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Abstract: For decades, amyloid β-peptide (Aβ) misfolding aggregates with β-sheet structures have
been linked to the occurrence and advancement of Alzheimer’s disease (AD) development and
progression. As a result, modulating the misfolding mode of Aβ has been regarded as an impor-
tant anti-amyloid protein misfolding strategy. A polyoxometalate based on {Co(H2O)4}2+ com-
plex and [P2Mo5O23]6− fragments, K8{[Co(H2O)4][HP2Mo5O23]2}·8H2O (abbreviated as CoPM),
has been synthesized and structurally characterized using elemental analysis, single-crystal X-ray
diffraction (SXRD), IR, UV spectra, bond valence sums (Σs) calculation, and powder XRD (PXRD).
CoPM’s primary component, as revealed by structural analysis, is a nanoscale polyoxoanion made
of [Co(H2O)4]2+ sandwiched between two [P2Mo5O23]6− pieces. Notably, it is demonstrated that
CoPM efficiently modulates Aβ aggregates’ β-sheet-rich conformation.

Keywords: strandberg-type polyoxometalate; amyloid protein misfolding; conformation modulation;
cobalt complexes

1. Introduction

Amyloid protein misfolding is linked to many disorders [1,2], with AD serving as
a prevalent model for biochemistry and inorganic chemistry research [3]. The primary
histopathological indicator of AD is the formation of extracellular senile plaques in the brain
created by β-sheet-rich Aβ [4–6]. Additionally, it has been shown that aberrant cerebral
metal ions, such as Zn2+, Cu2+, and others, might encourage the misfolding aggregation
of Aβ [7,8]. Furthermore, the Cu2+-Aβ aggregates can generate reactive oxygen species
(ROS), which is another causative factor in neuronal death [9]. As a result, controlling the
detrimental misfolding aggregates may be key to treating these conditions [10–12].

Cobalt has long been recognized as a critical component of the human body, and the
majority of its constituents, including cobalamin, have been linked to neuro-nutrition [13].
According to biochemical studies, the protein denaturation process may be significantly
influenced by the strong coordination interaction between cobalt ions and nitrogenous
heterocyclic compounds [14]. These properties may be useful for regulating the misfolding
aggregates by substituting the inducing ions [15]. Finding the appropriate ligand is thus
crucial for the creation of a complex that boosts both selectivity and steric hindrance to
limit the active binding sites of cobalt.

Polyoxometalates (POMs), known as groups of metal–oxygen clusters, have multi-
tudinous structures and intriguing characteristics [16–23]. POMs have several unique,
unmatched characteristics that enable them to serve as substantial polydentate ligands for
transition-metal ions with various coordination modes, such as oxygen-rich nucleophilic
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surfaces, nanoscale sites, and sites that form multiple bonds [24–32]. Recently, it was shown
that some nanoscale POMs, because of their distinct nanoscale size, high negative charge,
and oxygen-rich surface, had a remarkable capacity for modifying misfolded β-sheet-rich
conformation [33–36]. As a result, combining cobalt complexes with nanoscale POM clus-
ters to create a single hybrid molecule may not only preserve but also advantageously
express the desirable properties of all individual components.

In the present work, we have synthesized and studied a cobalt complex sandwiched
phosphomolybdate, K8{[Co(H2O)4][HP2Mo5O23]2}·8H2O (abbreviated as CoPM). The new
molecular was fabricated from [P2Mo5O23]6− partnered with {Co(H2O)4}2+. As anticipated,
CoPM can block Aβ’s β-sheet transformation. Furthermore, the decrease of Cu2+-induced
misfolded aggregates may reduce the formation of ROS.

2. Results and Discussion
2.1. X-ray Single Crystal Structures

In this study, the CoPM structure was determined using the SXRD method. Table S1
provides a list of bond lengths. Comprehensive data has been submitted to the Cambridge
Crystallographic Data Centre (CDCC) under the CCDC number 2129591. The structural
analysis results are shown in Figure 1a, which shows that the CoPM unit cell includes
eight K+ counter ions, eight crystallized water molecules, and one {Co(H2O)4}2+ complex
sandwiched polyoxoanion [P2Mo5O23]6− (Figure 1a,b).
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Figure 1. (a) A combined polyhedral/ball-and-stick representation of CoPM; (b) A polyhedral
representation of {Co(H2O)4}2+; (c,d) A ball-and-stick representation of the Strandberg-type fragment
{[P2Mo5O23]6−} via the X or Z axis; (e,f) Polyhedral Strandberg-type fragment via the X or Z axis;
(g) Strandberg-type fragment’s anatomical view.

As shown in Figure 1c–g, the geometry of Strandberg-type [P2Mo5O23]6− cluster
can be deemed as a puckered ring of five nearly coplanar corner-sharing/edge-sharing
distorted MoO6 octahedra [Mo–O: 1.679–2.496 Å] with two capping PO4 tetrahedra [P–
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O: 1.510–1.586 Å] on both poles of the {Mo5O21} ring centers. Furthermore, two such
[P2Mo5O23]6− fragments were connected by a distorted octahedral {Co(H2O)4}2+ complex
[Co–O: 2.035–2.179 Å] to form the polyanion structure of CoPM.

According to a retrieval of the CCDC database, CoPM’s molecular structure is new.
Hitherto, there are two similar POMs deposited in the CCDC database, [H8(H2O)16][Co(H2O)4
(HP2Mo5O23)2] (C1) [37] and (H2en)6{[Co(H2O)4](P2Mo5O23)}3·11H2O (C2) [38]. However,
there are some differences among them: First of all, they have different molecular formulas.
Second, CoPM is a salt rather than an acid. Third, CoPM possesses an isolated structure
rather than a one-dimensional extended structure.

Additionally, the bond valence sums (Σs) in CoPM were computed using the following
formula [39]:

Vi = ∑
j

sij = ∑
j

exp

(
r0
′ − rij

B

)
(1)

In Formula (1), rij is the discovered bond distance provided in Table S1, and r0
′ is

the theoretical one between two atoms. The values for r0
′(Mo6+–O) (1.903 Å), r0

′(P5+–O)
(1.624 Å), and r0

′(Co2+–O) (1.698 Å) are from the literature [40,41]. B is defined as having a
value of 0.349 [40]. As a consequence, Co, Mo, and P have average valence state sums (Σs)
of 1.988, 5.956, and 4.925 in CoPM, respectively.

POMs are readily protonated because they have a lot of basic surface O atoms and
strongly negatively charged pieces [42]. The 50 oxygen atoms in CoPM can be divided
into bridging Oµ2, Oµ3, and Oµ4 types, respectively, as well as terminal Ot. As illustrated
in Figure 2 and Table 1, according to the calculation of Σs, we can infer the distribution
of protons on different oxygen atoms. Given that the oxidation state of O is −2, we can
derive the equation Σs + ΣH = 2. Hence, the O atoms have delocalized protons with Σs
values between 0 and 1.60, making them suitable as proton donors. Whereas O atoms with
Σs values between 1.90 and 2.00 have dense electron populations. The numerous protons
are often stated as being delocalized across the whole polyoxoanion, which is a common
phenomenon in POM chemistry and has been extensively studied in the past, for exam-
ple, [Ni(enMe)2]3[H6Ni20P4W34(OH)4O136(enMe)8(H2O)6]·12H2O [39], [H3W12O40]5− [42],
[Cu(en)2][Cu(en)2H2O]2{[Cu(en)2][Cu6(en)2(H2O)2(SiW9O34)2]}·8H2O [43], and [Na(H2O)5]2
[Ni(H2O)(en)2]2[Ni(H2O)3(en)][H4Ni6(OH)2(en)2.5(B-α-AsVW9O34)]2[W4O16][Ni4 (H2O)2(en)2]2
[Ni(H2O)(en)][(α-AsVW6O26)]2·3H2O [44].
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Table 1. Bond valence and Σs of Mo, Co, and P in CoPM.

Bond Valence Bond Valence Bond Valence Atom Σs

Mo(1)-O(1) 1.764 Mo(1)-O(15) 0.997 Mo(1)-O(16) 0.298
Mo(1)-O(6) 1.689 Mo(1)-O(11) 0.910 Mo(1)-O(21) 0.262 Mo(1) 5.919
Mo(2)-O(2) 1.804 Mo(2)-O(12) 0.920 Mo(2)-O(19) 0.468
Mo(2)-O(7) 1.709 Mo(2)-O(11) 0.912 Mo(2)-O(16) 0.183 Mo(2) 5.997
Mo(3)-O(8) 1.743 Mo(3)-O(13) 1.012 Mo(3)-O(19) 0.295
Mo(3)-O(3) 1.719 Mo(3)-O(12) 0.905 Mo(3)-O(17) 0.268 Mo(3) 5.942
Mo(4)-O(4) 1.769 Mo(4)-O(13) 0.963 Mo(4)-O(20) 0.360
Mo(4)-O(9) 1.719 Mo(4)-O(14) 0.879 Mo(4)-O(18) 0.252 Mo(4) 5.941
Mo(5)-O(5) 1.734 Mo(5)-O(14) 0.994 Mo(5)-O(18) 0.381
Mo(5)-O(10) 1.694 Mo(5)-O(15) 0.867 Mo(5)-O(21) 0.310 Mo(5) 5.979
Co(1)-O(23) 0.408 Co(1)-O(1W) 0.308 Co(1)-O(2W)#5 0.278
Co(1)-O(23)#5 0.408 Co(1)-O(1W)#5 0.308 Co(1)-O(2W) 0.278 Co(1) 1.988
P(1)-O(17) 1.308 P(1)-O(18) 1.231 P(1)-O(16) 1.272
P(1)-O(22) 1.100 P(1) 4.911
P(2)-O(23) 1.331 P(2)-O(21) 1.156 P(2)-O(20) 1.301
P(2)-O(19) 1.151 P(2) 4.939

2.2. PXRD, IR and UV-Visible Spectrum

By comparing the actual PXRD pattern with the simulated pattern from a single SXRD,
the phase purity of CoPM was verified (see Figure 3).
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Figure 3. Comparison of the CoPM PXRD patterns from simulation and experiment.

The IR spectrum of CoPM exhibits similar asymmetric those observed in other species
containing [P2Mo5O23]6− [45]. As shown in Figure 4, four characteristic spectral lines
are assigned to v(P–Oµ4), v(Mo–Ot), v(Mo–Oµ2), v(Mo–Oµ3) and v(Mo–Oµ4), respectively,
and are situated at 1035, 933, 885, and 762~716 cm−1, respectively [45]. Additionally, the
stretching and bending vibrations of the –OH bond may be attributed to the corresponding
spectral lines at 3460 and 1623 cm−1, respectively [46]. The IR data were consistent with
the structural elucidation from SXRD.
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Figure 5 illustrates two UV-vis spectral absorption peaks in the wavelength range of
190~400 nm, one at 205.2 nm and the other with a broad shoulder adsorption center at
231.1 nm. These two peaks may be assigned to the Ot→Mo and Oµ→Mo charge transfer
transitions, respectively [47].
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(adjusted by using 6.0 mol·L−1 HCl) are shown in the inset figure.

Utilizing UV-vis spectroscopy, the impact of pH value on the stability of CoPM has
been further investigated. Within a pH range of roughly 6.0–8.0, insignificant variations
in UV-vis absorption intensity are observed; the absorption peak intensities at 205.2 and
231.1 nm eventually alter outside of this range, suggesting the beginning of skeletal collapse
inside the CoPM. Therefore, it may be concluded that the pH range for CoPM stability
is between 6.0 and 8.0. The stability of CoPM in Cu2+/Zn2+ containing solution or in
Tris-buffer is shown in Figure S1, Figure S2, and Figure S3, respectively.
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2.3. Modulation of Conformation

Transmission electron microscopy (TEM) was used to examine Zn2+- or Cu2+-treated
Aβ40 with or without CoPM. Under self- or induction of Zn2+/Cu2+ conditions, certain
fibrils can be detected in the groups of Aβ40, Aβ40 + Zn2+, and Aβ40 + Cu2+ (Figure 6a–c),
which is indicative of β-sheet-rich misfolding protein shape [48]. Additionally, the fibrils in
the Aβ40 + Zn2+ group are stronger after treatment with Zn2+ than those in the Aβ40 + Cu2+

or Aβ40 alone, which suggests that Zn2+ may exacerbate the β-sheet-relate conformational
shift [49]. These findings show that the incubation fluids include abundant soluble “β-sheet-
rich Aβ.” Aβ40 and Aβ40 were treated with Zn2+ or Cu2+, however, great morphological
changes when incubated with CoPM (Figure 6d–f). It is interesting to note that the shape of
the Aβ40 + CoPM group differs from that of Aβ40 alone, suggesting that CoPM may also
be able to prevent Aβ from misfolding on itself. According to reports, mono-functional
chelators have no direct interactions with the Aβ peptide and can only stop metal ions from
causing conformational misfolding. Therefore, they have no impact on the Aβ peptide’s
self-misfolding [49]. These results may indicate that CoPM can serve as an interfering agent
in the formation of β-sheets rather than a chelation agent.
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+ CoPM; (f) Aβ40 + Cu2+ + CoPM ([Aβ40]:[metal ion]:[CoPM] = 1:2:1). (The volume ratio for all
samples with final DMSO concentration is 0.5%).

The Thioflavin T (ThT) assay was conducted to further examine the conformational
modulation impact of CoPM on the fibrils of Aβ that are rich in β-sheets [50]. Accord-
ing to the amount of β-sheet-rich amyloid aggregates, the ThT may particularly attach
to the β-sheet fibrils and cause a considerable enhancement in fluorescence, which has
frequently been utilized to identify β-sheet content in incubation fluid [51]. As depicted in
Figure 7, after one day of incubation at 37 ◦C with Zn2+, an Aβ40 solution (20 µM) exhibits
significant fluorescence, demonstrating that the Aβ40 primarily occurs in the β-sheet-rich
conformation [51]. However, a steady drop in fluorescence intensity was seen when CoPM
was present. Since CoPM possesses no ability to quench the fluorescence of ThT (shown in
Figure S4), it would mean that CoPM can prevent the development of β-sheet-rich fibrils
that Zn2+ induces. The same phenomena were also observed in another two groups, which
is consistent with morphology experiment results.
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It has been established that the misfolding Cu2+-Aβ aggregates can be extremely effec-
tive in catalyzing ROS production [52]. Therefore, the DCF fluorescence test was conducted
to further investigate the inhibitory impact of CoPM on ROS generation mediated by those
Cu2+-Aβ species. Non-fluorescent 2′, 7′-dichlorofluorescein (DCFH) is transformed into
DCF by interacting with ROS in the presence of horseradish peroxidase (HRP), a fluorescent
probe that can measure the system’s total ROS output [53]. According to Figure 8, the DCF
fluorescence intensity of Cu2+-Aβ and CoPM seems to be less intense than that of Cu2+-Aβ
incubation alone, suggesting that the formation of ROS with CoPM is much lower than
that without CoPM. These findings demonstrate that CoPM effectively inhibits Cu2+-Aβ
complex ROS production [54]. Figure 8 shows that the Cu2+-Aβ plus Co2+ group creates
a significant amount of ROS, suggesting that the Co2+ did not impact the experimental
group’s HRP activity. It is interesting to note that the H6P2Mo5O23 (abbreviated as PM)
Strandberg-type cluster is likewise capable of preventing ROS from modifying β-sheet-rich
aggregates. We conclude that CoPM has a greater inhibitory impact than PM, suggesting
that the unique structure of CoPM makes it have a higher modulation capacity.
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Figure 8. DCF fluorescence intensity at 485 nm, generated by Cu2+ + Aβ + Co2+, Cu2+ + Aβ, Cu2+ +
Aβ + PM, Cu2+ + Aβ + CoPM, and control group in Tris-buffer (20 mM Tris-HCl/150 mM NaCl, pH
7.4). (CoPM for K8{[Co(H2O)4][HP2Mo5O23]2}·8H2O, PM for H6P2Mo5O23, Co2+ for CoCl2·2H2O).
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3. Materials and Methods

All of the reagents used in the present investigation were analytically pure and used
exactly as they were given to us. DCFH-DA (2′, 7′-dichlorofluorescein diacetate), HRP,
tris(hydroxymethyl)aminomethane (Tris) were acquired from Sigma-Aldrich Inc. (Shanghai,
China), whereas ascorbic acid, KCl, CuCl2, ZnCl2, CoCl2·2H2O, Na2MoO4·2H2O, and
Na2HPO4·12H2O were bought from J & K Scientific Inc. (Beijing, China). Milli-Q water
(Millipore, Burlington, MA, USA) was used to prepare all of the solutions, and a Millipore
filter (0.22 µm) was used for all filtrations.

The Nicolet (Thermo Fisher Nicolet Inc., Waltham, MA, USA) 170 SX FTIR spectrome-
ter was used to analyze the CoPM samples’ spectra while scanning from 4000 to 400 cm−1.
A UV-3600 spectrometer was used to record UV spectra between 190 and 400 nm. DCF
fluorescence was done using a Thermo (Thermo Fisher Scientific Inc., Singapore) Scientific
Varioskan Flash microplate reader. The Edinburgh (Edinburgh instruments Inc., Edinburgh,
UK) Raman spectrometer RM5 was used to test the fresh and recrystallized samples of
CoPM before and after incubation with Tris buffer solution scanning from 200 to 2000 cm−1

(λex = 785 nm). Graphite monochromatized Mo Kα radiation (λ = 0.71073 Å) at 296 K was
utilized to measure CoPM single crystal intensity using a Bruker (Bruker Inc., Saarbrücken,
Saarland, Germany) Apex-2 diffractometer with the aid of a CCD detector.

3.1. Synthesis

Solutions A and B were prepared separately. Solution A: Na2MoO4·2H2O (2.416 g,
10.00 mmol) and Na2HPO4·12H2O (2.399 g, 6.70 mmol) were dissolved in water (30 mL)
under stirring. Solution B: CoCl2 (1.300 g, 10.00 mmol) and KCl (1.50 g, 0.20 mmol) were
added to water (30 mL) under stirring. After 10 min, the resulting mixture of B was added to
solution A. After 10 min, the resulting mixture of B was introduced into solution A. Before
adjusting the pH to 5.0 with 6 mol·L−1 HCl, the mixture was stirred for 10 min at room tem-
perature (RT). The solution was then deposited in a Teflon reaction kettle at 150 ◦C for four
days. After 5 ◦C/h of programmed cooling, 28% of K8{[Co(H2O)4][HP2Mo5O23]2}·8H2O
crystals were obtained from Na2MoO4·2H2O.

3.2. X-ray Crystallography

Utilizing graphite monochromatized Mo Kα radiation (λ = 0.71073 Å) at 296 K, a
single crystal was put in an Apex-2 diffractometer (Bruker) with a CCD detector. For
data integration, Bruker’s SAINT software (Version 6.02A) suite was used. Corrections for
polarization and Lorentz were applied according to protocol [55]. The SADABS software
(Version 5.624) suite (Bruker) was used to perform adsorption adjustments using the
multi-scan method [56]. The full-matrix least-squares approach enhanced F2′s structure
after being directly solved. This same refinement was performed successively along
with Fourier syntheses for the remaining atoms. SHELXL-97 (Georg-August-Universität
Göttingen, 2014, University of Göttingen, Göttingen, Niedersachsen, Germany) was used
for calculations [57]. The locations of any hydrogen atoms connected to the water molecule
were not shown on the Fourier difference map. Hydrogen atoms coupled to C and N were
placed geometrically. All of the hydrogen atoms underwent isotropic refinement using
the riding model and SHELXL’s default settings. The crystal information and structural
refinement processes for CoPM are listed in Table 2.

Table 2. Crystal data and structure refinements for CoPM.

Empirical Formula H24CoK8Mo10O58P4

Formula weight 2407.20
Crystal system Triclinic
Space group P-1
a/Å 9.486(3)
b/Å 10.270(3)
c/Å 15.597(4)
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Table 2. Cont.

Empirical Formula H24CoK8Mo10O58P4

α/deg 94.275(4)
β/deg 97.073(4)
γ/deg 114.840(4)
V/Å3 1355.0(6)
Z 1
Dc/g cm−3 2.950
µ/mm−1 3.391
T/K 296(2)

Limiting indices
−11 ≤ h ≤ 11
−9≤ k ≤ 12
−18 ≤ l ≤ 16

Measured reflections 6895
Independent reflections 4721
Rint 0.0149
Data/restraints/parameters 4721/0/376
GOF on F2 1.051

Final R indices [I > 2σ(I)] R1 = 1.051
wR2 = 0.0686

R indices (all data)
R1 = 0.0264
wR2 = 0.0698

3.3. ThT Fluorescence Assay

In Tris buffer solution (20 mM Tris-HCl/150 mM NaCl, 990 µL), Aβ40 (20 µM) was
incubated with Zn(OAc)2 (4 µL, 10 mM). The samples were subsequently incubated with
CoPM (20 µM) or DMSO (1.5 µL) at 37 ◦C for 24 h. A Corning Costar Corp. flat-bottomed
96-well black plate received each 300 µL sample. Each well received 2 µL of 5 mM ThT
solution in the darkness and subjected to incubation for 1 h at 37 ◦C. The Thermo Scientific
Varioskan Flash microplate reader was used to detect fluorescence intensity (λex = 415 nm).

3.4. Morphological Analysis

Identical to the ThT fluorescence test, samples were prepared. On the 300-mesh copper
grids with carbon coatings, 10 µL of the solution was seen at RT. The extra solution was
drained after 2 min. After 2 min uranyl acetate (10 µL, 1%, w/v) staining, the grids were
rinsed with 10 µL ofMilli-Q water. A JEOL JEM-2100 LaB6 (HR) TEM was used to analyze
the samples.

3.5. Inhibition of ROS Generation

Following the instructions in the report [58], the HRP stock solution (4 µM) and the
DCF stock solution (1 mM) were prepared using a Tris buffer (20 mM Tris-HCl/150 mM
NaCl, pH 7.4). CuCl2 (40 µM) and Aβ40 (20 µM) samples were incubated at 37 ◦C with or
without CoPM (20 µM, with a final DMSO concentration of 1.5 µL). Each sample was then
added with 10 µM of ascorbate solution, which was then incubated for 10 min at 37 ◦C.
The 96 wells of a black plate with a flat bottom received the samples (200 µL) via injection.
After that, each solution received injections of DCF (100 µM) and HRP (0.04 µM), which
were subsequently incubated at 37 ◦C in the dark. Thermo Scientific’s Varioskan Flash
microplate reader was used to detect the fluorescence intensity (λex = 485 nm).

4. Conclusions

Misfolded protein accumulation is a critical factor involved in the onset and progression
of AD. The toxic species’ essential structure is an Aβ in a β-sheet form created by the
misfolding aggregation process. Furthermore, ROS generated by toxic aggregates is a crucial
neurodegenerative factor. This study describes the synthesis and characterization of a novel
cobalt complex functionalized phosphomolybdate K8{[Co(H2O)4][HP2Mo5O23]2}·8H2O
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(CoPM). CoPM displays a sandwich-type structure, with two Strandberg-type fragments
[P2Mo5O23]6− linked by {Co(H2O)4}2+ in the solid state. Because POM fragments and Co
complexes interact synergistically, CoPM can modulate conformation. As a conformational
modulator, CoPM can prevent Aβ from aggregating, thus inhibiting Cu2+-Aβ species to
produce ROS. Due to its novel structure and advantageous features, CoPM is predicted to
have a wide variety of potential applications in coordination chemistry and bio-inorganic
chemistry investigations.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/inorganics11110442/s1, Table S1: Selected bond lengths (Å) for
CoPM; Figure S1: IR spectra for CoPM before and after incubated with Cu2+ and Zn2+ (with a
molar ratio of 1:2); Figure S2: (a) IR spectra for CoPM before and after incubated with Tris buffer
solution (20 mM Tris-HCl/150 mM NaCl, with 5% DMSO); (b,c) Partial magnification of CoPM’s
IR spectra before and after incubation; Figure S3: Raman spectra for CoPM before (a) and after
incubated (b) with Tris buffer solution (20 mM Tris-HCl/150 mM NaCl, with 5% DMSO); Figure S4:
The fluorescence spectra (λex = 415 nm) of Thioflavin T (ThT) with or without CoPM. (inset: the
structural diagram of ThT).
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