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Abstract: Indigo carmine dye falls into the category of toxic chemicals, potentially leading to irritation
and allergic reactions in certain individuals. Thus, this study employed the Pechini sol–gel strategy
to easily produce CoFe2O4 nanoparticles, which serve as an effective adsorbent for the disposal of
indigo carmine dye from aqueous solutions. The maximum adsorption capacity of CoFe2O4 for
indigo carmine dye was determined to be 421.94 mg/g. The synthesized CoFe2O4 nanoparticles
exhibited an average crystallite size of 18.75 nm. SEM analysis revealed that these nanoparticles
were nearly spherical, with an average grain size of 198.32 nm. Additionally, TEM analysis indicated
a fully agglomerated spherical morphology for the CoFe2O4 sample, with an average diameter of
15.37 nm. The EDS spectrum confirmed that the synthesized CoFe2O4 nanoparticles consisted of Co,
Fe, and O elements, with respective weight percentages of 17.82%, 49.46%, and 32.72%. The removal
of indigo carmine dye by the synthesized CoFe2O4 is spontaneous, chemical, exothermic, closely
fitting the pseudo-second-order kinetic model, and demonstrating a strong concordance with the
Langmuir equilibrium isotherm.

Keywords: adsorption; indigo carmine dye; CoFe2O4 nanoparticles; characterization

1. Introduction

Water sources, encompassing seas, clouds, rivers (in the form of ice, snow, and rain),
and the underground, serve as reservoirs of pure water. Inherently pure, water is in-
strumental in extracting, purifying, and solubilizing various substances. Its designation
as the universal solvent stems from its high polarity and omnipresence in all facets of
life. The physical properties of water may undergo changes either through the influence
of nonpolluting agents originating from its source, such as rocks, clay, sand, and algal
blooms resulting from water stagnation, or due to deleterious pollutants introduced by
human activities [1–4]. Consequently, the quest for obtaining pure water has evolved into
a formidable challenge, necessitating the protection of water sources. Moreover, climate
change-induced droughts and the proliferation of industrial installations pose escalating
threats to water sources. In the pre-industrial revolution era, natural dyes derived from
sources like insects, flowering plants, vegetables, and roots were prevalent. However,
the surging demand for dyes has led industries to rely more on synthetic alternatives,
known for their rapid coloration process, increased solubility, easy absorbability, and
versatility compared to their natural counterparts. Among the industries, textiles stand
out as significant water consumers, releasing substantial quantities of synthetic dyes into
wastewater, thereby contaminating water resources and land. Other sectors, such as print-
ing, cosmetics, food packaging, pharmaceuticals, and processing, also contribute to dye
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pollution, but their impact is comparatively lesser than that of the textile industry [5–8].
Over 15% of the dyes employed in textiles are released into the environment without
binding to the fibers, often mingling with other organic and inorganic additives designed
to enhance dye adsorption on fabrics. Consequently, these chemicals typically find their
way into soils and surfaces [9–12]. The textile industry stands as a significant contributor
to wastewater containing organic dyes [13–15]. Among these dyes, indigo carmine, also
referred to as 5,5′-indigodisulfonic acid sodium salt, holds particular importance due to its
widespread utilization in various industries, including textiles, as well as paper, plastic,
leather, food, cosmetics, and printing [16,17]. These organic dyes are prevalent water
contaminants and pose potential threats to both human health and ecosystems, given their
mutagenic and carcinogenic characteristics [2,18]. Hence, a pressing requirement exists for
the elimination of these organic dyes from wastewater discharges. Various methods have
been explored to address water bodies contaminated with organic dyes, encompassing
processes like photocatalysis [19–21], chemical coagulation and precipitation [22], biodegra-
dation [23], membrane filtration [24], electrochemistry [25], and adsorption [21,26–28].
Of these methods, adsorption stands out as one of the most effective processes and is
commonly employed. This is because alternative techniques often necessitate a signifi-
cant amount of chemicals and/or substantial energy input, making them costlier [29–32].
Numerous materials have been explored for the elimination of indigo carmine from so-
lutions. These materials encompass activated carbon [33,34], natural substances [35,36],
polyacrylonitrile/Fe3O4/3-mercaptopropionic acid composites [37], montmorillonite [38],
chitosan aerogels [39], and carbon nanotubes [40]. However, the use of certain materials is
restricted due to their high cost, limited adsorption capacity, challenges associated with
their disposal and reusability, and the ongoing difficulty of separating these adsorbents
from aqueous solutions. Metal ferrite nanoparticles, including zinc ferrite, manganese
ferrite, and magnesium ferrite, have gained considerable attention for their effectiveness as
adsorbents in the removal of dyes, heavy metals, and various waterborne contaminants
from aqueous environments [41–44]. These metal ferrite adsorbents are preferred due
to their small crystal size, large surface area, and significant pore volume, allowing for
faster adsorption and higher adsorption capacity compared to conventional adsorbents.
Moreover, metal ferrite adsorbents with magnetic properties offer an additional advantage,
making their retrieval from water more convenient. This feature facilitates easy recycling
and reduces operational costs [45–48]. This research delves into the adsorption capabilities
of magnetic cobalt ferrite nanoparticles for eliminating indigo carmine dye from aqueous
solutions. The cobalt ferrite nanoparticles were readily manufactured through the Pechini
sol–gel technique and underwent thorough characterization to evaluate their crystalline
structure, morphology, and the active chemical bonds present on their surface. A compre-
hensive examination was carried out to understand how various experimental variables,
including solution pH, reaction time, reaction temperature, and initial dye concentration,
influenced the removal efficiency of indigo carmine dye. Moreover, applied kinetic and
equilibrium modelling were studied to gain insights into the adsorption process. Addi-
tionally, a thermodynamic investigation was conducted to grasp the influence of reaction
temperature on the adsorption of indigo carmine dye onto cobalt ferrite nanoparticles.
Lastly, this research delved into aspects of regeneration and reusability. Hence, the novelty
of this work lies in the innovative approach of synthesizing cobalt ferrite nanoparticles
utilizing the Pechini sol–gel method while incorporating tartaric acid as a chelating agent
and 1,2-propanediol as a cross-linker. This specific combination of synthesis parameters
has not been previously reported, marking the first instance of employing these precise
conditions for the production of cobalt ferrite nanoparticles. The use of tartaric acid as
a chelating agent and 1,2-propanediol as a cross-linker in conjunction with the Pechini
sol–gel method introduces a novel methodology that may yield distinct and advantageous
characteristics in the resulting nanoparticles, offering potential advancements in the field
of water treatment due to the low crystal size and high adsorption capacity of the sample
towards indigo carmine dye.
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2. Experimental
2.1. Materials

Cobalt(II) nitrate hexahydrate (Co(NO3)2·6H2O), tartaric acid (C4H6O6), iron(III) nitrate
nonahydrate (Fe(NO3)3·9H2O), hydrochloric acid (HCl), potassium nitrate (KNO3), sodium
hydroxide (NaOH), 1,2-propanediol (C3H8O2), and indigo carmine dye (C16H8N2Na2O8S2)
were purchased from Sigma-Aldrich (St. Louis, MO, USA).

2.2. Synthesis of CoFe2O4 Nanoparticles

The cobalt(II) solution was freshly produced by dissolving 4.50 g of cobalt(II) nitrate
hexahydrate in 90 mL of deionized water. Moreover, the iron(III) solution was freshly
produced by carefully dissolving 12.49 g of iron(III) nitrate nonahydrate in 110 mL of
deionized water. Subsequently, the cobalt(II) solution was slowly added drop-by-drop
to the iron(III) solution, and the resulting mixture was continuously stirred for 10 min
using a magnetic stirrer at a temperature of 25 ◦C. Additionally, the tartaric acid solution
(9.28 g of tartaric acid dissolved in 110 mL of deionized water) was added dropwise to
work as a chelating agent; then, the subsequent mixture was stirred continually for 10 min
with a magnetic stirrer at 130 ◦C. Following that, 10 mL of 1,2-propanediol was added
drop-by-drop as a cross-linker, and the resulting mixture was gently stirred continually
through a magnetic stirrer at 130 ◦C so that complete evaporation occurred. The resultant
solid product endured a calcination treatment at 650 ◦C for 3 h. Following the calcination
process, a sample was delicately crushed with a mortar and pestle to obtain cobalt ferrite
nanoparticles in powdered form.

2.3. Characterization

X-ray diffraction (XRD) data of CoFe2O4 nanoparticles was gathered using a Bruker
D8 Discover X-ray Diffractometer equipped with Cu Kα radiation and a Ni filter, operating
at a scanning speed of 8 degrees/minute within the 2θ range of 20–80◦ (λ = 0.15 nm, 40 mA,
40 kV, and a step size of 0.02◦). Micrographs of CoFe2O4 nanoparticles obtained through
scanning electron microscopy (SEM) were examined using an FEG250-FEI instrument
(Hillsboro, OR, USA), which was operated at 25.0 kV. The elemental composition of the
CoFe2O4 nanoparticles was examined through energy-dispersive X-ray analysis (EDS)
(Hillsboro, OR, USA). The morphology and particle size of the CoFe2O4 nanoparticles were
assessed using transmission electron microscopy (TEM) on a Thermo Fisher Scientific Talos
F200iS instrument (Hillsboro, OR, USA), operated at 200 kV. Fourier-transform infrared
spectroscopy (FT-IR) analysis of the CoFe2O4 nanoparticles was conducted using KBr
wafers on a PerkinElmer spectrometer (Waltham, MA, USA).

2.4. Adsorption of Indigo Carmine Dye from Aqueous Solutions

The effect of solution pH was studied as the following: 0.06 g of CoFe2O4 nanoparticles
were individually introduced into different batches containing 120 mL solutions containing
indigo carmine dye at a concentration of 240 mg/L. Subsequently, the pH of each was fixed
at a final pH ranging between 2 and 10, and the mixture was agitated for 240 min using a
magnetic stirrer operating at 600 rpm. Further investigations were carried out to examine
the influence of adsorption time (ranging from 10 to 140 min) at pH 2, as described and
clearly shown in Table 1. Additionally, experiments were conducted to assess the impact
of adsorption temperature (ranging from 298 to 328 K) at pH 2 and a fixed duration of
90 min. Furthermore, tests were performed to assess the effect of the initial indigo carmine
concentrations (ranging from 40 to 280 mg/L) at pH 2, 298 K, and 90 min. Upon the
completion of the adsorption process, an external magnetic field was used to separate the
CoFe2O4 adsorbent from the solution containing indigo carmine dye. The supernatant
was subsequently analyzed to determine any of the remaining dye concentration, with
measurements conducted at the maximum absorption wavelength of indigo carmine dye
(i.e., 610 nm) using an 1800 series UV–Vis spectrophotometer (Shimadzu, Kyoto, Japan).
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Table 1. Practical conditions for removing indigo carmine dye by CoFe2O4 nanoparticles.

Effect Concentration
of Dye (mg/L)

Volume of Dye
(mL)

Amount of
Adsorbent (g) pH Time

(min)
Temperature

(K)

pH 240 120 0.06 2–10 240 298

Time 240 120 0.06 2 10–140 298

Temperature (298–328 K) 240 120 0.06 2 90 298–328

Concentration (40–280 mg/L) 40–280 120 0.06 2 90 298

The elimination percentage of the indigo carmine dye (% R) and the uptake capacity
of the CoFe2O4 adsorbent (Q, mg/g) were estimated employing Equations (1) and (2),
respectively [5,6,26,47].

% R =
Co − Ce

Co
× 100 (1)

Q = (Co − Ce)×
V
M

(2)

Co indicates the initial concentration of the indigo carmine dye (mg/L), whereas Ce
indicates the equilibrium concentration of the indigo carmine dye (mg/L). The symbol M
indicates the dry mass of the CoFe2O4 adsorbent (g) whereas V indicates the volume of the
indigo carmine dye solution (L).

The CoFe2O4 adsorbent’s point of zero charge (pHPZC) was ascertained using the salt
addition method [48]. A set of 60 mL beakers was prepared, each containing 30 mL of a
0.02 M KNO3 solution, covering an initial pH (pHi) range from 2.5 to 11.5. The pH of these
samples was adjusted using either 0.1 M NaOH and/or 0.1 M HCl. Subsequently, 0.04 g of
CoFe2O4 adsorbent was added to each beaker. The solutions were thoroughly mixed and
stirred for a duration of 5 h. Following the separation of the solutions, the final pH (pHf) of
the filtrate was measured. The pHPZC was determined by plotting the pHf against the pHi,
and it was identified as the pHf value at which a distinct plateau was seen.

3. Results and Discussion
3.1. Synthesis and Characterization of CoFe2O4 Nanoparticles

The synthesis of CoFe2O4 nanoparticles was achieved using the Pechini sol–gel tech-
nique, as outlined in Scheme 1. Initially, the cobalt tartrate/1,2-propanediol network was cre-
ated through the reaction of Co(NO3)2·6H2O with tartaric acid and 1,2-propanediol. Simulta-
neously, the ferric tartrate/1,2-propanediol network was formed by reacting Fe(NO3)3·9H2O
with tartaric acid and 1,2-propanediol. Following this step, the mixture was subjected to
heating at 120 ◦C until it reached dryness. Subsequently, the resulting powder was subjected
to calcination at 650 ◦C for a duration of 3 h to yield CoFe2O4 nanoparticles. Figure 1
illustrates the thermal gravimetric analysis of the produced powder before the calcination
process. The sample displayed a decomposition pattern with two steps. The first step,
which is located in a range from 25 to 220 ◦C, can be attributed to the loss of adsorbed
water molecules with a weight loss of 13%. The second step, which is located in a range
from 220 to 650 ◦C, can be attributed to the loss of organic moiety with a weight loss of
62%. It is evident that 650 ◦C was the optimal temperature for the formation of CoFe2O4
nanoparticles, where there was no weight loss after 650 ◦C.

In Figure 2, the XRD pattern of the cobalt ferrite nanoparticles is presented. The
diffraction peaks observed in the pattern can be entirely attributed to the cubic spinel phase
of cobalt ferrite (CoFe2O4, JCPDS No. 22-1086) without any presence of impurities [49].
The average crystal size of the particles was determined to be 18.75 nm using the Debye–
Scherrer equation. The peaks found at the 2θ values of 30.07◦, 35.34◦, 36.99◦, 43.05◦, 53.37◦,
56.91◦, 62.48◦, 70.92◦, and 73.75◦ were caused by reflections from different Miller planes of
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CoFe2O4. These Miller planes included (220), (311), (222), (400), (422), (511), (440), (620),
and (533), respectively.
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Figure 2. X-ray diffraction analysis of CoFe2O4 nanoparticles.

A Fourier-transform infrared spectroscopy (FTIR) analysis was conducted on the
synthesized CoFe2O4 nanoparticles to examine their functional groups, as depicted in
Figure 3. The band at 450 cm−1 is ascribed to the stretching vibration of Co–O, while
the band at 577 cm−1 is ascribed to the stretching vibration of Fe–O. Additionally, the
bands at 1635 and 3450 cm−1 are ascribed to the bending and stretching vibrations of OH,
respectively [49].

The morphology and grain size of the CoFe2O4 sample were examined using a scan-
ning electron microscope (SEM), as illustrated in Figure 4A. It is evident from the images
that the CoFe2O4 nanoparticles exhibited a nearly spherical shape with an average grain
size of 198.32 nm. Besides that, the morphology of the synthesized CoFe2O4 nanoparticles
was also investigated through transmission electron microscope (TEM) analysis, as pre-
sented in Figure 4B. The CoFe2O4 sample displayed a completely agglomerated spherical
morphology, with a determined average diameter of 15.37 nm.
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The EDS spectrum, depicted in Figure 5, demonstrates that the CoFe2O4 nanoparticles
consisted of the elements Co, O, and Fe, with weight percentages of 17.82%, 32.72%, and
49.46%, respectively.
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Figure 5. Characterization of CoFe2O4 nanoparticles using EDS analysis.

Figure 6 illustrates the N2 adsorption/desorption isotherm of the CoFe2O4 nanopar-
ticles. The results show that the resulting curve follows the IV type, and this confirms
their mesoporous nature. Their surface textures, that is, their BET surface area, total pore
volume, and average pore size, were found to be 59.65 m2/g, 0.1234 cc/g, and 4.15 nm,
respectively.
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3.2. Adsorption of Indigo Carmine Dye from Aqueous Solutions
3.2.1. Influence of pH

Figure 7A depicts the correlation between the elimination percentage of indigo carmine
dye and the pH level of the solution. It was evident that a solution with a pH of 2 favored
the removal process, yielding the highest removal efficiency at 82.98%. With an increase
in solution pH, a consistent reduction in removal efficiency was observed, reaching 2.80%
at a pH of 10. Consequently, a solution pH of 2 was selected as the optimal condition for
subsequent adsorption investigations. In Figure 7B, the point of zero charge (pHPZC) for the
CoFe2O4 nanoparticles was determined to be 4.92. If the solution pH surpassed the point of
zero charge (i.e., 4.92), the CoFe2O4 nanoparticle surface acquired a negative charge due to
the presence of OH− ions, resulting in a repulsion force between the anionic indigo carmine
dye and the negatively charged adsorbent surface, as shown in Scheme 2. This led to a
significant decrease in removal efficiency [5,6,26]. Conversely, when the solution pH was
below the point of zero charge (i.e., 4.92), the surface of the CoFe2O4 nanoparticles became
positively charged due to the presence of H+ ions, causing an attraction force between the
anionic indigo carmine dye and the positively charged adsorbent surface, as shown in
Scheme 2. Consequently, a notable increase in removal efficiency was observed [5,6,26].
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Figure 4A illustrates the spherical shapes of the CoFe2O4 nanoparticles prior to adsorp-
tion. Following the adsorption of indigo carmine dye, as depicted in Figure 8, noticeable
alterations in the surface morphology of the CoFe2O4 nanoparticles were observed in the
SEM image. The adsorbate, representing the substance that underwent adsorption, adhered
to the surface of the adsorbent, manifesting as a coating or deposit.
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3.2.2. Influence of Adsorption Time and Adsorption Kinetics

Figure 9A illustrates the changes in indigo carmine dye removal percentage over time.
The findings unequivocally indicate a rapid removal rate, with indigo carmine dye removal
efficiency rising from 51.5% to 82.65% as the removal time extended from 10 to 90 min,
primarily attributed to the presence of protonated CoFe2O4 nanoparticles. Subsequently, as
the removal time extended from 90 to 140 min, the adsorption percentage experienced a
slight decline, as a consequence of reaching equilibrium because of the saturation of active
places on the CoFe2O4 nanoparticles.
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In this study, we applied both the pseudo-first-order and pseudo-second-order models
to investigate the kinetics. Equations (3) and (4) present the linear forms of these models,
respectively [5,6,26].

log (Qe −Qt) = logQe −
kFirst
2.303

t (3)

t
Qt

=
1

kSecondQ2
e
+

1
Qe

t (4)

Qt represents the quantity of indigo carmine dye eliminated by the CoFe2O4 nanopar-
ticles at a specific contact time, denoted as t (mg/g). On the other hand, Qe stands for the
amount of indigo carmine dye removed by the CoFe2O4 adsorbent at equilibrium (mg/g).
The value kFirst is used to denote the rate constant of the pseudo-first-order model (1/min),
while kSecond represents the rate constant of the pseudo-second-order model (g/mg min).
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Figure 9B presents the alignment of experimental data with the pseudo-first-order
kinetic model, while Figure 9C illustrates the alignment with the pseudo-second-order
kinetic model. Table 2 represents a summary of critical kinetic parameters obtained by
fitting experimental data with these two distinct kinetic models. The table highlights that
the R2 value for the pseudo-second-order kinetic model exceeds that of the pseudo-first-
order kinetic model. Furthermore, a clear agreement between the experimental adsorption
capacity (Qexp) and the model-predicted values emphasizes the concordance between the
experimental and pseudo-second-order model adsorption capacities. These observations
confirm the applicability of the pseudo-second-order kinetic model to this removal process,
providing strong evidence for the occurrence of chemisorption between indigo carmine
dye molecules and CoFe2O4 nanoparticles.

Table 2. Kinetic constants of indigo carmine dye removal by CoFe2O4 nanoparticles.

Experimental Pseudo-First-Order Pseudo-Second-Order

Qexp
(mg/g)

Qe
(mg/g)

kFirst
(1/min) R2 Qe

(mg/g)
kSecond

(g/mg·min) R2

396.74 152.06 0.0245 0.9300 400.00 0.00041 0.9999

3.2.3. Influence of Solution Temperature and Thermodynamic Parameters

Figure 10A depicts the changes in the indigo carmine dye removal percentage con-
cerning temperature. The findings indicate a noticeable decline in indigo carmine dye
uptake efficiency, decreasing from 82.65% to 45.73% as the adsorption temperature rose
from 298 to 328 K. In order to explore the role of adsorption temperature on the process
of removing indigo carmine dye by CoFe2O4 nanoparticles, the standard entropy change
(∆S◦), standard enthalpy change (∆H◦), and standard Gibbs free energy change (∆G◦) were
calculated using Equations (5)–(7) [5,6,26].

lnKd =
∆So

R
− ∆Ho

RT
(5)

∆Go = ∆Ho − T∆So (6)

Kd =
Qe
Ceq

(7)

T stands for the adsorption temperature (K), with R denoting the universal gas constant
(KJ/molK), and Kd representing the distribution coefficient (given in L/g). The values of
∆S◦ and ∆H◦ were determined by analyzing the intercept and slope of the plot of lnKd
against 1/T, as illustrated in Figure 10B. The resulting thermodynamic constants are detailed
in Table 3. Negative ∆G◦ values confirm the spontaneity of the indigo carmine dye removal
process by CoFe2O4 nanoparticles. The obtained ∆H◦ value of −47.82 KJ/mol confirms
that the removal process was exothermic, and with a value exceeding 40 KJ/mol, this
indicates that the removal process predominantly involved chemisorption. Additionally,
the positive ∆S◦ value (0.1415 KJ/molK) is associated with an increase in the degree of
freedom of indigo carmine dye and suggests an enhanced concentration of indigo carmine
dye at the solid–solution interface [5,6,26].

Table 3. Thermodynamic constants of indigo carmine dye removal by CoFe2O4 nanoparticles.

∆H◦

(KJ/mol)
∆S◦

(KJ/mol K)
∆G◦

(KJ/mol)

−47.82 0.1415
298 308 318 328

−89.99 −91.41 −92.83 −94.24
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3.2.4. Influence of Concentration and Adsorption Isotherms

Figure 11A presents the changes in the indigo carmine dye removal percentage in
relation to the initial dye concentration. The results unequivocally illustrate a decrease in
the indigo carmine dye removal percentage, declining from 98.38% to 71.34% as the initial
indigo carmine dye concentration increased from 40 to 280 mg/L. This can be attributed to
the presence of unsaturated active sites on the adsorbent at lower dye concentrations of
adsorbate, while at higher dye concentrations of adsorbate, it is conceivable that all active
sites of the adsorbent became saturated.
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In this study, the equilibrium analysis was carried out using the Langmuir and Fre-
undlich isotherms. Equations (8) and (9) present the linear representations of these equilib-
rium isotherms, respectively [5,6,26].

Ceq

Qe
=

1
kLQmax

+
Ceq

Qmax
(8)

lnQe = lnkF +
1
n

lnCeq (9)

The parameter 1/n represents the degree of heterogeneity, while kL denotes the
Langmuir constant (L/mg). Additionally, kF is used to represent the Freundlich constant
(mg/g)(L/mg)1/n, and Qmax signifies the maximum adsorption capacity as per the Lang-
muir isotherm (mg/g). It is worth noting that Qmax can also be calculated using Equation
(10) based on the Freundlich isotherm [5,6,26].

Qmax = kF

(
C1/n

o

)
(10)

Figure 11B demonstrates the alignment of experimental data with the Langmuir equi-
librium isotherm, and Figure 11C showcases the alignment with the Freundlich equilibrium
isotherm. In Table 4, there is a summary of key equilibrium constants derived from the
linear fitting of experimental data using these two distinct equilibrium isotherms. The table
highlights that the R2 value for the Langmuir equilibrium isotherm exceeds that of the
Freundlich equilibrium isotherm. As a result, these findings support the applicability of
the Langmuir equilibrium isotherm to this adsorption process.

Table 4. Equilibrium constants of indigo carmine dye removal by CoFe2O4 nanoparticles.

Langmuir Isotherm Freundlich Isotherm

Qmax
(mg/g)

kL
(L/mg) R2 Qmax

(mg/g)
kF

(mg/g)(L/mg)1/n R2

421.94 0.2596 0.9985 740.01 110.85 0.9148

The analysis of the Langmuir isotherm revealed a maximum adsorption capacity of
421.94 mg/g for indigo carmine dye on CoFe2O4 nanoparticles. When assessing this maxi-
mum adsorption capacity, a comparison was made between the adsorption performance
of indigo carmine dye on CoFe2O4 nanoparticles and that of various adsorbents listed in
Table 5. The results unequivocally indicate that the synthesized CoFe2O4 nanoparticles ex-
hibited a superior adsorption capacity for indigo carmine dye in comparison to previously
reported adsorbents, including polyacrylonitrile/Fe3O4/3-mercaptopropionic acid compos-
ite, activated carbon, montmorillonite, chitosan aerogels, and carbon nanotubes [35,37–40].

Table 5. A comparison between the maximum removal capacity of CoFe2O4 nanoparticles towards
indigo carmine dye and that of other previously documented adsorbents.

Adsorbent Maximum Adsorption
Capacity (mg/g) pH Time Ref.

Polyacrylonitrile/Fe3O4/
3-mercaptopropionic

acid composite
154.50 5 25 [37]

Activated carbon 87.80 2 80 [35]

Montmorillonite 40.00 2 20 [38]

Chitosan aerogels 168.60 2 100 [39]

Carbon nanotubes 93.00 2 50 [40]

CoFe2O4 nanoparticles 421.94 2 90 This study
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3.2.5. Influence of Regeneration and Reusability

The regeneration of adsorbents is crucial for their continued effectiveness in various
processes. Adsorbents are materials that trap and remove impurities from gases or liquids.
Over time, these adsorbents can become saturated with contaminants, reducing their
efficiency. Regeneration helps restore their adsorption capacity and extends their lifespan.
This is particularly important in industries such as water treatment, air purification, and
gas separation, where maintaining high performance is essential for cost-effectiveness and
environmental sustainability. It also allows for the reuse of adsorbents, reducing the need
for frequent replacement and minimizing waste generation. So, in a nutshell, regeneration
is like giving a second life to these materials, ensuring they can continue to effectively
clean and purify substances. To regenerate the CoFe2O4 nanoparticles for multiple uses,
the CoFe2O4/indigo carmine dye mixture was subjected to heating at 600 ◦C, which broke
down and removed the dye. Subsequently, the regenerated CoFe2O4 adsorbent was utilized
for the successive removal of indigo carmine dye in five consecutive cycles, following the
same experimental procedure described earlier and depicted in Figure 12. The outcomes
illustrated the capability of CoFe2O4 nanoparticles to repeatedly eliminate indigo carmine
dye without experiencing a significant reduction in efficiency.
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4. Conclusions

This research involved the straightforward synthesis of CoFe2O4 nanoparticles using
the Pechini sol–gel technique. These nanoparticles were then employed as an adsorbent to
efficiently eliminate indigo carmine dye from aqueous solutions. The maximum adsorption
capacity of CoFe2O4 for indigo carmine dye was determined to be 421.94 mg/g. XRD
analysis revealed that the average crystallite size of the CoFe2O4 nanoparticles was 18.75 nm.
A closer examination through scanning electron microscopy (SEM) showed that these
nanoparticles exhibited a nearly spherical, ball-like morphology with an average grain size
of 198.32 nm. Besides that, transmission electron microscopy (TEM) analysis demonstrated
that the CoFe2O4 nanoparticles displayed a fully agglomerated spherical structure with
an average diameter of 15.37 nm. The removal of indigo carmine dye by CoFe2O4 is
characterized as spontaneous, exothermic, and chemical. Also, it is well described by the
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Langmuir equilibrium isotherm and the pseudo-second-order kinetic model. The optimal
conditions for the removal of indigo carmine dye by CoFe2O4 nanoparticles were observed
at a pH of 2, a contact time of 90 min, and an adsorption temperature of 298 K.

Author Contributions: A.S.A.-W. (review, writing of the introduction, and interpretation of the
kinetic and equilibrium parts) and E.A.A. (writing, review, idea, experimental work, and analysis).
All authors have read and agreed to the published version of the manuscript.
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