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Abstract: This review summarizes data on the main types of charge-compensated nido-carborane
derivatives. Compared with organic analogs, onium derivatives of nido-carborane have increased sta-
bility due to the stabilizing electron-donor action of the boron cage. Charge-compensated derivatives
are considered according to the type of heteroatom bonded to a boron atom.
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1. Introduction

The synthesis of the first polyhedral boranes, carboranes, and metallacarboranes in
the early 1960s was one of the major highlights in the development of inorganic chemistry
over the last century [1]. The first reports on the synthesis of icosahedral carboranes
appeared almost sixty years ago, at the end of 1963 when both the United States and
the Soviet Union almost simultaneously declassified documents about their boron fuel
projects [2–6]. A few months later, the nucleophile-promoted removal of one boron atom
from the icosahedral ortho-carborane cage to form the 11-vertex nido-carborane cage
species (Figure 1) was reported [7,8]. It was one of the most significant findings in the
early years of the development of carborane chemistry, and now, more than five decades
later, it remains indispensable for the synthesis of numerous metallacarboranes [9–17] and
hydrophilic functionalized carboranes for medical [18–27] and other [28–40] applications.
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The synthesis of the first polyhedral boranes, carboranes, and metallacarboranes in 

the early 1960s was one of the major highlights in the development of inorganic chemis-
try over the last century [1]. The first reports on the synthesis of icosahedral carboranes 
appeared almost sixty years ago, at the end of 1963 when both the United States and the 
Soviet Union almost simultaneously declassified documents about their boron fuel pro-
jects [2–6]. A few months later, the nucleophile-promoted removal of one boron atom 
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cies (Figure 1) was reported [7,8]. It was one of the most significant findings in the early 
years of the development of carborane chemistry, and now, more than five decades later, 
it remains indispensable for the synthesis of numerous metallacarboranes [9–17] and 
hydrophilic functionalized carboranes for medical [18–27] and other [28–40] applications. 
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Figure 1. The idealized structure and atom numbering of nido-carborane [7,8-C2B9H12]−. 

Metallacarboranes based on the dicarbollide ligand [7,8-C2B9H11]2−, which is formed 
upon the deprotonation of nido-carborane with strong bases, resemble the well-known 
transition metal cyclopentadienyl complexes. However, the dicarbollide ligand differs 
from the cyclopentadienyl ligand in a number of ways. In addition to its 3D character, the 
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Figure 1. The idealized structure and atom numbering of nido-carborane [7,8-C2B9H12]−.
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Metallacarboranes based on the dicarbollide ligand [7,8-C2B9H11]2−, which is formed
upon the deprotonation of nido-carborane with strong bases, resemble the well-known
transition metal cyclopentadienyl complexes. However, the dicarbollide ligand differs
from the cyclopentadienyl ligand in a number of ways. In addition to its 3D character, the
dicarbollide ligand is a significantly stronger donor than the cyclopentadienyl one and
has a double charge. The donor nature of the dicarbollide ligand can be largely tuned
via the introduction of substituents of various natures. At the same time, the charge of
the ligand can be partially compensated by introducing into the dicarbollide ligand the
so-called charge-compensating substituents of an onium nature (ammonium, phospho-
nium, sulfonium, etc.). This significantly brings the properties of the dicarbollide and
cyclopentadienyl complexes closer together and causes a high interest in metallacarboranes
based on charge-compensated dicarbollide ligands [41–50].

In this study, we review the synthesis and properties of charge-compensated nido-
carborane derivatives in which the onium center is bonded to the boron atom directly
or through a short single-atom spacer and, therefore, not only reduces the ligand charge
but also has a significant effect on its electron-donating properties. Therefore, derivatives
containing charge-compensating substituents at the carbon atoms [51–67] or bound to the
carborane basket through a longer spacer, for example, obtained by opening cyclic oxonium
derivatives [68] and some others [69–72], are beyond the scope of this review.

As a rule, charge-compensating substituents are groups in which the positive charge is
localized on the atoms of Group 5 (nitrogen, phosphorus, and arsenic) or Group 6 (oxygen,
sulfur, and selenium) elements. In most cases, this atom is bonded directly to the boron
atom of the nido-carborane basket. Therefore, the classification of charge-compensated
derivatives of nido-carborane according to the type of boron–element bond is the most
convenient. Another important factor is the position of the substituent, which can be
located in the upper (open) belt (positions 9, 10, and 11) or lower (positions 1, 2, 3, 4, 5,
and 6) of nido-carborane. Substituents located in the upper belt of nido-carborane in some
cases can affect the coordination environment of the metal in metallacarboranes based
on them both due to steric factors and in the presence of additional donor groups. In
addition, for the synthesis of derivatives with substituents in the upper belt, substitution
reactions in the nido-carborane itself are mainly used, while the preparation of derivatives
with substituents in the lower belt is based on the decapitation of the corresponding ortho-
carborane derivatives. It should also be kept in mind that positions 1, 3, and 10 are in the
plane of symmetry of the nido-carborane cage, and, therefore, the substitution of hydrogen
atoms in these positions leads to symmetrically substituted derivatives. At the same time,
the substitution of hydrogen atoms in positions 2, 4, 5, 6, 9, and 11 leads to asymmetrically
substituted derivatives, which are racemic mixtures of the corresponding isomers.

2. Charge-Compensated Derivatives of Nido-Carborane with Boron–Nitrogen Bond

Due to the great diversity of nitrogen chemistry, the charge-compensated derivatives
of nido-carborane with the B-N bond are characterized by the greatest variety of forms.
The first example of the synthesis of charge-compensated derivatives of nido-carborane
with a B-N bond was the reaction of the parent nido-carborane with pyridine in benzene in
the presence of anhydrous FeCl3, leading to the asymmetrically substituted pyridinium
derivative 9-Py-7,8-C2B9H11 (Scheme 1) [73], the structure of which was later supported via
a single-crystal X-ray diffraction study (Figure 2) [74]. When FeCl3·6H2O was used instead
of anhydrous FeCl3, the by-product of the reaction was the disubstituted pyridinium deriva-
tive 9,11-Py2-7,8-C2B9H9 [74]. The reaction with 7,8-dimethyl-nido-carborane proceeds
in a similar way, giving 9-Py-7,8-Me2-7,8-C2B9H9 [73]. In a similar way, the reaction of
nido-carborane with methyl isonicotinate in the presence of FeCl3 in refluxing benzene
results in 9-(4′-MeO(O)CC5H3N)-7,8-C2B9H11 [75].



Inorganics 2023, 11, 72 3 of 63Inorganics 2023, 11, x FOR PEER REVIEW 3 of 65 
 

 

H H
Py

FeCl3
reflux

N

 
Scheme 1. The synthetic process to obtain 9-Py-7,8-C2B9H11. 

  
Figure 2. Crystal molecular structures of 9-Py-7,8-C2B9H11 (left) and 10-Py-7,8-C2B9H11 (right). Hy-
drogen atoms of organic substituents are omitted for clarity. 
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prepared via the reaction of the parent ortho-carborane with pyridine in the presence of 
copper acetate and water. Similar reactions with C-monosubstituted ortho-carboranes 
give a mixture of the corresponding isomeric pyridinium derivatives 
9-Py-7-R-7,8-C2B9H10 and 11-Py-7-R-7,8-C2B9H10 (R = Me, Ph). In the case of 1-XCH2 de-
rivatives of ortho-carborane (X = Cl, Br, OH), in addition to a mixture of the correspond-
ing 9- and 11-pyridinium derivatives of nido-carborane, the reaction gives the pyridinium 
methyl derivative 7-PyCH2-7,8-C2B9H11 [76]. 

The reaction of nido-carborane with pyridine in the presence of HgCl2 in refluxing 
benzene gives a mixture of the symmetrically and asymmetrically substituted pyri-
dinium derivatives 10-Py-7,8-C2B9H11 and 9-Py-7,8-C2B9H11 in a ratio of 2:1 (Scheme 2) 
[50,77]. The reaction of 7,8-dimethyl-nido-carborane [7,8-Me2-7,8-C2B9H10]− with pyridine 
proceeds in a similar way [77]. 
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Figure 2. Crystal molecular structures of 9-Py-7,8-C2B9H11 (left) and 10-Py-7,8-C2B9H11 (right).
Hydrogen atoms of organic substituents are omitted for clarity.

The asymmetrically substituted 9-pyridinium derivative of nido-carborane was also
prepared via the reaction of the parent ortho-carborane with pyridine in the presence of
copper acetate and water. Similar reactions with C-monosubstituted ortho-carboranes give
a mixture of the corresponding isomeric pyridinium derivatives 9-Py-7-R-7,8-C2B9H10 and
11-Py-7-R-7,8-C2B9H10 (R = Me, Ph). In the case of 1-XCH2 derivatives of ortho-carborane
(X = Cl, Br, OH), in addition to a mixture of the corresponding 9- and 11-pyridinium
derivatives of nido-carborane, the reaction gives the pyridinium methyl derivative 7-PyCH2-
7,8-C2B9H11 [76].

The reaction of nido-carborane with pyridine in the presence of HgCl2 in refluxing
benzene gives a mixture of the symmetrically and asymmetrically substituted pyridinium
derivatives 10-Py-7,8-C2B9H11 and 9-Py-7,8-C2B9H11 in a ratio of 2:1 (Scheme 2) [50,77]. The
reaction of 7,8-dimethyl-nido-carborane [7,8-Me2-7,8-C2B9H10]− with pyridine proceeds in
a similar way [77].
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The symmetrically substituted pyridinium derivative 10-Py-7,8-C2B9H11 was prepared
via the reaction of the 10-diphenylsulfonium derivative 10-Ph2S-7,8-C2B9H11 with pyridine
in refluxing chloroform (Scheme 3, Figure 2) [78].
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The reaction of nido-carborane with 4-phenylpyridine in 1,2-dimethoxyethane in the
presence of 2,3-dichloro-5,6-icyanobenzoquinone (DDQ) as an oxidizing agent leads to
the corresponding asymmetrically substituted pyridinium derivative [9-(4′-PhC5H4N)-7,8-
C2B9H11] (Scheme 4) [79].
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This approach is also applicable to various pyridine derivatives and C,C’-disubstituted
nido-carboranes. The reaction was shown to be tolerant to the halogen, methoxy, methylcar-
boxy, amino, and vinyl substituents (Scheme 5, Figure 3) [79]. The same products can be
prepared via reagent-free electrocatalyzed direct B-N oxidative couplings of nido-carboranes
with pyridines (Scheme 4, Figure 3) [80,81]. In the case of C-monosubstituted nido-
carboranes, the reaction leads to mixtures of the 9- and 11-pyridinium derivatives [79,81].
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The reaction of 7,8-diphenyl-nido-carborane with 4,4′-vinylenedipyridine in the pres-
ence of DDQ in 1,2-dimethoxyethane gives the corresponding pyridinium derivative con-
taining two nido-carboranyl units (Figure 4) [79].

The electrocatalyzed B-N oxidative couplings of nido-carboranes with pyridines were
used for the synthesis of a nido-carborane-based amino acid and 4,4-difluoro-4-bora-3a,4a-
diaza-s-indacene (BODIPY) derivatives (Figures 5 and 6) [80].
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The use of quinoline and isoquinoline and their derivatives instead of pyridine leads to
the corresponding quinolinium and isoquinolinium derivatives of nido-carborane (Scheme 6,
Figure 7) [79,80].

The oxidation of C-substituted nido-carboranes containing a pendant pyridine or quino-
line fragment leads to intramolecular cyclization with the formation of the corresponding
pyridinium and quinolinium derivatives (Scheme 7, Figure 8) [79–81].
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Bromination and iodination of 9-Py-7,8-C2B9H11 with bromine and iodine in acetic
acid leads to 11-Br-9-PyN-7,8-C2B9H10 and 11-I-9-PyN-7,8-C2B9H10, correspondently
(Figure 9) [82,83].

The oxidative coupling can be also applied for the synthesis of nido-carboranyl deriva-
tives of other azaheterocycles, including pyrazole, imidazole, oxazole, thiazole, pyrimidine,
and azaindoles (Figures 10 and 11) [79–81].
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Bromination and iodination of 9-Py-7,8-C2B9H11 with bromine and iodine in acetic 
acid leads to 11-Br-9-PyN-7,8-C2B9H10 and 11-I-9-PyN-7,8-C2B9H10, correspondently (Fig-
ure 9) [82,83]. 

Figure 8. Crystal molecular structures of µ-7,11-NC7H6(2′-Bu)CH2-7,8-C2B9H10 (top left), µ-7,11-
NC7H6(1”,4”-dioxan-2”-yl)CH2-7,8-C2B9H10 (top right), µ-7,11-NC7H6(2”-tetrahydrofuryl)CH2-7,8-
C2B9H10 (middle left), µ-7,11-NC7H7CH2-8-Me-7,8-C2B9H9 (middle right), µ-7,11-NC7H7CH2-8-
Ph-7,8-C2B9H9 (bottom left), and µ-7,11-NC7H7CH2-8-Bu-7,8-C2B9H9 (bottom right). Hydrogen
atoms of organic substituents are omitted for clarity.

The 9-trimethylammonium derivative of nido-carborane 9-Me3N-7,8-C2B9H11 was pre-
pared via the reaction of the potassium salt of the parent nido-carborane with copper(II) sul-
fate in the presence of aqueous ammonia and trimethylammonium chloride (Scheme 8) [74].
This approach was also used for the synthesis of a series of 9-alkyldimethylamino derivatives
of nido-carborane, 9-RMe2N-7,8-C2B9H11 (R = CH2Ph, CH2C≡N, CH2C≡CH, (CH2)3Cl,
(CH2)2OH, (CH2)3OH, (CH2)2NMe2) (Scheme 8, Figure 12) [84].
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An attempt to crystallize 9-HO(CH2)3Me2N-7,8-C2B9H11 from acetone led to in-
tramolecular BH-activation with the formation of µ-9,4-Me2N(CH2)3O-7,8-C2B9H10
(Figure 13) [84].

The derivative with the N,N,N′,N′-tetramethylethylenediamine substituent 9-
Me2N(CH2)2Me2N-7,8-C2B9H11 can be also obtained via the nucleophilic substitution
of iodine in the 9-iodo derivative [9-I-7,8-C2B9H11]− with tetramethylethylenediamine
(TMEDA) in the presence of t-BuOK (Scheme 9) [85].

Alkylation of 9-Me2N(CH2)2Me2N-7,8-C2B9H11 with allyl chloride or propargyl bro-
mide leads to the corresponding cationic derivatives of nido-carborane (Scheme 10) [84].

The azido derivative of 9-N3(CH2)3Me2N-7,8-C2B9H11 (Figure 12) was prepared by
heating the corresponding chloride with sodium azide in DMF in the presence of NaI.
The copper(I)-catalyzed azide-alkyne cycloaddition reactions of 9-N3(CH2)3Me2N-7,8-
C2B9H11 with various terminal alkynes, including phenylacetylene and alkyne derivatives
of cholesterol and cobalt and iron bis(dicarbollides), results in the corresponding 1,2,3-
triazoles (Scheme 11) [86]. The zwitterionic nido-carborane–cholesterol conjugate was also
prepared via the Cu(I)-catalyzed cycloaddition of the alkyne derivative of nido-carborane
9-HC≡CCH2Me2N-7,8-C2B9H11 with 3β-(2-azidoethoxy)-5-cholestene (Scheme 12) [87].
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molecular BH-activation with the formation of μ-9,4-Me2N(CH2)3O-7,8-C2B9H10 (Figure 
13) [84]. 

Figure 12. Crystal molecular structures of 9-C6H5CH2Me2N-7,8-C2B9H11 (top left), 9-
Me2NCH2CH2Me2N-7,8-C2B9H11 (top right), 9-N3CH2CH2CH2Me2N-7,8-C2B9H11 (middle left),
9-N≡CCH2Me2N-7,8-C2B9H11 (middle right), and 9-HC≡CCH2Me2N-7,8-C2B9H11 (bottom). Hy-
drogen atoms of organic substituents are omitted for clarity.
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The azido derivative of 9-N3(CH2)3Me2N-7,8-C2B9H11 (Figure 12) was prepared by 
heating the corresponding chloride with sodium azide in DMF in the presence of NaI. 
The copper(I)-catalyzed azide-alkyne cycloaddition reactions of 
9-N3(CH2)3Me2N-7,8-C2B9H11 with various terminal alkynes, including phenylacetylene 
and alkyne derivatives of cholesterol and cobalt and iron bis(dicarbollides), results in the 
corresponding 1,2,3-triazoles (Scheme 11) [86]. The zwitterionic nido-carborane–
cholesterol conjugate was also prepared via the Cu(I)-catalyzed cycloaddition of the al-
kyne derivative of nido-carborane 9-HC≡CCH2Me2N-7,8-C2B9H11 with 
3β-(2-azidoethoxy)-5-cholestene (Scheme 12) [87]. 

Scheme 10. The alkylation of 9-Me2N(CH2)2Me2N-7,8-C2B9H11.

The same approach can be used for the preparation of trimethylammonium deriva-
tives of C-substituted nido-carboranes. The reaction of 7,8-bis(methylthio)-nido-carborane
with trimethylammonium chloride in the presence of copper(II) sulfate in an aqueous am-
monia solution results in 9-Me3N-7,8-(MeS)2-7,8-C2B9H9, whereas the similar reaction of
7-methylthio-nido-carborane gives a mixture of 9-Me3N-7-MeS-7,8-C2B9H10 (major isomer)
and 11-Me3N-7-MeS-7,8-C2B9H10 (minor isomer) (Scheme 13, Figure 14) [88].



Inorganics 2023, 11, 72 14 of 63Inorganics 2023, 11, x FOR PEER REVIEW 14 of 65 
 

 

H N
Me Me

N

H N
Me Me

Cl

CuI, i-Pr2NH

N
N

NaN3
NaI

DMF

H N
Me Me

N
NN

R

O
X

M
Me

N
Me

O

H
H H

R-C CH

EtOH, reflux

R =

M = Co, X = CH2, O;
M = Fe,  X = CH2

 
Scheme 11. The synthesis of azido derivative of nido-carborane 9-N3(CH2)3Me2N-7,8-C2B9H11 and its 
copper(I)-catalyzed azide–alkyne cycloaddition reactions with various terminal alkynes. 

H N C
Me Me

H N
Me Me

N
NN

CuI, i-Pr2NH

O

H
H H

EtOH, reflux

CH

2-azidoethoxy-cholesterol

 
Scheme 12. The reaction of 9-HC≡CCH2Me2N-7,8-C2B9H11 with 3β-(2-azidoethoxy)-5-cholestene. 

The same approach can be used for the preparation of trimethylammonium deriva-
tives of C-substituted nido-carboranes. The reaction of 7,8-bis(methylthio)-nido-carborane 
with trimethylammonium chloride in the presence of copper(II) sulfate in an aqueous 
ammonia solution results in 9-Me3N-7,8-(MeS)2-7,8-C2B9H9, whereas the similar reaction 
of 7-methylthio-nido-carborane gives a mixture of 9-Me3N-7-MeS-7,8-C2B9H10 (major 
isomer) and 11-Me3N-7-MeS-7,8-C2B9H10 (minor isomer) (Scheme 13, Figure 14) [88]. 

Scheme 11. The synthesis of azido derivative of nido-carborane 9-N3(CH2)3Me2N-7,8-C2B9H11 and
its copper(I)-catalyzed azide–alkyne cycloaddition reactions with various terminal alkynes.

Inorganics 2023, 11, x FOR PEER REVIEW 14 of 65 
 

 

H N
Me Me

N

H N
Me Me

Cl

CuI, i-Pr2NH

N
N

NaN3
NaI

DMF

H N
Me Me

N
NN

R

O
X

M
Me

N
Me

O

H
H H

R-C CH

EtOH, reflux

R =

M = Co, X = CH2, O;
M = Fe,  X = CH2

 
Scheme 11. The synthesis of azido derivative of nido-carborane 9-N3(CH2)3Me2N-7,8-C2B9H11 and its 
copper(I)-catalyzed azide–alkyne cycloaddition reactions with various terminal alkynes. 

H N C
Me Me

H N
Me Me

N
NN

CuI, i-Pr2NH

O

H
H H

EtOH, reflux

CH

2-azidoethoxy-cholesterol

 
Scheme 12. The reaction of 9-HC≡CCH2Me2N-7,8-C2B9H11 with 3β-(2-azidoethoxy)-5-cholestene. 

The same approach can be used for the preparation of trimethylammonium deriva-
tives of C-substituted nido-carboranes. The reaction of 7,8-bis(methylthio)-nido-carborane 
with trimethylammonium chloride in the presence of copper(II) sulfate in an aqueous 
ammonia solution results in 9-Me3N-7,8-(MeS)2-7,8-C2B9H9, whereas the similar reaction 
of 7-methylthio-nido-carborane gives a mixture of 9-Me3N-7-MeS-7,8-C2B9H10 (major 
isomer) and 11-Me3N-7-MeS-7,8-C2B9H10 (minor isomer) (Scheme 13, Figure 14) [88]. 

Scheme 12. The reaction of 9-HC≡CCH2Me2N-7,8-C2B9H11 with 3β-(2-azidoethoxy)-5-cholestene.

Inorganics 2023, 11, x FOR PEER REVIEW 15 of 65 
 

 

H NMe3
Me3N

Cu2+, NH4OH

SMeMeS H SMeMeS

HMeS
NMe3

HMeS
Me3N

Cu2+, NH4OH

Me3N HMeS

+

 
Scheme 13. Synthesis of trimethylammonium derivatives of C-substituted nido-carboranes. 

 
Figure 14. Crystal molecular structure of 11-Me3N-7-MeS-7,8-C2B9H10. Hydrogen atoms of methyl 
groups are omitted for clarity. 

The symmetrically substituted triethylammonium derivative 10-Et3N-7,8-C2B9H11 
was prepared in low yield via the reaction of the 10-diphenylsulfonium derivative 
10-Ph2S-7,8-C2B9H11 with triethylamine in refluxing chloroform (Scheme 14, Figure 15) 
[78]. 

H
SPh2

H
NEt3

Et3N

CHCl3
reflux

 
Scheme 14. The synthesis of 10-Et3N-7,8-C2B9H11 from 10-Ph2S-7,8-C2B9H11. 

 

Scheme 13. Synthesis of trimethylammonium derivatives of C-substituted nido-carboranes.



Inorganics 2023, 11, 72 15 of 63

Inorganics 2023, 11, x FOR PEER REVIEW 15 of 65 
 

 

H NMe3
Me3N

Cu2+, NH4OH

SMeMeS H SMeMeS

HMeS
NMe3

HMeS
Me3N

Cu2+, NH4OH

Me3N HMeS

+

 
Scheme 13. Synthesis of trimethylammonium derivatives of C-substituted nido-carboranes. 

 
Figure 14. Crystal molecular structure of 11-Me3N-7-MeS-7,8-C2B9H10. Hydrogen atoms of methyl 
groups are omitted for clarity. 

The symmetrically substituted triethylammonium derivative 10-Et3N-7,8-C2B9H11 
was prepared in low yield via the reaction of the 10-diphenylsulfonium derivative 
10-Ph2S-7,8-C2B9H11 with triethylamine in refluxing chloroform (Scheme 14, Figure 15) 
[78]. 

H
SPh2

H
NEt3

Et3N

CHCl3
reflux

 
Scheme 14. The synthesis of 10-Et3N-7,8-C2B9H11 from 10-Ph2S-7,8-C2B9H11. 

 

Figure 14. Crystal molecular structure of 11-Me3N-7-MeS-7,8-C2B9H10. Hydrogen atoms of methyl
groups are omitted for clarity.

The symmetrically substituted triethylammonium derivative 10-Et3N-7,8-C2B9H11
was prepared in low yield via the reaction of the 10-diphenylsulfonium derivative 10-
Ph2S-7,8-C2B9H11 with triethylamine in refluxing chloroform (Scheme 14, Figure 15) [78].
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Figure 15. Crystal molecular structure of 10-Et3N-7,8-C2B9H11. Hydrogen atoms of ethyl groups are
omitted for clarity.

The asymmetrically substituted triethylammonium derivative 9-Et3N-7,8-C2B9H11
was prepared in low yield via the reaction of the 9-iodo derivative [9-I-7,8-C2B9H11]− with
triethylamine in the presence of t-BuOK under reflux conditions [85].

A series of cyclic 9-dialkylammonium derivatives of 7,8-diphenyl-nido-carborane was
prepared via the photoredox coupling of [7,8-Ph2-7,8-C2B9H10]− with secondary amines
under blue LED light irradiation in the presence of 9-mesityl-10-methylacridinium perchlo-
ratee as the photocatalyst (Scheme 15, Figure 16) [89]. In a similar way, unsymmetrical
and acyclic dialkylammonium derivatives of nido-carborane can be prepared using tetrahy-
droisoquinoline and methylbenzylamine, respectively (Figure 16) [89].
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This approach is also applicable to the synthesis of various primary aliphatic and
heteroaromatic amines (Scheme 16, Figure 17) [89].
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Figure 17. Crystal molecular structure of 9-Bn(Me)NH-7,8-Ph2-7,8-C2B9H9. Hydrogen atoms of alkyl
and aryl substituents are omitted for clarity.

Halogenation of the 9-trimethylammonium derivative 9-Me3N-7,8-C2B9H11 was stud-
ied. The reaction with an equimolar amount of Cl2 in dichloromethane at -25◦C results
in a mixture of 11-Cl-9-Me3N-7,8-C2B9H10 and 6-Cl-9-Me3N-7,8-C2B9H10 isolated in 14%
and 45% yields, respectively, whereas the reaction with an excess of Cl2 under similar
conditions gives 6,11-Cl2-9-Me3N-7,8-C2B9H9 isolated in a 26% yield [90]. The reaction of 9-
Me3N-7,8-C2B9H11 with an equimolar amount of Br2 in dichloromethane at -25◦C results in
a mixture of 11-Br-9-Me3N-7,8-C2B9H10 and 6-Br-9-Me3N-7,8-C2B9H10 isolated in 81% and
11% yields, respectively [90]. The reaction with an excess of Br2 in dichloromethane under
reflux gave a mixture of 6,11-Br2-9-Me3N-7,8-C2B9H9] and 1,6,11-Br3-9-Me3N-7,8-C2B9H8,
both isolated with a yield of 12% (Figure 18) [90]. The reaction of 9-Me3N-7,8-C2B9H11
with I2 in acetic acid under reflux leads to 11-I-9-Me3N-7,8-C2B9H10 (Figure 18) as a single
product [90].
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groups are omitted for clarity.
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A convenient method for the functionalization of nido-carborane, leading to the for-
mation of symmetrically substituted derivatives with a B-N bond, is the synthesis and
subsequent modification of its nitrilium derivatives. The first nitrilium derivatives of
nido-carboranes were synthesized via reactions of the potassium salts of the parent nido-
carborane and its 7,8-dimethyl derivative with acetonitrile in the presence of FeCl3. In
both cases, the nitrilium derivatives were obtained as mixtures of asymmetrically and
symmetrically substituted isomers 9-MeC≡N-7,8-R2-7,8-C2B9H9 (R = H, Me) [73]. Later,
it was found that the reaction of (Me4N)[7,8-C2B9H12] with AlCl3 in acetonitrile in the
presence of acetone led solely to the symmetric product [10-MeC≡N-7,8-C2B9H11]; how-
ever, the product yield was rather low [78]. Recently it was found that the reaction of
the potassium salt of nido-caborane K [7,8-C2B9H12] with HgCl2 in a mixture of reflux-
ing acetonitrile or propionitrile and benzene also leads selectively to the corresponding
symmetrically substituted nitrilium derivatives 10-RC≡N-7,8-C2B9H11 (R = Me, Et) in
close to quantitative yields. Hydrolysis of 10-EtC≡N-7,8-C2B9H11 leads to the protonated
iminol 10-EtC(OH)=HN-7,8-C2B9H11, which upon treatment with triethylamine, gives the
corresponding amide (Et3NH)[10-EtC(O)HN-7,8-C2B9H11] (Scheme 17) [91].
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A similar approach can also be applied to C-substituted derivatives of nido-carborane.
The reaction of K[7-BnOOCCH2-7,8-C2B9H11] with acetonitrile in refluxing benzene in
the presence of HgCl2, followed by hydrolysis of the resulting nitrilium derivative and
acid hydrolysis of the amide, produces the corresponding ammonium derivative of nido-
carborane [7-HOOCCH2-10-NH3-7,8-C2B9H10] [92].

The reactions of 10-EtC≡N-7,8-C2B9H11 with alcohols (MeOH, EtOH, i-PrOH, and
n-BuOH) and thiols (EtSH, n-BuSH, and n-HxSH) result in the corresponding imidates 10-
EtC(OR)=HN-7,8-C2B9H11 and thioimidates 10-EtC(SR)=HN-7,8-C2B9H11 as mixtures of E-
and Z-isomers, which can be separated using column chromatography on silica (Scheme 18,
Figure 19) [91].
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(Z)-EtC(SEt)=HN-7,8-C2B9H11 (bottom right). Hydrogen atoms of alkyl substituents are omitted
for clarity.

In a similar way, the reactions of 10-EtC≡N-7,8-C2B9H11 with primary amines (MeNH2,
EtNH2, n-PrNH2, i-BuNH2, BnNH2, PhNH2, HOCH2CH2NH2, HOCH2CH2CH2NH2,
MeOCH2CH2NH2, and Me2NCH2CH2NH2) lead to the corresponding amidines 10-EtC(NHR)
=HN-7,8-C2B9H11 as mixtures of E- and Z-isomers (Scheme 19) [93,94]. The obtained carbo-
ranyl amidines were shown to be promising ligands for the synthesis of various met-
allacarboranes [94–96]. The reaction of 10-EtC≡N-7,8-C2B9H11 with ethylenediamine
proceeds with the elimination of imidazoline, resulting in the 10-ammonium derivative
10-H3N-7,8-C2B9H11 (Scheme 19) [94]. The reactions of 10-EtC≡N-7,8-C2B9H11 with sec-
ondary amines (Me2NH, Et2NH, piperidine, and morpholine) produce the corresponding
amidines 10-EtC(NR2)=HN-7,8-C2B9H11 as single E-isomers (Scheme 19, Figure 20) [93].

The reaction of the potassium salt of nido-caborane K[7,8-C2B9H12] with bis(2-cyanoethyl)
ether in the presence of HgCl2 results in the corresponding nitrilium derivative 10-
NCCH2CH2OCH2CH2C≡N-7,8-C2B9H11; however, treatment of the iminol formed af-
ter its hydrolysis with triethylamine unexpectedly leads to side-chain shortening with
the formation of the acrylamide derivative (Et3NH)[10-CH2=CHC(O)HN-7,8-C2B9H11]
(Scheme 20) [97].
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Surprisingly, the reactions of 10-NCCH2CH2OCH2CH2C≡N-7,8-C2B9H11 with alco-
hols and thiols proceed in a different manner: the reactions with thiols lead to the expected
thioimidates, 10-NCCH2CH2OCH2CH2C(SR)=HN-7,8-C2B9H11 (R = Et, Bu), as mixtures of
E- and Z-isomers, which can be separated using column chromatography on silica, whereas
the reactions with alcohols result in side-chain shortening with the formation of a mixture
of two imidates, 10-CH2=CHC(OR)=HN-7,8-C2B9H11 and 10-HOCH2CH2C(OR)=HN-7,8-
C2B9H11 (R = Me, Et, i-Pr, n-Bu) (Scheme 21, Figure 21). The reaction with diethylamine
gives amidine 10-HOCH2CH2C(NEt2)=HN-7,8-C2B9H11 (Scheme 21) [97].
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Amidine 10-CH3C(NCPh2)=HN-7,8-C2B9H11 (Figure 22) was obtained from the re-
action of the tetramethylammonium salt of nido-carborane with benzophenone imine in
acetonitrile in the presence of acetyl chloride. It is assumed that the reaction proceeds
through the formation of the acetonitrilium derivative of nido-carborane, followed by the
addition of the imine to the activated C≡N triple bond [98].
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methyl and phenyl groups are omitted for clarity.

The 3-Ammonium derivative of nido-carborane 3-H3N-7,8-C2B9H11 was prepared via
the deboronation of 3-amino-ortho-carborane 3-H2N-1,2-C2B10H11 with an alkali in reflux-
ing ethanol (Scheme 22, Figure 23) [99,100]. The same approach can be used for the synthesis
of the 3-ammonium derivatives of C-substituted nido-carboranes 3-H3N-7-R-7,8-C2B9H12
(R = i-Pr, CH2COOH, CH2COOBn) (Figure 23) [99,101]. The 3-dimethylammonium and 3-
benzylammonium derivatives of nido-carborane were prepared via the deboronation of the
corresponding derivatives of ortho-carborane (Scheme 22) [99]. The 3-trimethylammonium
derivative of nido-carborane 3-Me3N-7,8-C2B9H11 was obtained via the treatment of the
3-ammonium derivative with methyl iodide in the presence of K2CO3 (Scheme 22) [99].
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Figure 23. Crystal molecular structures of 3-H3N-7,8-C2B9H11 (left) and 3-H3N-7-BnOOCCH2-7,8-
C2B9H10 (right). Hydrogen atoms of alkyl substituents are omitted for clarity.

Heating 9-amido-ortho-carboranes 9-RCONH-1,2-C2B10H11 (R = H, Alk, or Ar) with
10 mol.% of Pd(OAc)2, 2 equiv. of AgOAc, and 2 equiv. of K2CO3 in 1,4-dioxane at
100◦C results in successive deboronation and cyclization reactions with the formation
of the corresponding N-protonated nido-carborane fused oxazoles 5,10-µ-RCNHO-7,8-
C2B9H10. The reaction is applicable to various N-carboranylamides including formamide
and alkyl- and arylamides, as well as to C,C’-substituted N-carboranylamides (Scheme 23,
Figure 24) [102]. Interestingly, in the case of 9-PhCONH-1,2-µ-C6H4(CH2)2-1,2-C2B10H9,
the reaction results in a mixture of the 5,10-µ-PhCNHO-7,8-µ-C6H4(CH2)2-7,8-C2B9H8 and
5,9-µ-PhCNHO-7,8-µ-C6H4(CH2)2-7,8-C2B9H8 isomers (Figure 24) in a 1:1 ratio [102]. It
was found that the Pd catalyst plays an important role in promoting deboronation, while
the presence of AgOAc is critical for the cyclization reaction [102].
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Figure 24. Crystal molecular structures of 5,10-µ-PhCNHO-7,8-C2B9H10 (top left), 5,10-µ-PhCNHO-
7,8-Me2-7,8-C2B9H8 (top right), 5,10-µ-PhCNHO-7,8-µ-C6H4(CH2)2-7,8-C2B9H8 (bottom left), and
5,9-µ-PhCNHO-7,8-µ-C6H4(CH2)2-7,8-C2B9H8 (bottom right). Hydrogen atoms of alkyl and aryl
substituents are omitted for clarity.

3. Charge-Compensated Derivatives of Nido-Carborane with Boron–Phosphorus Bond

Unlike derivatives with a boron–nitrogen bond, derivatives of nido-carboranes with a
boron–phosphorus bond can be prepared using electrophilic substitution reactions. Heating
the potassium salt of nido-carborane K[7,8-C2B9H12] with Ph2PCl in tetrahydrofuran at
reflux leads to the P-protonated diphenylphosphonium derivative 9-Ph2PH-7,8-C2B9H11,
which can be alkylated with MeI under reflux in ethanol in the presence of EtONa as a base
to give the methyldiphenylphosphonium derivative 9-MePh2P-7,8-C2B9H11 (Scheme 24,
Figure 25) [103,104].
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The symmetrically substituted phosphonium derivatives 10-Ph2PH-7,8-C2B9H11 and
10-MePh2P-7,8-C2B9H11 (Figure 25) were prepared in a similar way using the disodium
dicarbollide salt Na2[7,8-C2B9H11] as a starting material (Scheme 25) [104].

Phosphonium derivatives of nido-carborane also can be prepared via Lewis-acid-
mediated nucleophilic substitution reactions. The reaction of the potassium salt of nido-
carborane K[7,8-C2B9H12] with PPh3 in the presence FeCl3 in benzene at 80 ◦C leads to a
mixture of triphenylphosphonium 9-Ph3P-7,8-C2B9H11 and 10-Ph3P-7,8-C2B9H11, which
were separated using column chromatography on silica (Scheme 26) [103,104].
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The asymmetrical triphenylphosphonium derivative 9-Ph3P-7,8-C2B9H11 was also 
obtained via the reaction of triphenylphosphine with the dithallium dicarbollide salt 

Scheme 26. Reaction of nido-carborane with triphenylphosphine in the presence of FeCl3.

The asymmetrical triphenylphosphonium derivative 9-Ph3P-7,8-C2B9H11 was also
obtained via the reaction of triphenylphosphine with the dithallium dicarbollide salt
Tl2[7,8-C2B9H11] in dichloromethane and in the presence of AgBr at ambient temperature
(Scheme 27) [105].
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However, the largest number of phosphonium derivatives of nido-carborane was 
obtained through transition-metal-catalyzed cross-coupling reactions [107]. A series of 
triphenylphosphonium derivatives of nido-carborane, X-Ph3P-7,8-C2B9H11 (X = 1, 3, 5, 9), 
were synthesized via the reactions of the corresponding iodo derivatives with PPh3 in the 
presence of 10 mol.% of [(Ph3P)4Pd] in 1,4-dioxane at 90 °C. This approach can be used to 

Scheme 27. Synthesis of 9-Ph3P-7,8-C2B9H11.

Similar to the pyridinium derivatives, a series of asymmetrically substituted phos-
phonium derivatives 9-R’R2P-7,8-Ph2-7,8-C2B9H9 was prepared via electrocatalyzed B-P
oxidative couplings of 7,8-diphenyl-nido-carborane with various phosphines and phos-
phites (Scheme 28, Figure 26) [106].
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However, the largest number of phosphonium derivatives of nido-carborane was
obtained through transition-metal-catalyzed cross-coupling reactions [107]. A series of
triphenylphosphonium derivatives of nido-carborane, X-Ph3P-7,8-C2B9H11 (X = 1, 3, 5, 9),
were synthesized via the reactions of the corresponding iodo derivatives with PPh3 in
the presence of 10 mol.% of [(Ph3P)4Pd] in 1,4-dioxane at 90 ◦C. This approach can be
used to synthesize derivatives containing substituents in different positions of the nido-
carborane cage, including the upper and lower belts, as well as the bottom of the basket
(Scheme 29) [108].

The 5-triphenyl- and 5-bis(t-butyl)phosphonium derivatives of nido-carborane 5-Ph3P-
7,8-C2B9H11 and 5-tBu2PH-7,8-C2B9H11 were obtained in low yields directly by heating
9-iodo-ortho-carborane with an excess of AgF and catalytic amounts of [(Ph3P)4Pd] or
[(tBu3P)2Pd] in DMF at 140 ◦C (Scheme 30, Figure 27) [109].

The symmetrically substituted diiodo derivatives [5,6-I2-7,8-C2B9H10]− and [9,11-I2-
7,8-C2B9H10]− under the same conditions give the corresponding mono-coupling products
5-I-6-Ph3P-7,8-C2B9H10 and 9-I-11-Ph3P-7,8-C2B9H10 in good yields, whereas the reaction
of the asymmetrical diiodo derivative with substituents at boron atoms in both pentagonal
belts [6,9-I2-7,8-C2B9H10]− results in selective coupling at the open pentagonal belt to form
6-I-9-Ph3P-7,8-C2B9H10 in a moderate yield (Scheme 31, Figure 28) [108].



Inorganics 2023, 11, 72 27 of 63

Inorganics 2023, 11, x FOR PEER REVIEW 27 of 65 
 

 

synthesize derivatives containing substituents in different positions of the nido-carborane 
cage, including the upper and lower belts, as well as the bottom of the basket (Scheme 29) 
[108]. 

[(Ph3)4Pd]/PPh3
1,4-dioxane, 90oC

H

H

Ph3P

H
PPh3

H

PPh3

H

PPh3

I

 
Scheme 29. Synthesis of triphenylphosphonium derivatives of nido-carborane X-Ph3P-7,8-C2B9H11 
(X = 1, 3, 5, 9) via transition-metal-catalyzed cross-coupling reactions. 

The 5-triphenyl- and 5-bis(t-butyl)phosphonium derivatives of nido-carborane 
5-Ph3P-7,8-C2B9H11 and 5-tBu2PH-7,8-C2B9H11 were obtained in low yields directly by 
heating 9-iodo-ortho-carborane with an excess of AgF and catalytic amounts of 
[(Ph3P)4Pd] or [(tBu3P)2Pd] in DMF at 140 °C (Scheme 30, Figure 27) [109]. 

[(Ph3)4Pd] or [(t-Bu3P)2Pd]

H

PR2R'I
AgF, DMF, 140oC

R = R' = Ph; R = t-Bu, R' = H  
Scheme 30. Synthesis of 5-Ph3P-7,8-C2B9H11 and 5-tBu2PH-7,8-C2B9H11. 

 
Figure 27. Crystal molecular structure of 5-t-Bu2HP-7,8-C2B9H11. Hydrogen atoms of alkyl groups 
are omitted for clarity. 

The symmetrically substituted diiodo derivatives [5,6-I2-7,8-C2B9H10]− and 
[9,11-I2-7,8-C2B9H10]− under the same conditions give the corresponding mono-coupling 
products 5-I-6-Ph3P-7,8-C2B9H10 and 9-I-11-Ph3P-7,8-C2B9H10 in good yields, whereas the 
reaction of the asymmetrical diiodo derivative with substituents at boron atoms in both 

Scheme 29. Synthesis of triphenylphosphonium derivatives of nido-carborane X-Ph3P-7,8-C2B9H11

(X = 1, 3, 5, 9) via transition-metal-catalyzed cross-coupling reactions.

Inorganics 2023, 11, x FOR PEER REVIEW 27 of 65 
 

 

synthesize derivatives containing substituents in different positions of the nido-carborane 
cage, including the upper and lower belts, as well as the bottom of the basket (Scheme 29) 
[108]. 

[(Ph3)4Pd]/PPh3
1,4-dioxane, 90oC

H

H

Ph3P

H
PPh3

H

PPh3

H

PPh3

I

 
Scheme 29. Synthesis of triphenylphosphonium derivatives of nido-carborane X-Ph3P-7,8-C2B9H11 
(X = 1, 3, 5, 9) via transition-metal-catalyzed cross-coupling reactions. 

The 5-triphenyl- and 5-bis(t-butyl)phosphonium derivatives of nido-carborane 
5-Ph3P-7,8-C2B9H11 and 5-tBu2PH-7,8-C2B9H11 were obtained in low yields directly by 
heating 9-iodo-ortho-carborane with an excess of AgF and catalytic amounts of 
[(Ph3P)4Pd] or [(tBu3P)2Pd] in DMF at 140 °C (Scheme 30, Figure 27) [109]. 

[(Ph3)4Pd] or [(t-Bu3P)2Pd]

H

PR2R'I
AgF, DMF, 140oC

R = R' = Ph; R = t-Bu, R' = H  
Scheme 30. Synthesis of 5-Ph3P-7,8-C2B9H11 and 5-tBu2PH-7,8-C2B9H11. 

 
Figure 27. Crystal molecular structure of 5-t-Bu2HP-7,8-C2B9H11. Hydrogen atoms of alkyl groups 
are omitted for clarity. 

The symmetrically substituted diiodo derivatives [5,6-I2-7,8-C2B9H10]− and 
[9,11-I2-7,8-C2B9H10]− under the same conditions give the corresponding mono-coupling 
products 5-I-6-Ph3P-7,8-C2B9H10 and 9-I-11-Ph3P-7,8-C2B9H10 in good yields, whereas the 
reaction of the asymmetrical diiodo derivative with substituents at boron atoms in both 

Scheme 30. Synthesis of 5-Ph3P-7,8-C2B9H11 and 5-tBu2PH-7,8-C2B9H11.

Inorganics 2023, 11, x FOR PEER REVIEW 27 of 65 
 

 

synthesize derivatives containing substituents in different positions of the nido-carborane 
cage, including the upper and lower belts, as well as the bottom of the basket (Scheme 29) 
[108]. 

[(Ph3)4Pd]/PPh3
1,4-dioxane, 90oC

H

H

Ph3P

H
PPh3

H

PPh3

H

PPh3

I

 
Scheme 29. Synthesis of triphenylphosphonium derivatives of nido-carborane X-Ph3P-7,8-C2B9H11 
(X = 1, 3, 5, 9) via transition-metal-catalyzed cross-coupling reactions. 

The 5-triphenyl- and 5-bis(t-butyl)phosphonium derivatives of nido-carborane 
5-Ph3P-7,8-C2B9H11 and 5-tBu2PH-7,8-C2B9H11 were obtained in low yields directly by 
heating 9-iodo-ortho-carborane with an excess of AgF and catalytic amounts of 
[(Ph3P)4Pd] or [(tBu3P)2Pd] in DMF at 140 °C (Scheme 30, Figure 27) [109]. 

[(Ph3)4Pd] or [(t-Bu3P)2Pd]

H

PR2R'I
AgF, DMF, 140oC

R = R' = Ph; R = t-Bu, R' = H  
Scheme 30. Synthesis of 5-Ph3P-7,8-C2B9H11 and 5-tBu2PH-7,8-C2B9H11. 

 
Figure 27. Crystal molecular structure of 5-t-Bu2HP-7,8-C2B9H11. Hydrogen atoms of alkyl groups 
are omitted for clarity. 

The symmetrically substituted diiodo derivatives [5,6-I2-7,8-C2B9H10]− and 
[9,11-I2-7,8-C2B9H10]− under the same conditions give the corresponding mono-coupling 
products 5-I-6-Ph3P-7,8-C2B9H10 and 9-I-11-Ph3P-7,8-C2B9H10 in good yields, whereas the 
reaction of the asymmetrical diiodo derivative with substituents at boron atoms in both 

Figure 27. Crystal molecular structure of 5-t-Bu2HP-7,8-C2B9H11. Hydrogen atoms of alkyl groups
are omitted for clarity.



Inorganics 2023, 11, 72 28 of 63

Inorganics 2023, 11, x FOR PEER REVIEW 28 of 65 
 

 

pentagonal belts [6,9-I2-7,8-C2B9H10]− results in selective coupling at the open pentagonal 
belt to form 6-I-9-Ph3P-7,8-C2B9H10 in a moderate yield (Scheme 31, Figure 28) [108]. 

H

I
I

H
I

I

H
I

I

H
PPh3

I

H

PPh3

I

H
PPh3

I

[(Ph3)4Pd]/PPh3

1,4-dioxane, 90oC

[(Ph3)4Pd]/PPh3

1,4-dioxane, 90oC

[(Ph3)4Pd]/PPh3

1,4-dioxane, 90oC

 
Scheme 31. Synthesis of 9-I-11-Ph3P-7,8-C2B9H10, 5-I-6-Ph3P-7,8-C2B9H10, and 6-I-9-Ph3P-7,8-C2B9H10. 

  
Figure 28. Crystal molecular structures of 9-Ph3P-11-I-7,8-C2B9H10 (left) and 9-Ph3P-6-I-7,8-C2B9H10 

(right). Hydrogen atoms of phenyl groups are omitted for clarity. 

The bis(triphenylphosphonium) derivatives 5,6-(Ph3P)2-7,8-C2B9H10 and 
9,11-(Ph3P)2-7,8-C2B9H10 can be prepared in a similar way with the addition of Cs2CO3 as a 
base to remove the bridging hydrogen (Scheme 32, Figure 29) [108]. 
9,11-(Ph3P)2-7,8-C2B9H10 can also be obtained in a two-step process through 
11-Ph3P-9-I-7,8-C2B9H10 (Scheme 32) [108]. 

Scheme 31. Synthesis of 9-I-11-Ph3P-7,8-C2B9H10, 5-I-6-Ph3P-7,8-C2B9H10, and 6-I-9-Ph3P-7,8-C2B9H10.

Inorganics 2023, 11, x FOR PEER REVIEW 28 of 65 
 

 

pentagonal belts [6,9-I2-7,8-C2B9H10]− results in selective coupling at the open pentagonal 
belt to form 6-I-9-Ph3P-7,8-C2B9H10 in a moderate yield (Scheme 31, Figure 28) [108]. 

H

I
I

H
I

I

H
I

I

H
PPh3

I

H

PPh3

I

H
PPh3

I

[(Ph3)4Pd]/PPh3

1,4-dioxane, 90oC

[(Ph3)4Pd]/PPh3

1,4-dioxane, 90oC

[(Ph3)4Pd]/PPh3

1,4-dioxane, 90oC

 
Scheme 31. Synthesis of 9-I-11-Ph3P-7,8-C2B9H10, 5-I-6-Ph3P-7,8-C2B9H10, and 6-I-9-Ph3P-7,8-C2B9H10. 

  
Figure 28. Crystal molecular structures of 9-Ph3P-11-I-7,8-C2B9H10 (left) and 9-Ph3P-6-I-7,8-C2B9H10 

(right). Hydrogen atoms of phenyl groups are omitted for clarity. 

The bis(triphenylphosphonium) derivatives 5,6-(Ph3P)2-7,8-C2B9H10 and 
9,11-(Ph3P)2-7,8-C2B9H10 can be prepared in a similar way with the addition of Cs2CO3 as a 
base to remove the bridging hydrogen (Scheme 32, Figure 29) [108]. 
9,11-(Ph3P)2-7,8-C2B9H10 can also be obtained in a two-step process through 
11-Ph3P-9-I-7,8-C2B9H10 (Scheme 32) [108]. 

Figure 28. Crystal molecular structures of 9-Ph3P-11-I-7,8-C2B9H10 (left) and 9-Ph3P-6-I-7,8-C2B9H10
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The bis(triphenylphosphonium) derivatives 5,6-(Ph3P)2-7,8-C2B9H10 and 9,11-(Ph3P)2-
7,8-C2B9H10 can be prepared in a similar way with the addition of Cs2CO3 as a base to
remove the bridging hydrogen (Scheme 32, Figure 29) [108]. 9,11-(Ph3P)2-7,8-C2B9H10 can
also be obtained in a two-step process through 11-Ph3P-9-I-7,8-C2B9H10 (Scheme 32) [108].
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Figure 29. Crystal molecular structure of 5,6-(Ph3P)2-7,8-C2B9H9. Hydrogen atoms of phenyl groups
are omitted for clarity.

In the case of the 5,6,9-triiodo derivative of nido-carborane [5,6,9-I3-7,8-C2B9H9]−, the
substitution proceeds selectively in the open pentagonal belt and in the most distant posi-
tion in the lower pentagonal belt to form 6,9-(Ph3P)2-5-I-7,8-C2B9H8 (Scheme 33, Figure 30).
Alternatively, this compound can be obtained via the reaction of the diiodo derivative of
nido-carborane [5,6-I2-7,8-C2B9H10]− with PPh3 in the presence of a sub-equimolar amount
of [(Ph3P)4Pd] in dioxane at 90◦C (Scheme 33) [108]. In this case, both BI and BH activation
takes place.
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Figure 30. Crystal molecular structure of 6,9-(Ph3P)2-5-I-7,8-C2B9H8. Hydrogen atoms of phenyl
groups are omitted for clarity.

The reaction of nido-carborane with 0.5 equiv. of [(Me2PhP)2PdCl2] in dichloromethane
at room temperature followed by heating with NaBH4 in benzene leads to the BH-activation
of nido-carborane with the formation of a mixture of isomeric phosphonium derivatives
9-Me2PhP-7,8-C2B9H11 and 10-Me2PhP-7,8-C2B9H11 (Scheme 34, Figure 31) [110].
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The reaction of ortho-carborane with triphenylphosphine in the presence of catalytic
amounts of PdCl2 in benzene at 80 ◦C directly results in the 5-triphenylphosphonium deriva-
tive of nido-carborane 5-Ph3P-7,8-C2B9H11 in a moderate yield (Scheme 35, Figure 32) [111].
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Figure 32. Crystal molecular structure of 5-Ph3P-7,8-C2B9H11. Hydrogen atoms of phenyl groups are
omitted for clarity.

The reactions of sulfide [7,8-µ-S(CH2)3-7,8-C2B9H10]− with 1 equiv. of palladium(II)
complexes [L2PdCl2] (L = PPh3, PPh2Me) in boiling ethanol led to selective BH-activation
at the nearest-t-sulfur boron atom of the upper pentagonal belt with the formation of
11-R’R2P-7,8-µ-(S(CH2)3)-7,8-C2B9H9 (Scheme 36, Figure 33) [112]. It is assumed that the
alkyl sulfide substituent plays the role of a directing group.
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Figure 33. Crystal molecular structure of 9-Ph3P-7,8-(µ-(CH2)3S)-7,8-C2B9H9. Hydrogen atoms of
organic substituents are omitted for clarity.

The 2-pyridyl substituent can also act as a directing group. The reactions 2-pyridyl-
substituted nido-carborane [7-(2′-Py)-7,8-C2B9H11]−, formed by heating the corresponding
ortho-carborane 1-(2′-Py)-1,2-C2B9H12 in aqueous acetonitrile, with various phosphines in
the presence of catalytic amounts of PdCl2 in a mixture of toluene, water, and acetonitrile at
120◦C lead to the corresponding phosphonium derivatives 11-R’R2P-7-(2′-Py)-7,8-C2B9H10
(Scheme 37, Figure 34). The reaction is tolerant to the presence of alkyl and aryl substituents
at the second carbon atom of the nido-carborane cage (Scheme 37) [113].
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Figure 34. Crystal molecular structure of 11-Ph3P-7-(NC5H4-2′-)-7,8-C2B9H10. Hydrogen atoms of
organic substituents are omitted for clarity.

Various substituted pyridines (5-, 6-methyl-, and 4-trifluoromethylpyridine), as well
as 2-benzoxazolyl and diphenylphosphine groups, can be used as guide groups as well
(Scheme 38) [113].
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Scheme 39. Reaction of [7-(NC5H3-3′-Me-2′-)-7,8-C2B9H11]− with triphenylphosphine in the presence 
of PdCl2. 

Scheme 38. Synthesis of triphenylphosphonium derivatives starting from different C-substituted
nido-carborane pyridines as well as from the C-2-benzoxazolyl and C-diphenylphosphine derivatives.

The reaction of [7-(NC5H3-3′-Me-2′-)-7,8-C2B9H11]− with triphenylphosphine in the pres-
ence of 10 mol. % of PdCl2 unexpectedly led to a mixture of 11- and 2-triphenylphosphonium
derivatives (Scheme 39, Figure 35) isolated in 31% and 25% yields, respectively. It was found
that the addition of 20 mol. % of 2-amino-5-methyl-pyridine as a ligand leads to a change
in the product ratio, with an increase in the 2-isomer yield of up to 64% (the yield of the
11-isomer is 14% in this case) [113,114].
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Another group that directs the substitution to position two of the nido-carborane 
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tolerant to the presence of a substituent at the second carbon atom of the nido-carborane 
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Figure 35. Crystal molecular structures of 11-Ph3P-7-(NC5H3-3′-Me-2′-)-7,8-C2B9H10 (left) and 2-
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for clarity.

This reaction is applicable to a wide variety of phosphines; however, the expected
2-phosphonium derivatives are formed in rather low yields varying from 12 to 45%
(Scheme 40) [114].
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Scheme 40. Reaction of [7-(NC5H3-3′-Me-2′-)-7,8-C2B9H11]− with triarylphosphines and diary-
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Another group that directs the substitution to position two of the nido-carborane cage
under similar conditions is the isoquinolin-1-yl group (Scheme 41). The reaction is tolerant
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to the presence of a substituent at the second carbon atom of the nido-carborane cage
(Scheme 42) [114].
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ron–Antimony Bonds 
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phenylphosphonium derivative, the asymmetrically substituted triphenylarsonium and 
tetraphenylstilbonium derivatives 9-Ph3X-7,8-Ph2-7,8-C2B9H9 (X = As, Sb) were prepared 
via electrocatalyzed oxidative couplings of 7,8-diphenyl-nido-carborane with Ph3As and 
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It is also worth mentioning the formation of a symmetrically substituted triphenylphos-
phonium derivative of nido-carborane during the migration of the phosphine ligand from
the metal atom to the dicarbollide ligand in nickelacarborane 3,3-(Ph3P)2-3,1,2-NiC2B9H11
(Scheme 43) [115,116].
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4. Charge-Compensated Derivatives of Nido-Carborane with Boron–Arsenic and
Boron–Antimony Bonds

The charge-compensated derivatives of nido-carborane with boron–arsenic and boron–
antimony bonds are rare and are limited to a few examples. Similar to the triphenylphos-
phonium derivative, the asymmetrically substituted triphenylarsonium and tetraphenyl-
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stilbonium derivatives 9-Ph3X-7,8-Ph2-7,8-C2B9H9 (X = As, Sb) were prepared via elec-
trocatalyzed oxidative couplings of 7,8-diphenyl-nido-carborane with Ph3As and Ph3Sb,
respectively (Scheme 44, Figure 36) [106].
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5. Charge-Compensated Derivatives of Nido-Carborane with Boron–Oxygen Bond 
Alkyloxonium salts are much less stable than ammonium and phosphonium salts, 

and some of them are used in organic chemistry as strong alkylating agents. Neverthe-
less, strong electron-withdrawing of polyhedral boron hydride clusters substituted at 
boron atoms and, in particular, nido-carborane [117], is capable of stabilizing their oxo-
nium derivatives [68,118]. The first example of such a derivative was obtained very soon 
after the discovery of nido-carborane via the reaction of the potassium salt of 
nido-carborane with tetrahydrofuran in the presence of FeCl3 in benzene. As a result, a 
mixture of two isomeric tetrahydrofuran derivatives of nido-carborane was obtained. The 
reaction with the C,C′-dimethyl derivative of nido-carborane proceeds in a similar way 
(Scheme 46) [73]. 
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Figure 36. Crystal molecular structure of 9-Ph3As-7,8-Ph2-7,8-C2B9H9. Hydrogen atoms of phenyl
groups are omitted for clarity.

The reaction of 2-pyridyl-substituted nido-carborane [7-(2′-Py)-7,8-C2B9H11]− with
triphenylarsine in the presence of catalytic amounts of PdCl2 in a mixture of toluene,
water, and acetonitrile at 120◦C results in the corresponding triphenylarsonium derivative
11-Ph3As-7-(2′-Py)-7,8-C2B9H10 (Scheme 45) [113].
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5. Charge-Compensated Derivatives of Nido-Carborane with Boron–Oxygen Bond

Alkyloxonium salts are much less stable than ammonium and phosphonium salts,
and some of them are used in organic chemistry as strong alkylating agents. Nevertheless,
strong electron-withdrawing of polyhedral boron hydride clusters substituted at boron
atoms and, in particular, nido-carborane [117], is capable of stabilizing their oxonium
derivatives [68,118]. The first example of such a derivative was obtained very soon after
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the discovery of nido-carborane via the reaction of the potassium salt of nido-carborane
with tetrahydrofuran in the presence of FeCl3 in benzene. As a result, a mixture of two
isomeric tetrahydrofuran derivatives of nido-carborane was obtained. The reaction with the
C,C′-dimethyl derivative of nido-carborane proceeds in a similar way (Scheme 46) [73].
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can be prepared via the reaction of the potassium salt of nido-carborane with 1,4-dioxane 
in the presence of HgCl2 in benzene [119] or in the presence of acetaldehyde and hydro-
chloric acid in a water–toluene mixture [120]. The 1,4-dioxane derivative can also be 
synthesized via the heating of the protonated form of nido-carborane 7,8-C2B9H13 with 
1,4-dioxane [121] (Scheme 48). The molecular structure of the 1,4-dioxane derivative of 
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Scheme 46. Synthesis of 9-(CH2)4O-7,8-C2B9H11 and 10-(CH2)4O-7,8-C2B9H11 via the reaction of
nido-carborane with FeCl3 in THF–benzene mixture.

It was later found that the replacement of FeCl3 with HgCl2 in this reaction leads to
the selective formation of the symmetrically substituted tetrahydrofuran derivative 10-
(CH2)4O-7,8-C2B9H11 [77,119]. The symmetrically substituted derivative was also obtained
via the reaction of the tetramethylammonium salt of nido-carborane with AlCl3 in a mixture
of tetrahydrofuran and acetone [78] and by the treatment of the potassium salt of nido-
carborane with tetrahydrofuran in the presence of acetaldehyde or formaldehyde and
hydrochloric acid in a mixture of water and toluene [120] (Scheme 47).
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Oxonium derivatives of nido-carborane with other cyclic ethers were synthesized as
well. The symmetrically substituted 1,4-dioxane derivative 10-O(CH2CH2)2O-7,8-C2B9H11
can be prepared via the reaction of the potassium salt of nido-carborane with 1,4-dioxane in
the presence of HgCl2 in benzene [119] or in the presence of acetaldehyde and hydrochloric
acid in a water–toluene mixture [120]. The 1,4-dioxane derivative can also be synthesized
via the heating of the protonated form of nido-carborane 7,8-C2B9H13 with 1,4-dioxane [121]
(Scheme 48). The molecular structure of the 1,4-dioxane derivative of nido-carborane was
determined using single-crystal X-ray diffraction (Figure 37) [122].
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The reaction of the potassium salt of nido-carborane with tetrahydropyran in the
presence of mercury(II) chloride in benzene results in the tetrahydropyran derivative
10-(CH2)5O-7,8-C2B9H11 (Scheme 49) [123,124].
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The most important property of the cyclic oxonium derivatives of nido-carborane is their
tendency for ring-opening reactions under the action of nucleophiles. This makes it possible
to modify the nido-carborane cluster and introduce various terminal groups including
functional groups as side substituents. At the same time, depending on the oxonium
derivative used, it is possible to obtain compounds with different spacer lengths between
the terminal group and the cluster (Scheme 50). In this way, nido-carborane-based carboxylic
acids [119,125], azides [119,126,127], calixarenes [122], and coumarins [128], as well as
hydroxy [122,129,130], halogen [122], ammonium [121,122,124], and mercapto [122,131]
derivatives, and others, were prepared. The use of two equivalents of oxonium derivatives
in the reaction with dinucleophiles allowed us to obtain podands, which were used for the
synthesis of crown ethers [129,131] (Scheme 50).
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The symmetrically substituted diethyloxonium derivative of nido-carborane can be 
obtained via the reaction of the potassium salt of nido-carborane with diethyl ether in the 
presence of formaldehyde or acetaldehyde and hydrochloric acid in a mixture of water 
and toluene [120], or via the reaction of the potassium salt of nido-carborane with diethyl 
ether in the presence of HgCl2 in benzene [50] (Scheme 52). 

Scheme 50. The ring-opening reactions of the cyclic oxonium derivatives of nido-carborane under
action of nucleophiles.

It should be noted that the use of neutral nucleophiles, such as ammonia, in ring-
opening reactions leads to charge-compensated derivatives in which the charges are sepa-
rated by a spacer formed during the opening of the oxonium ring (Figure 38) [122].
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The symmetrically substituted diethyloxonium derivative of nido-carborane can be 
obtained via the reaction of the potassium salt of nido-carborane with diethyl ether in the 
presence of formaldehyde or acetaldehyde and hydrochloric acid in a mixture of water 
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Figure 38. Crystal molecular structure of 10-H3N(CH2CH2O)2-7,8-C2B9H11. Hydrogen atoms of
methylene groups are omitted for clarity.

There are several examples of acyclic oxonium derivatives of nido-carborane. The
reaction of the potassium salt of nido-carborane with dimethoxymethane in the presence
of mercury(II) chloride in a benzene solution leads to a mixture of the asymmetrically
and symmetrically substituted dimethyloxonium derivatives 9-Me2O-7,8-C2B9H11 and
10-Me2O-7,8-C2B9H11, along with the corresponding methoxy derivatives [9-MeO-7,8-
C2B9H11]− and [10-MeO-7,8-C2B9H11]− [132] (Scheme 51).
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Scheme 51. Synthesis of the dimethyloxonium derivatives of nido-carborane.

The symmetrically substituted diethyloxonium derivative of nido-carborane can be
obtained via the reaction of the potassium salt of nido-carborane with diethyl ether in the
presence of formaldehyde or acetaldehyde and hydrochloric acid in a mixture of water and
toluene [120], or via the reaction of the potassium salt of nido-carborane with diethyl ether
in the presence of HgCl2 in benzene [50] (Scheme 52).



Inorganics 2023, 11, 72 40 of 63
Inorganics 2023, 11, x FOR PEER REVIEW 41 of 65 
 

 

H

benzene, reflux

Et2O, HgCl2
H

aq. HCl-toluene
HC(O)H or MeC(O)H

OEt2

Et2O

 
Scheme 52. Different pathways for synthesis of 10-Et2O-7,8-C2B9H11. 

The symmetrically and asymmetrically substituted diethyloxonium derivatives of 
nido-carborane 9-Et2O-7,8-C2B9H11 and 10-Et2O-7,8-C2B9H11 along with the 

9-diethyloxonium-11-chloro derivative [9-Et2O-11-Cl-7,8-C2B9H10] were found to form as 
by-products in the reaction of the dicarbollide dianion with PhBCl2 in diethyl ether [133]. 
The structure of the 10-diethyloxonium derivative 10-Et2O-7,8-C2B9H11 was determined 
using single-crystal X-ray diffraction (Figure 39) [133]. 

 
Figure 39. Crystal molecular structure of 10-Et2O-7,8-C2B9H11. Hydrogen atoms of organic substit-
uent are omitted for clarity. 

The dialkyloxonium derivatives of nido-carboranes easily lose the alkyl group when 
they react with nucleophiles and therefore can be considered alkylating agents [132,133]. 

An interesting example of a charge-compensated derivative of nido-carborane is 
10-Me2SO-7,8-μ-(CH2)3-7,8-C2B9H9, which can be obtained via the reaction of the potas-
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Scheme 53. Synthesis of 10-Me2SO-7,8-μ-(CH2)3-7,8-C2B9H9. 

Scheme 52. Different pathways for synthesis of 10-Et2O-7,8-C2B9H11.

The symmetrically and asymmetrically substituted diethyloxonium derivatives of nido-
carborane 9-Et2O-7,8-C2B9H11 and 10-Et2O-7,8-C2B9H11 along with the 9-diethyloxonium-
11-chloro derivative [9-Et2O-11-Cl-7,8-C2B9H10] were found to form as by-products in the
reaction of the dicarbollide dianion with PhBCl2 in diethyl ether [133]. The structure of the
10-diethyloxonium derivative 10-Et2O-7,8-C2B9H11 was determined using single-crystal
X-ray diffraction (Figure 39) [133].
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Figure 39. Crystal molecular structure of 10-Et2O-7,8-C2B9H11. Hydrogen atoms of organic sub-
stituent are omitted for clarity.

The dialkyloxonium derivatives of nido-carboranes easily lose the alkyl group when
they react with nucleophiles and therefore can be considered alkylating agents [132,133].

An interesting example of a charge-compensated derivative of nido-carborane is 10-
Me2SO-7,8-µ-(CH2)3-7,8-C2B9H9, which can be obtained via the reaction of the potassium
salt of [7,8-µ-(CH2)3-7,8-C2B9H10]− with a dimethyl sulfoxide/water solution in the pres-
ence of concentrated H2SO4, or via the reaction of the trimethylammonium salt with DMSO
in dry 1,2-dichloroethane in the presence of triflic acid [134] (Scheme 53). The structure of
10-Me2SO-7,8-µ-(CH2)3-7,8-C2B9H9 was determined using single-crystal X-ray diffraction
(Figure 40) [134].
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6. Charge-Compensated Derivatives of Nido-Carborane with Boron–Sulfur Bond

Compared with the oxonium derivatives, the sulfonium derivatives of nido-carborane
are represented by a wider variety of derivatives and synthetic methods for their prepa-
ration. However, the most studied of them are the dimethylsulfonium derivatives of
nido-carborane, which are widely used for the synthesis of metallacarboranes [41,50,135].

It should be noted that symmetrically and asymmetrically substituted dimethyl-
sulfonium derivatives of nido-carborane are usually obtained in different ways, which
excludes the formation of mixtures of their isomers. The asymmetrically substituted 9-
dimethylsulfonium derivative of nido-carborane 9-Me2S-7,8-C2B9H11 was prepared via the
reaction of the parent nido-carborane with dimethylsulfoxide in the presence of sulfuric acid
at 80◦C [74,136,137]. The reactions of the C,C’-substituted derivatives of nido-carborane pro-
ceed in a similar way, leading to the corresponding dimethylsulfonium derivatives 9-Me2S-
7,8-R2-7,8-C2B9H9 (R = Me, Ph) [74,138] (Scheme 54). These conditions are similar to those
used for the synthesis of the dimethylsulfonium derivatives of the closo-decaborate [139]
and closo-dodecaborate [140] anions. The C,C′-substituted derivatives 9-Me2S-7,8-Me2-7,8-
C2B9H9 and 9-Me2S-7,8-µ-(1′,2′-C6H4(CH2)2)-7,8-C2B9H9 were prepared via the reactions
of the corresponding nido-carboranes with dimethylsulfoxide in the presence of triflic
acid in 1,2-dichloroethane [134] (Scheme 54). The structures of 9-Me2S-7,8-R2-7,8-C2B9H9
(R = H, Ph) were determined using single-crystal X-ray diffraction (Figure 41) [141,142].
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Figure 41. Crystal molecular structures of 9-Me2S-7,8-C2B9H11 (top), 11-Me2S-7-Ph-7,8-R2-7,8-
C2B9H10 (bottom left), and 9-Me2S-7,8-Ph2-7,8-C2B9H9 (bottom right). Hydrogen atoms of organic
substituent are omitted for clarity.

The asymmetrically substituted dimethylsulfonium derivatives 9-Me2S-7,8-Me2-7,8-
C2B9H9 and 9-Me2S-7,8-µ-(CH2OCH2)-7,8-C2B9H9 were prepared via the reactions of the
corresponding nido-carboranes with dimethylsulfide in the presence of Fe(NO3)3 in aqueous
ethanol [49].

In the case of C-substituted nido-carboranes, such as K[7-Ph-7,8-C2B9H11], the intro-
duction of a Me2S group results in a mixture of 9-Me2S-7-Ph-7,8-C2B9H10 and 11-Me2S-
7-Ph-7,8-C2B9H10 isomers, which can be separated using column chromatography [137].
The molecular structure of 11-Me2S-7-Ph-7,8-C2B9H10 was determined using single-crystal
X-ray diffraction (Figure 41) [138].

In a similar way, the reactions of the cesium salts of the 5-methyl or 5-bromo deriva-
tives of nido-carborane K[5-R-7,8-C2B9H11] (R = Me or Br) with dimethylsulfide in the
presence of iron(III) chloride FeCl3 in aqueous ethanol result in mixtures of the 9-Me2S-5-R-
7,8-C2B9H10 and 11-Me2S-5-R-7,8-C2B9H10 isomers, which were separated using column
chromatography on silica (Scheme 55) [143].
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Scheme 55. Reaction of the 5-substituted derivatives of nido-carborane 5-X-7,8-C2B9H11 (X = Br, Me)
with dimethylsulfide in the presence of aq. FeCl3.

The reaction of the tetramethylammonium salt of 9-methyl-nido-carborane (Me4N)[9-
Me-7,8-C2B9H11] with dimethyl sulfide under the same conditions results in the introduc-
tion of a Me2S group into position nine of the nido-carborane cage. However, the reaction is
accompanied by a rearrangement of the carborane cage, leading to a mixture of the 9-Me2S-
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3-Me-7,8-C2B9H10 (main isomer), 9-Me2S-4-Me-7,8-C2B9H10, 9-Me2S-2-Me-7,8-C2B9H10,
9-Me2S-1-Me-7,8-C2B9H10, and 9-Me2S-10-Me-7,8-C2B9H10 isomers, which were separated
using column chromatography (Scheme 56) [143]. It was assumed that the reaction pro-
ceeds through the oxidative closure of the nido-carborane cage followed by a series of
rearrangements of the resulting 11-vertex B-substituted closo-carborane with a subsequent
reopening of its isomers under the action of dimethylsulfide. The structures of 9-Me2S-3-
Me-7,8-C2B9H10 and 9-Me2S-4-Me-7,8-C2B9H10 were determined using single-crystal X-ray
diffraction (Figure 42) [143].
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sodium amide in boiling toluene [147]) to the 9-methylthio derivative 
[9-MeS-7,8-C2B9H11]−, the subsequent alkylation of which gives a whole series of new di-
alkylsulfonium derivatives of nido-carborane 9-R(Me)S-7,8-C2B9H11, including derivatives 
with various functional groups. The resulting nido-carboranyl esters, nitriles, and 
phthalimides can be converted into corresponding carboxylic acids and amines using 
acid hydrolysis and deprotection with hydrazine, respectively (Scheme 57, Figure 43) 
[147–149]. 
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Figure 42. Crystal molecular structures of 9-Me2S-3-Me-7,8-C2B9H10 (left) and 9-Me2S-4-Me-7,8-
C2B9H10 (right). Hydrogen atoms of methyl groups are omitted for clarity.

The 9-dimethylsulfonium derivative of nido-carborane can be demethylated with
strong bases (sodium naphthalenide in tetrahydrofuran at room temperature [144,145];
1,1′-bis(diphenylphosphino)ferrocene (dppf) in toluene at 80 ◦C [146]; sodium in liquid am-
monia at−40 ◦C [145]; and boiling TMEDA, morpholine or triethylamine [147], and sodium
amide in boiling toluene [147]) to the 9-methylthio derivative [9-MeS-7,8-C2B9H11]−, the
subsequent alkylation of which gives a whole series of new dialkylsulfonium derivatives
of nido-carborane 9-R(Me)S-7,8-C2B9H11, including derivatives with various functional
groups. The resulting nido-carboranyl esters, nitriles, and phthalimides can be converted
into corresponding carboxylic acids and amines using acid hydrolysis and deprotection
with hydrazine, respectively (Scheme 57, Figure 43) [147–149].
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(bottom left), and 9-EtOCH2CH2(Me)S-7,8-C2B9H11 (bottom right). Hydrogen atoms of organic
substituents are omitted for clarity.

The reaction of the 2′-bromoethyl(methyl)sulfonium derivative 9-BrCH2CH2(Me)S-
7,8-C2B9H11 with K2CO3 in ethanol leads to the ethoxy derivative 9-EtOCH2CH2(Me)S-
7,8-C2B9H11, while the reaction in chloroform results in the vinylsulfonium derivative
9-CH2=CH(Me)S-7,8-C2B9H11 (Scheme 58, Figure 43) [148].
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Scheme 58. Reaction of 9-BrCH2CH2(Me)S-7,8-C2B9H11 with K2CO3.

The asymmetrically substituted diethylsulfonium derivative 9-Et2S-7,8-C2B9H11 was
prepared via electrocatalyzed B-S oxidative couplings of the tetramethylammonium salt
of nido-carborane with diethylsulfide (Scheme 59). The reaction is applicable to various
C,C’-dialkyl and diaryl derivatives of nido-carborane (Scheme 59, Figure 44) [106]. This
approach can be used for the synthesis of carboranyl sulfonium derivatives containing
various alkyl and aryl groups (Scheme 60, Figure 44) [106].
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Halogenation of the 9-dimethylsulfonium derivative 9-Me2S-7,8-C2B9H11 was studied.
The reaction with an equimolar amount of N-chlorosuccinimide in acetonitrile produces 11-
Cl-9-Me2S-7,8-C2B9H10 [150], while bubbling gaseous Cl2 through a solution of 9-Me2S-7,8-
C2B9H11 in dichloromethane results in the dichloro derivative 6,11-Cl2-9-Me2S-7,8-C2B9H9
(Figure 45) [151,152]. The reaction of 9-Me2S-7,8-C2B9H11 with an equimolar amount of
Br2 in dichloromethane results in a mixture of 11-Br-9-Me2S-7,8-C2B9H10 (Figure 45) and
6-Br-9-Me2S-7,8-C2B9H10 isolated in 61% and 18% yields, respectively, while the reaction
with an excess of Br2 gives 6,11-Br2-9-Me2S-7,8-C2B9H9 (Figure 45) in an 88% yield [150].
The reaction of 9-Me2S-7,8-C2B9H11 with I2 in acetic acid under reflux leads to 11-I-9-Me2S-
7,8-C2B9H10 (Figure 45) as a single product isolated in a 37% yield [150]. The same product
was prepared in a 78% yield via the reaction of the iodo derivative of nido-carborane [9-I-
7,8-C2B9H11]− with dimethylsulfoxide in the presence of concentrated sulfuric acid [150].
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Figure 44. Crystal molecular structures of 9-Et2S-7,8-(4′-ClC6H4)2-7,8-C2B9H9 (left) and 9-(4′-
BrC6H4)EtS-7,8-Ph2-7,8-C2B9H9 (right). Hydrogen atoms of organic substituents are omitted for clarity.
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This approach was used for the synthesis of nido-carboranyl analogs of some drugs
including ibuprofen, indomethacin, ciprofibrate, and probenecid [106].

The symmetrically substituted sulfonium derivatives of nido-carboranes 10-RR’S-7,8-
C2B9H11 were prepared via the reaction of the potassium salt of nido-carborane with
various alkyl sulfides, HCl, and acetaldehyde in a mixture of water and toluene (Scheme 61,
Figure 46) [120,153]. The symmetrically substituted sulfonium derivatives of C- and C,C′-
substituted nido-carboranes were prepared in the same way (Scheme 61, Figure 46) [44,153,154].

When acetaldehyde is replaced with formaldehyde under similar conditions, a mix-
ture of 9-R2SCH2-7,8-C2B9H11 (as the main product) and 10-R2S-7,8-C2B9H11 is formed
(Scheme 62) [120].

A convenient method for the synthesis of the 10-dimethylsulfonium derivative of
nido-carborane is a two-step reaction of nido-carborane with dimethysulfide in toluene in
the presence of a strong acid [155] (Scheme 63). However, the reaction of (Me3NH)[3-Ph-
7,8-C2B9H12] with Me2S under similar conditions leads to the sulfonium product 10-SMe2-
3-Ph-7,8-C2B9H12 in only a 15% yield [50].
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This approach was used for the synthesis of nido-carboranyl analogs of some drugs 
including ibuprofen, indomethacin, ciprofibrate, and probenecid [106]. 

Halogenation of the 9-dimethylsulfonium derivative 9-Me2S-7,8-C2B9H11 was stud-
ied. The reaction with an equimolar amount of N-chlorosuccinimide in acetonitrile pro-
duces 11-Cl-9-Me2S-7,8-C2B9H10 [150], while bubbling gaseous Cl2 through a solution of 
9-Me2S-7,8-C2B9H11 in dichloromethane results in the dichloro derivative 
6,11-Cl2-9-Me2S-7,8-C2B9H9 (Figure 45) [151,152]. The reaction of 9-Me2S-7,8-C2B9H11 with 
an equimolar amount of Br2 in dichloromethane results in a mixture of 
11-Br-9-Me2S-7,8-C2B9H10 (Figure 45) and 6-Br-9-Me2S-7,8-C2B9H10 isolated in 61% and 
18% yields, respectively, while the reaction with an excess of Br2 gives 
6,11-Br2-9-Me2S-7,8-C2B9H9 (Figure 45) in an 88% yield [150]. The reaction of 
9-Me2S-7,8-C2B9H11 with I2 in acetic acid under reflux leads to 11-I-9-Me2S-7,8-C2B9H10 
(Figure 45) as a single product isolated in a 37% yield [150]. The same product was pre-
pared in a 78% yield via the reaction of the iodo derivative of nido-carborane 
[9-I-7,8-C2B9H11]− with dimethylsulfoxide in the presence of concentrated sulfuric acid 
[150]. 
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Scheme 61. Synthesis of symmetrically substituted sulfonium derivatives of nido-carborane. 

Figure 45. Crystal molecular structures of 6,11-Cl2-9-Me2S-7,8-C2B9H9 (top left), 11-Br-9-Me2S-
7,8-C2B9H10 (top right), 6,11-Br2-9-Me2S-7,8-C2B9H9 (bottom left), and 11-I-9-Me2S-7,8-C2B9H10

(bottom right). Hydrogen atoms of methyl groups are omitted for clarity.
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nido-carborane is a two-step reaction of nido-carborane with dimethysulfide in toluene in 
the presence of a strong acid [155] (Scheme 63). However, the reaction of 
(Me3NH)[3-Ph-7,8-C2B9H12] with Me2S under similar conditions leads to the sulfonium 
product 10-SMe2-3-Ph-7,8-C2B9H12 in only a 15% yield [50]. 
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In a similar way, the reaction of (Me4N)[7,8-µ-(CH2)3-7,8-C2B9H10] with triflic acid in
a mixture of DMSO and 1,2-dichloroethane mixture results in the symmetrically substituted
dimethylsulfonium derivative 10-Me2S-7,8-µ-(CH2)3-7,8-C2B9H10 (Scheme 64) [132].
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Like the symmetrically substituted oxonium derivatives, the symmetrically substituted
dialkylsulfonium derivatives of nido-carborane can be prepared by reacting the potassium
or cesium salt of nido-carborane with alkyl sulfides in the presence of HgCl2 (Scheme 65) [50].
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The symmetrically substituted sulfonium derivatives 10-Me2S-7,8-R2-7,8-C2B9H9 were
prepared via the reaction of the tetramethylammonium salts of the corresponding nido-
carboranes with Me2S in the presence of FeCl3 in benzene [49] (Scheme 66).
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Scheme 66. Synthesis of symmetrically substituted dialkylsulfonium derivatives of nido-carborane in
the presence of FeCl3.

The reaction of the tetramethylammonium salt of nido-carborane with tetrahydroth-
iophene in refluxing acetone in the presence of AlCl3 results in 10-(CH2)4S-7,8-C2B9H11
(Scheme 67) [78].
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The symmetrically substituted diphenylsulfonium derivative of nido-carborane 10-
Ph2S-7,8-C2B9H11 was prepared via the reaction of the tetramethylammonium salt of
nido-carborane with Ph3CBF4 in dichloromethane at −78 ◦C (Scheme 68, Figure 47) [78].
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Figure 47. Crystal molecular structure of 10-Ph2S-7,8-C2B9H11. Hydrogen atoms of phenyl groups
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Similar to 9-Me2S-7,8-C2B9H11, the symmetrically substituted dimethylsulfonium
derivative of nido-carborane 10-Me2S-7,8-C2B9H11 can be demethylated with sodium amide
in boiling toluene [155] and re-alkylated with various alkylating agents in boiling chloro-
form or ethanol to give the corresponding sulfonium derivatives 10-R(Me)S-7,8-C2B9H11
(Scheme 69, Figure 48). The resulting nido-carboranyl esters, nitriles, and phthalimides can
be converted into corresponding carboxylic acids and amines using acid hydrolysis and
deprotection with hydrazine, respectively (Scheme 68) [155,156].
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Figure 48. Crystal molecular structures of 10-Bn(Me)S-7,8-C2B9H11 (top left), 10-
C6H4(CO)2NCH2CH2(Me)S-7,8-C2B9H11 (top right), 10-HC≡CCH2(Me)S-7,8-C2B9H11 (bottom
left), and 10-Me3SiC≡CCH2(Me)S-7,8-C2B9H11 (bottom right). Hydrogen atoms of organic
substituents are omitted for clarity.
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A mixture of asymmetrically and symmetrically substituted dimethylsulfonium deriva-
tives 9-Me2S-7,8-C2B9H11 and 10-Me2S-7,8-C2B9H11 was obtained via the reaction of the
potassium salt of nido-carborane with H2SO4 and K2Cr2O7 in a mixture of water and chloro-
form, followed by the addition of dimethylsulfide [157]. The reaction proceeds through the
formation of di-nido-carborane C4B18H22 followed by its splitting using dimethyl sulfide as
a Lewis base.

The only example of the introduction of a dialkylsulfonium substituent into the lower
belt of nido-carborane described in the literature is the reaction of the 9-mercapto derivative
of ortho-carborane 9-HS-1,2-C2B10H11 with KOH and MeI in methanol (Scheme 70) [136].
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Scheme 70. Synthesis of 5-Me2S-7,8-C2B9H11.

In the chemistry of the closo-dodecaborate anion, an approach was previously devel-
oped for the preparation of its practically important mercapto derivative [B12H11SH]2−

through the reaction of the parent closo-dodecaborate with thioureas or thioamides in
an acidic medium followed by alkaline hydrolysis of the resulting charge-compensated
S-thiouronium and S-thioimidolium derivatives [140]. The reaction of the formed in situ
protonated form of nido-carborane C2B9H13 in oluene under reflux conditions gave a
mixture of the asymmetrically and symmetrically substituted thiouronium derivatives 9-
(H2N)2CS-7,8-C2B9H11 and 10-(H2N)2CS-7,8-C2B9H11. These derivatives were hydrolyzed
with NaOH in water, and the formed mercapto derivatives were alkylated with benzyl
bromide in chloroform to give the corresponding dibenzylsulfonium derivatives 9-Bn2S-7,8-
C2B9H11 and 10-Bn2S-7,8-C2B9H11, which were separated using column chromatography
on silica (Scheme 71, Figure 49) [158,159].
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Figure 49. Crystal molecular structure of 9-Bn2S-7,8-C2B9H11. Hydrogen atoms of organic sub-
stituents are omitted for clarity.

The reactions of the tetramethylammonium salt of nido-carborane with thioacetamide
and N,N-dimethylthioacetamide in refluxing acetone in the presence of AlCl3 leads to the
formation of the asymmetrically and symmetrically substituted S-thioimidolium derivatives
9-i-PrHNC(Me)S-7,8-C2B9H11 and 10-Me2NC(Me)S-7,8-C2B9H11, respectively (Scheme 72,
Figure 50) [98].
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The 5-dimethylsulfonium derivative of nido-carborane was synthesized via the reaction
of orto-carboran-9-yl(phenyl) iodonium tetrafluoroborate [9-PhI-1,2-C2B10H11][BF4] with
dimethylsulfoxide (Scheme 73, Figure 51) [160].
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7. Charge-Compensated Derivatives of Nido-Carborane with Boron–Selenium and
Boron–Tellurium Bonds

The charge-compensated derivatives of nido-carborane with boron–selenium and
boron–tellurium bonds are rather rare. Similar to the dialkyl- and diarylsulfonium deriva-
tives, a series of asymmetrically substituted triakyl(aryl)selenium and triaryltellurium
derivatives 9-RR’X-7,8-Ph2-7,8-C2B9H9 (X = Se, Te) were prepared via electrocatalyzed
oxidative couplings of 7,8-diphenyl-nido-carborane with RR’Se and R2Te, respectively
(Scheme 74, Figure 52) [106].
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8. Some Other Charge-Compensated Derivatives of Nido-Carborane

The asymmetrically substituted 9-carbonyl derivative of nido-carborane 9-O≡C-7,8-
C2B9H11 and the 3,3,8-(CO)3-3,1,2-CoC2B9H10 cobaltacarborane based on its symmetrically
substituted analog as a ligand were isolated as minor products of the reaction of the parent
nido-carborane with [Co2(CO)8] [161].

The symmetrically substituted cobaltacenium derivative of nido-carborane 10-
{CpCo(C5H4)}-7,8-Me2-7,8-C2B9H9 (Figure 53) was prepared along with the 3-Cp-1,2-Me2-
3,1,2-CoC2B9H9 cobaltacarborane in the reaction of the dithallium dicarbollide salt Tl2[7,8-
Me2-7,8-C2B9H9] with CpCo(CO)I2 in acetonitrile [162].
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9. Some Comments on Substitution Mechanisms in Nido-Carborane

In conclusion, we would like to touch upon the issue of substitution mechanisms in
nido-carborane. As mentioned above, the introduction of substituents into the lower belt
of the nido-carborane cage passes through the stage of substitution in the closo-carborane
followed by deboronation and, in our opinion, does not require special comments. The
synthesis of derivatives with substituents at the boron atoms in the upper belt of the nido-
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carborane cage can proceed according to various reaction mechanisms and, depending on
this, lead to both symmetrically and asymmetrically substituted derivatives.

The secondary substitution reaction mechanisms, such as Pd-catalyzed/promoted
cross-coupling reactions of the iodo derivatives of nido-carborane or functional group-
directed B-H activation via transition metal complexes, are quite obvious and do not
require discussion.

As a rule, substitution in polyhedral boron hydrides can occur via two mecha-
nisms [163]. The first one is analogous to well-known aromatic electrophilic substitution,
while the second one involves the attack of electrophile E+ followed by its elimination
together with hydride (-EH). Then, the resulting electrophilic center is attacked by a nucle-
ophile. This mechanism is called electrophilically induced nucleophilic substitution (EINS).
In the simplest case, a proton can act as an electrophile; in this case, the reaction proceeds
according to the mechanism of acid-assisted nucleophilic substitution (AANS). Since the
first stage of the reaction in any case involves the attack of the electrophile, regardless of
the mechanism, the substitution should proceed at the boron atom with the largest negative
charge. The electrophilic center on a boron atom can also arise when the most-hydride hy-
drogen atom is removed by a Lewis acid. However, since the most-hydride hydrogen atom
is bonded to the boron atom with the largest negative charge, the substitution position does
not change. It is known that halogenation reactions, which are the simplest example of elec-
trophilic substitution, occur at positions B(9) and B(11) of the nido-carborane cage [164–166].
Thus, if the substitution proceeded only via the aforementioned mechanisms, it would lead
exclusively to asymmetrically substituted derivatives.

However, in the case of nido-carborane, there are a number of possibilities for substitu-
tion to occur in a different way. A characteristic feature of nido-carborane is the presence
of the “extra”-hydrogen, which is able to migrate between the boron atoms of the open
pentagonal face. Therefore, the intramolecular migration of the “extra” hydrogen to the
electrophilic center formed in position B(9) can occur faster than the attack of the nucle-
ophile. This should lead to the transfer of the electrophilic center to position B(10), the
attack of which by the nucleophile will lead to symmetrically substituted derivatives.

On the other hand, strong bases can remove the “extra” hydrogen, leading to the
formation of the dicarbollide anion [7,8-C2B9H11]2− with a different electron density distri-
bution than nido-carborane. In this case, the substitution proceeds at position B(10) with
the formation of symmetrically substituted derivatives [104]. Interestingly, in the case of
the protonated form of nido-carborane 7,8-C2B9H13, substitution also leads to the formation
of symmetrically substituted derivatives [121,155]. This can be caused by the elimina-
tion of a hydrogen molecule with the closure of an unstable 11-vertex closo-polyhedron,
which, before rearranging into a stable 2,3-isomer [167], is attacked by a nucleophile to
form a substituted nido-carborane. It should be noted that in this case, as in the case of
oxidative addition [79–81,84,106], we should consider these reaction pathways more like
potential opportunities than established mechanisms, since there are no detailed studies
on the mechanisms of these reactions. We can talk somewhat more definitely about the
mercury-promoted substitution reactions, since in these cases, the formation of η1-B(10)-
mercuracarboranes, which can be considered as the initial products of the reaction, were
reliably established with single-crystal X-ray diffraction studies [168–170].

Nevertheless, despite the fact that the mechanisms of formation of various charge-
compensated nido-carborane derivatives remain largely unknown, analysis of the available
literature data allows the targeted synthesis of these derivatives with high selectivity and
good yields.
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