tion E1p − E1s as a function of the parameter R0, which shows that this separation increases
up to R0 = 16 nm but subsequently decreases. This behavior confirms the red and blue
shift shown in the OAC variation in Figure 13. In addition, Figure 12 shows the variation
of the dipole matrix element |M12|2 as a function of R0. This physical quantity decreases
up to R0 = 16 nm and then subsequently increases. This arises from the variation of the
overlap between the R1p and R1s wave functions, which agree with the OAC trends shown
in Figure 12. For R0 < 16 nm, the OAC amplitude diminishes; however, for R0 > 16 nm,
the amplitude subsequently increases.



Inorganics 2023, 11, 401 9 of 14

Inorganics 2023, 11, x FOR PEER REVIEW 11 of 19 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9. Confining potential and probability densities of the ground and first excited states for 
different values of 𝑅଴ : (𝐚) 𝑅଴ = 7 nm; (𝐛) 𝑅଴ = 12 nm; (𝐜) 𝑅଴ = 17 nm;  and (𝐝) 𝑅଴ = 22 nm . All 
results do not include the impurity (𝑍 = 0). 𝛾 = 10 nm, 𝑉଴ = 0.228 eV, and 𝑅 = 25 nm. 

 

 

 

 

 

 

 

 

 

 

Figure 9. Confining potential and probability densities of the ground and first excited states for
different values of R0: (a) R0 = 7 nm; (b) R0 = 12 nm; (c) R0 = 17 nm; and (d) R0 = 22 nm. All
results do not include the impurity (Z = 0). γ = 10 nm, V0 = 0.228 eV, and R = 25 nm.
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Figure 10. Confining potential and probability densities of the ground and first excited states for
different values of R0: (a) R0 = 7 nm; (b) R0 = 12 nm; (c) R0 = 17 nm; and (d) R0 = 22 nm. All
results include the impurity (Z = 1). γ = 10 nm, V0 = 0.228 eV, and R = 25 nm.
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Figure 11. Variation of energy levels E1s and E1p for different values of R0, with (Z = 1) and without
(Z = 0) impurities. V0 = 0.228 eV and R = 25 nm.
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Figure 12. Variation of E1p − E1s and |M12|2 with (dashed curve) and without (solid curve) the
on-center impurity as a function of R0. V0 = 0.228 eV and R = 25 nm.

Finally, Figure 14 displays the binding energy as a function of R0. The binding energy
increases up to R0 = 16 nm and subsequently diminishes gradually. Consequently, this
critical value of R0 can play an important role in shifting the OAC from red to blue as well
as controlling the variation of the binding energy toward high or low values.
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Figure 13. OAC as a function of incident photon energy for different values of R0. Results are with
(Z = 1) and without (Z = 0) impurities. V0 = 0.228 eV and R = 25 nm.
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Figure 14. Binding energy for the 1s and 1p states as a function of R0. γ = 10 nm,
V0 = 0.228 eV, and R = 25 nm.

4. Conclusions

In summary, we have presented the first study of the optical and electronic properties
of a GaAs spherical QD with a Woods–Saxon potential in the presence of a hydrogenic
impurity. By solving the radial part of the Schrödinger equation using the finite difference
method, we obtain energy levels of 1s and 1p states and their probability densities. These
quantities allow us to calculate dipole matrix elements, energy separations, OACs, and
binding energies as a function of the parameters R0 and γ. Our results indicate that
increasing γ leads to a red shift of the OAC; however, an increase in R0 initially gives rise
to a blue shift and, subsequently, a red shift. We also demonstrated that the variation of the
OAC amplitude is determined via the dipole matrix element, which effectively captures
the overlap between R1p and R1s. Moreover, our findings indicate that the insertion of
a hydrogenic impurity at the center of the QD considerably decreases the energy levels
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due to the strong attraction between the free electrons and the hydrogenic impurity. Our
numerical calculations provide mechanistic insight into the electronic transport and optical
properties of spherical QDs.
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