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Abstract: In this work, nanocomposite samples of polyaniline (PANI) and lead sulfide nanoparticles
(PbSNPs) were prepared, utilizing the solution preparation method, for implantation in energy
storage elements. The PANI/PbS films were irradiated by different fluences of oxygen beam: 5 × 1016,
10 × 1016, and 15 × 1016 ions.cm−2. The composite was investigated by XRD, SEM, DSC, and FTIR.
After ion irradiation, the Tg and Tm values decreased by 4.8 ◦C and 10.1 ◦C, respectively. The
conductivities, electrical impedances, and electrical moduli of untreated and irradiated samples were
examined in frequencies ranging from 102 Hz to 5 MHz. Moreover, the ion beam caused a modification
in the dielectric characteristics of PANI/PbS. The dielectric constant ε′ was improved from 31 to 611,
and the electrical conductivity increased from 1.45 × 10−3 S/cm to 25.9 × 10−3 S/cm by enhancing
the fluence to 15 × 1016 ions.cm−2. Additionally, the potential energy barrier, Wm, decreased from
0.43 eV to 0.23 eV. The induced changes in the dielectric properties and structural characteristics
of the PANI/PbS samples were determined. These modifications provide an opportunity to use
irradiated PANI/PbS samples for several applications, including microelectronics, batteries, and
storage of electrical energy.

Keywords: polymeric composites; ion irradiation; dielectric characteristics; energy applications

1. Introduction

Polymer nanocomposite materials have recently received much interest in developing
their desirable characteristics for energy storage applications [1,2]. They are being devel-
oped due to their properties of structural patterns, mechanical performance, and electric
characteristics [3]. Conducting polymer composites are gaining popularity in electrical
devices [4,5]. Furthermore, PANI is an excellent conducting polymer, hence its use in
sensors, solar cells, and catalytic activity [6,7]. However, PANI has some limitations due to
its physico-chemical characteristics and low solubility [8], thus it is important to mix it with
certain materials to overcome these difficulties and increase its utilization in the energy
industry [9]. Metal particle inclusion on the surfaces of PANI has been described in the lit-
erature. Alotaibi et al. used a casting solution technique to create a polyaniline/lead sulfide
polymer nanocomposite for use in energy applications [10]. For supercapacitors manufac-
turing, Atta et al. used polyaniline/silver oxide/silver composite electrodes. They found
that the composites are promising electrodes with excellent capacitance effectiveness [11].

The incorporation of inorganic nanofillers into a polymeric matrix leads to remarkably
higher dielectric properties [12,13]. Dispersion of nano-size fillers is more desirable than
micro-size fillers, because nanoparticle fillers improve both the electrical and mechanical
properties of the polymeric material [14]. PbS conductive fillers are used in various ap-
plications, such as sensors, solar cells, optoelectronics, and storage devices [15–18]. PbS
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can be employed in energy devices because of their conductivity, long life, and stability.
The average bandgap of PbS has been recorded as being of the order of 0.4 eV, while the
absorption coefficient is of the order of 105 cm−1, and the radius of Bohr exciton is nearly
18.5 nm. Furthermore, the glass transition temperature of a PANI/PbS composite is nearly
130 ◦C, and its melting temperature is roughly 260 ◦C. Moreover, PANI/PbS has emerged
as a potential substance for bio-sensing, and fuel cell technologies [19]. The conductive
PANI/PbS composites, on the other hand, are appealing materials for electrical storage
applications because of their adaptability and ease of synthesis.

Ion irradiation improves the dielectric response performance of the composites, as
well as having other effects, such as the modification of the complex permittivity [20,21].
Furthermore, dielectric analysis is critical in creating electrolyte devices, including sensors,
batteries, and fuel cells [22]. In recent years, ion irradiation has been shown to be a
promising method for producing long-term changes in the dielectric properties of the
polymer matrix [23]. This is because ion irradiation promotes polymer matrix changes,
including cross-linking, carbonization, oxidation, and free radical production [24,25]. The
novelty of this work is to modify the properties of the manufactured PANI/PbS film using a
homemade ion source [26]. The ion source requires little instrumentation and maintenance.
Consequently, based on the properties of the source, oxygen beam interactions induce
defects, vacancies, and changes in the target’s properties. In this work, the effect of the low
energy oxygen beam on the structural and dielectric behavior was evaluated for both pure
and irradiated samples. The outcomes of this study open the way for the use of irradiated
PANI/PbS composites for energy purposes.

2. Results and Discussion
2.1. SRIM/TRIM Simulation Data

The images in Figure 1a–d were acquired from SRIM and TRIM simulations, which
assess damage occurrences quickly, by estimating the ion range, vacancies, and distribution,
as shown in Figure 1. They were plotted by applying 3 keV oxygen energy striking the
PANI/PbS target at depths of 1000 A◦. The vacancy distributions, and ionization, of the
PANI/PbS composite were determined by the energy loss from hitting oxygen ions with
recoil atoms [27,28]. In composites, the penetrating ions are decelerated by triggering
the objective’s electronic system and, therefore, by transferring momentum to the target
atoms. The intense oxygen hits can induce damage to composite atoms that, notably,
induce chain scission. Electronic excitation results in the formation of radicals that can
swiftly link polymeric chains [29]. The atom displacements ion pathway of the penetrating
oxygen ions is ~151 A◦, as shown in Figure 1a. A series of randomly dispersed collisions,
incorporating PANI/PbS atoms of depth 1000 Å, is depicted in Figure 1b. The recoiled
atoms were granted sufficient energy to depart the structure and interact with additional H,
N, and C atoms. Figure 1c depicts the colliding interactions of oxygen ions with the target’s
vacancy, resulting in target damage [30]. The data depicted in Figure 1c demonstrate that
the density of C recoil is approximately 12 × 106 atoms/cm2, which is higher than the
density of H recoil (~10× 106 atoms/cm2) and N recoil (~2× 106 atoms/cm2). On the other
hand, Figure 1d shows the ionization induced by recoil atoms and incident ions. Ionization
produced from recoiled atoms is nearly the same as that generated by the penetrated
oxygen ions (Figure 1d) [31].



Inorganics 2023, 11, 74 3 of 17

Figure 1. (a) Ion range of oxygen beam with PANI/PbS, (b) distribution of oxygen ions with
PANI/PbS, (c) target vacancies influenced by collided oxygen ions, and (d) ionization of collided
oxygen ions as well as recoil atoms.

2.2. Structure of the PANI/PbS

The XRD measurements of pure and irradiated PANI/PbS are plotted in Figure 2,
which shows some distinct crystalline peaks for PANI/PbS at 2θ = 26◦, 30◦, 33◦, 43◦, 52◦,
54◦, 62◦, and 66◦ corresponding to (110), (111), (022), (132), (170), (222), (311), and (133),
respectively. The obtained results reveal a reduction in the crystalline intensity of the
irradiated films that will be verified by FTIR and SEM results. Additionally, the whole
width at half maxima from the diffraction peaks increased upon irradiation. This tendency
is related to the composite films’ decreased crystallization [32].

XRD was employed to evaluate the crystallite sizes, lattice strains, dislocation densities,
as well as distortion coefficients. The Debye–Scherrer equation is used to estimate the
crystallite size (D) of pure and treated PANI/PbS using the following formula [33]:

D =
0.94λ
β cosθ

(1)

β refers to the entire width of the (111) plane, θ is the diffraction Bragg angle, and
λ indicates the X-ray tube wavelength. The diameter (R) is calculated by the following
equation [34]:

R =
λ

sinβcos2θ
(2)
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Figure 2. XRD of pure and treated PANI/PbS.

The crystallite size of PbS is 45.88 nm for pure PANI/PbS, which is reduced to 40.36 nm
after irradiation by 15 × 1016 ions/cm2, while R decreased from 3.04 µm to 2.67 µm, as
shown in Table 1. These results were a consequence of the creation of a disordered structure
in the irradiated samples. The variable dislocation density (δ) was computed using the
formula [34]:

δ =
1

D2 (3)

Table 1. The induced micro-structural parameters of the pure and irradiated PANI/PbS.

D [nm] R [µm] δ [10−4 Lines/m2] ε [10−3] g (%)

PANI/PbS 45.88 3.04 4.75 3.44 0.0138

5 × 1016 ions/cm2 44.23 2.93 5.11 3.56 0.0143

10 × 1016 ions/cm2 42.18 2.79 5.62 3.74 0.0150

15 × 1016 ions/cm2 40.36 2.67 6.13 3.92 0.0157

The dislocation parameter increased from 4.75 × 10−4 lines/m2 for PANI/PbS to
6.13 × 10−4 lines/m2 after irradiation. The lattice strain (ε) is estimated by [35]:

ε =
β

4tanθ
(4)

The actual film’s lattice strain increased from 3.44 × 10−3 for the pure PANI/PbS film
to 3.92 × 10−3 after irradiation. This change is because of particle size reduction, as well
as particle misalignment after ion irradiation. Then, the distorted parameters (g) of the
untreated and irradiation samples were determined using the following relationship [35]:

g =
β

tan(θ)
(5)

g rises from 0.0138 in the untreated PANI/PbS film to 0.0157 after beam irradiation.
This demonstrates that the ion beam induces effects on the structure by modifying the
crystalline structure without changing the crystals’ alignment.
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2.3. DSC of PANI/PbS

To demonstrate the thermal properties of the synthesized samples before and after
irradiation, a differential scanning calorimeter (DSC) was used. Ion beam irradiation is
expected to induce alteration in the polymer chain by scission, inducing a reduction in the
crystalline phase, and lowering the transition temperature (Tg) and melting temperature
(Tm) [36], as depicted in Figure 3. Both Tg and Tm values fall after ion irradiation. The Tm
decreased by 4.8 ◦C, and the Tg decreased by 10.1 ◦C compared to the un-irradiated film.
In addition, the results obtained demonstrate a decrease in the crystalline structure of the
irradiated film, which could be attributed to polymeric chain scission after irradiation, in
line with the FTIR and XRD data.

Figure 3. DSC thermograms of pure and irradiated PANI/PbS.

2.4. FTIR of PANI/PbS

The FTIR of the pure and treated PANI/PbS is recorded in Figure 4. As illustrated,
the peak at ~3420 cm−1 is assigned to an O−H bending vibration or to N–H asymmetric
absorptions [37]. The absorption peak at 900 cm−1 is due to the hetero-polar bond of PbS.
The bands observed in all the irradiated samples, at 750 cm−1 and at 462 cm−1, are related to
the C−H aromatic ring and the PbS vibration, respectively [38]. These peaks were slightly
shifted after irradiation, which was caused by an increase in the energy of interaction
between irradiation with PbS/PANI. In addition, the figure demonstrates that the peaks
of the irradiated PbS/PANI are lower than those of the untreated film. Furthermore, the
shift and intensity reduction of the bands after irradiation suggests chain scission of the
irradiated films [39].

2.5. Surface Morphology of PANI/PbS

The morphology of pristine and treated PANI/PbS films is imaged in Figure 5a–d. As
shown in Figure 5a, the morphology of PANI/PbS is homogeneously distributed, with some
agglomerated and self-assembly nano-porous regions [40,41]. Moreover, SEM migrographs
of PANI/PbS films treated with different oxygen ion fluence are shown in Figure 5b–d. The
images of the irradiated surface show slight changes in the morphology after being treated
with oxygen ion fluence. After exposure to radiation, significant changes in the surface
morphology were found. The ion irradiance of the PANI/PbS film causes the creation of
porous clusters, which enhances the roughness of the films. When the radiation fluence
is raised, the surface’s ripple becomes more pronounced, and distinct lamellar structures
begin to form. A significant level of roughness is produced as a result of the oxygen beam’s
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ability to break more large chains. This alteration in morphology of irradiated PANI/PbS is
primarily responsible for improving the properties of the composite [42].

Figure 4. FTIR of the untreated and irradiated PANI/PbS samples.

Figure 5. SEM image of (a) un-treated PANI/PbS and (b–d) the films irradiated by 5× 1016, 10 × 1016,
and 15 × 1016 ions/cm2, respectively.

2.6. Dielectric Properties of PANI/PbS

The dielectric property analysis is an extremely sensitive tool for revealing relevant
information regarding structural behavior. The relationship that gives the dielectric permit-
tivity (ε*) is [43]:

ε* = ε’ − i ε” (6)
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And the relationship that gives the real ε′ dielectric constant is [44]:

ε’ =
c·d
εo·A

(7)

where c is the capacitance, t is the thickness, and A is the area. Figure 6 depicts the
variations in ε′ with frequency for pure and treated PANI/PbS films. In the beginning,
the decrease in the dielectric value for all films is evident at low frequencies. Furthermore,
by increasing the frequency, the ε′ has a virtual value constant, which might be because
dipoles have little opportunity to orient themselves [45]. Following irradiation, ε′ increased,
this was caused by the production of many defects, and chain scission, in the composite
films. Consequently, due to changes in the polarization properties of the irradiated films,
these defects were increased through homo-polar linkages between the conduction and
valence bands [45]. In addition, the charge transport complexes improve the dielectric
characteristics of PANI/PbS films, which contributes to the increase of ε′ for irradiated
materials [46]. The ε′ at 100 Hz for PANI/PbS was 31 and it increased up to 341 after
5 × 1016 ions·cm−2 irradiation, and reached 611 after 15 × 1016 ions·cm−2 irradiation. The
value of ε′ was increased with irradiation fluence due to bond breaking, as investigated
with FTIR spectra. As noted previously with regards to the FTIR spectra, there was an
overall decrease in peak intensity following irradiation, which could be attributed to the
considerable production of unsaturated bonds and the generation of gap states following
irradiation [47]. The high dielectric constants of the irradiated films showed their potential
for use in energy storage systems.

Figure 6. Dielectric constant ε′, with frequency for pristine and treated PANI/PbS samples.

The dielectric ε” is computed using the following relationship [48]:

ε” = ε’ tanδ (8)

Figure 7 depicts the change in dielectric loss with frequency for the pristine and treated
samples. The ε” is reduced by increasing the frequency, but a considerable rise in ε” with
increased oxygen fluence is caused by the produced defect. Table 2 shows that the dielectric
loss ε” is improved from 29 for pure PANI/PbS to 65.5 for 5 × 1016 ions.cm−2 and 126 for
15 × 1016 ions.cm−2. This rise was caused by interfacial polarization boundaries as a result
of irradiation.
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Figure 7. Dielectric loss (ε”) with frequency for pristine and treated PANI/PbS samples.

Table 2. The ε′, M′, M”, ε”, U and σac of pure and treated PANI/PbS at a frequency of 100 Hz.

ε′ ε” M′ M” σac (S/cm) U(J/m3)

PANI/PbS 31 31.6 0.046 0.037 1.45 × 10−3 0.17 × 10−3

5 × 1016 ions/cm2 341 65.5 0.040 0.015 2.15 × 10−3 1.5 × 10−3

10 × 1016 ions/cm2 580 111 0.014 0.005 2.90 × 10−3 2.56 × 10−3

15 × 1016 ions/cm2 611 126 0.004 0.0005 25.9 × 10−3 2.7 × 10−3

The real (ε′), as well as the imaginary (ε”), permittivity coefficients are connected to
the accumulated and released energies, respectively [49]. The impact of ion bombardment
on the dielectric properties of PVDF doped with BaTiO3 [50] was also reported by Sharma
et al. for comparison. The dielectric permittivity was found to be higher in the treated
samples when compared to the untreated ones, since the observed change in permittivity
can be traced back to the formation of free radicals and scission in the irradiated composite.
Therefore, ion radiation exposure causes significant changes in the dielectric properties.

The electrical modulus, M*, is provided by the following formula [50]:

M* =
1
ε* = M’ + i M” (9)

M′ is real permittivity, ε* is complex permittivity, and M” is imaginary permittivity.
The moduli M′ and M” are provided by the following formula [51]:

M’ =
ε’

ε’2 + ε”2 (10)

M” = ε”/
(
ε’2 + ε”2

)
(11)

Figure 8 depicts the relationship of M′ with frequency for pristine and treated PANI/PbS
samples irradiated by 5 × 1016, 10 × 1016, and 15 × 1016 ions·cm−2. In the low-frequency
range, M′ grows exponentially with increasing frequency. As the frequency rises, more dipolar
groups are produced, and the dipolar groups contributions decline because of it becomes
difficult to orient. [52]. As shown in Table 2, at 102 Hz, the value of M′ decreases from
0.046 for pure PANI/PbS, to 0.040 for 5× 1016 ions.cm−2, and to 0.004 for 15 × 1016 ions·cm−2.
The modulus was reduced with irradiation because charge carriers contributed a dipolar
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nature and hence changed the localization of the charge density. For comparison, Atta
et al. [53] investigated the effect of ion fluence on the dielectric modulus M′ for PVA/MWCNT.
They found at 1 MHz, the M′ was lowered from 0.050 for the untreated to 0.013 for the
irradiated film.

Figure 8. Variation of the electrical modulus ε′ with frequency for pristine and treated
PANI/PbS samples.

Figure 9 illustrates the change of M” by frequency of pristine and treated PANI/PbS
films. A peak of M” is observed, indicating the existence of a relaxation. On increasing
the frequency, dipolar groups became harder to reorient, and the dipolar groups’ con-
tribution to the permittivity decreased. Furthermore, at a frequency of 100 Hz, the M”
lowered from 0.037 for pure PANI/PbS, to 0.015 for 5 × 1016 ions·cm−2, and to 0.0005 for
15 × 1016 ions·cm−2. With irradiation, the peak M” intensity of pure PANI/PbS shifted to
higher frequencies, indicating that the relaxation time (τr) was decreased according to the
formula [54]:

τs =
1

2πfp
(12)

where fp denotes the frequency at the relevant relaxation peak, and τs denotes the time of
relaxation. The τs for pure PANI/PbS was 6.67 × 10−6 s, this decreased to 1.249 × 10−6 s
for 5 × 1016 ions.cm−2, to 0.92 × 10−6 s for 10 × 1016 ions·cm−2, and reached 0.77 × 10−6 s
for 15 × 1016 ions·cm−2. This effect is due to enhanced mobility caused by the oxygen
beam, leading to a decrease of τs [55].

Impedance Z* is estimated by the following formula [56]:

Z* = Z’ + iZ” (13)

where Z*, Z′, Z” are the complex, real, and imaginary impedances, respectively. As
demonstrated in Figure 10, Z′ reduced with frequency, and became constant at higher
frequencies. This is because the free charge carriers induced conduction at low frequencies
and more stable impedance at higher ones. The irradiated film behaved similarly to the
untreated films. As previously stated, the Z′ dropped on increased irradiation due to the
induced free charge carriers.
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Figure 9. Electrical modulus M” with frequency for pristine and treated PANI/PbS samples.

Figure 10. Real impedance Z′ with frequency for pristine and treated PANI/PbS.

Figure 11 depicts the change in Z” value with frequency for untreated and treated
PANI/PbS films. It is obvious that the behavior of the Z” value varies with frequency,
just like the behavior of Z′. As the conductivity and free charge carriers increase with
irradiation, the values of Z” gradually decrease [57]. The peaks in both the pure and treated
films are because of dielectric relaxation, which proves that the irradiated samples are more
suitable for storage systems.

For storage device applications, the energy density (U) is determined by [58]:

U =
1
2
ε’εoE2 (14)

where E is the field ~1 V/m, and εo is the permittivity, ~0.885 × 10−12 C2/N·m2. Figure 12
reveals the influence of frequency on the energy density, U. The un-irradiated PANI/PbS
had an energy density of 0.17 × 10−3 J/m3, which increased to 1.5 × 10−3 J/m3 for
5 × 1016 ions·cm−2 and reached 2.7 × 10−3 J/m3 at 15 × 1016 ions·cm−2. This is due
to the ion beam inducing faster charge transfer in the irradiated films. Moreover, ion
irradiation causes different types of polarization modes. The irradiation PbS/PANI interface
complicated electric relaxation behaviors and caused changes in the internal electric field,
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such as through dipole correlations. Exposure to energetic ions could be utilized to modify
the structure and dielectric characteristics of polymeric systems [59]. The energy delivered
by the ion beam influences the necessary energy for charge transport. Depending on the ion
fluence, ion beam energies, as well as the composition of the polymer matrices, incoming
ions can produce scission or cross-linking reactions. This process may result in new defects,
radicals, and even polar bonds. This research indicates that irradiated PANI/PbS films
have dielectric properties that make them suitable for energy storage.

Figure 11. Imaginary impedance Z” with frequency for pristine and treated PANI/PbS.

Figure 12. Energy density U with frequency for pristine and treated PANI/PbS samples.

The ac conductivity σac is determined by [60]:

σac = 2πfεoε
” (15)

where εo is permittivity, f is frequency, and ε” is the loss. Figure 13 demonstrates the
change in σac with frequency. Notably, the conductivity of all films was enhanced by
increasing the frequency. Furthermore, at lower frequencies, there is a slight change in ac
conductivity; but, at higher frequencies, there is a large shift in conductivity owing to the
activation of trapped charges. As noted previously, irradiation enhanced the conductivity
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of samples by increasing the number of charge carriers. The σac at 100 Hz improved
from 1.45 × 10−3 S/cm for PANI/PbS film, to 2.15 × 10−3 S/cm after irradiation with
5 × 1016 ions/cm2, and to 25.9 × 10−3 S/cm upon irradiation with 15 × 1016 ions/cm2.
This improvement in σac was due to polymer scissioning, which led to faster ionic transport
across the chains. Abdelhamied et al. investigated the effects of oxygen beam irradiation
on the electrical conductivity of PVA/PANI/Ag at a frequency of 100 Hz [61]. They found
that after irradiation, the conductivity improved from 1 × 10−8 S/cm for the untreated, to
1.8 × 10−7 S/cm for the treated composite.

Figure 13. Conductivity σac against Ln (ω) for pristine and treated PANI/PbS.

The maximum energy barrier height Wm is computed using this formula [62]:

Wm =
−4kBT

m
(16)

where T is temperature, kB is Boltzmann constant, and m is computed from slopes of Ln
(ε”) versus Ln (ω), as observed in Figure 14, using this formula [63]:

ε” = Aωm (17)

Figure 14. Ln (ε”) against Ln (ω) for pristine and treated PANI/PbS samples.
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The predicted Wm decreased from 0.43 eV for pure PANI/PbS, to 0.26 eV for
5 × 1016 ions/cm2, to 0.25 eV for 10 × 1016 ions/cm2, and to 0.23 eV by increasing the
fluence to 15 × 1016 ions/cm2. This shift in Wm was caused by the defects created inside
the polymer chains after irradiation, as recorded by the XRD measurements.

3. Materials and Methods
3.1. Synthesis

Aniline, ammonium persulfate, hydrochloric acid (HCl), lead nitrate, and sodium
sulphate were purchased from Sigma-Aldrich. To get PANI, the sample was stirred, thor-
oughly rinsed, then dried at 55 ◦C for 10 h, and then PANI formed a full precipitate after 1 h.
PANI was synthesized using an oxidative polymeric technique, in which 0.05 M of aniline
was dissolved in 0.6 M in HCl with a magnetic stirrer for 50 min [25]. The oxidant was then
abruptly added to aniline solution, resulting in aniline oxidation, and thus forming PANI,
with a greenish color. Then the PANI was washed with deionized water and consequently
dried for 8 h at 65 ◦C.

PbS was produced by ultrasonicating solutions of 0.05 M Pb(NO3)2 and 0.05 M Na2S
for 25 min. After pouring the Na2S solution over the Pb(NO3)2 and ultrasonically treating
the mixture for 1.5 h, a black precipitate formed, indicating the creation of PbS nano-
particles. The black precipitate was then heated in a microwave oven for 25 min in N2
gas. Finally, the produced nanoparticles were dried at 70 ◦C for 20 h after being rinsed
thoroughly with warm water multiple times. To create the PANI/PbS composite, we used
the produced PbS nanoparticles for the deposition of PANI by oxidative polymerization of
aniline. The oxidative polymerization was performed using 0.05 M aniline concentrations
and 0.05 g of PbSNPs. For one hour, the solutions were ultrasonicated. After that, a
magnetic stirrer was used for 5 h at a temperature of 298 K. After that, the composite was
thoroughly rinsed in distilled water and dried at 80 ◦C for 9 h.

3.2. Ion Source Description

The PANI/PbS with a mean thickness of 0.05 mm was irradiated with different fluences
(5 × 1016, 10 × 1016, and 15 × 1016 ions/cm2) of oxygen beams using a cold cathode ion
source, as previously described [26]. The ion source, as shown in Figure 15, is composed of
two elements: a cylinder anode and acceleration system electrode. The plasma media is
created in the cylindrical anode region, as depicted in Figure 1, and the oxygen ion beam
is extracted via an extractor and then accelerated. The extracted ion beam is set at ion
current density, operating pressure, and oxygen energy of 180 uA/cm2, 2.0 × 10−4 mbar,
and 3.0 keV, respectively. The stopping parameters of the oxygen beam interacting with
PANI/PbS were estimated using a SRIM/TRIM simulation [27]. The SRIM simulation was
run taking into account the perpendicular incidence of oxygen, giving the incidence ion
parameters of energy of 3 keV and oxygen ion mass of (15.995 amu). The software gives the
thickness of the changed layer based on the penetration of 1000 A◦ and the target’s density
data. Analytically, the energy transmitted from one ion to an atom of the PANI/PbS is used
to determine the ion distribution with recoils and rapid calculation of damage from the
input data. The depth value that an ion can penetrate into the PANI/PbS lattice, as well
as the mean range values can all be seen in the histogram for that energy after collisions.
Moreover, it can also be used to determine the quantity of backscattered ions and vacancies.
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Figure 15. Schematic of a broad-beam ion source.

3.3. Characterization Techniques

XRD (Model 6000 Shimadzu) was used to analyze the structural characteristics of
the pure and irradiated samples. DSC (Shimadzu, Q20, USA) was used to record the
glass temperature, Tg, and melting temperature, Tm, with a heat rating of 10 ◦C/min. The
chemical functional groups were analyzed by FTIR spectroscopy (ATI Mattson, Unicam,
UK). The morphologies of the pristine and irradiated samples were examined using SEM
(JEOL, Japan). The conductivity, dielectric permittivity, electrical modulus, impedance, and
energy density were recorded by LCR (RS-232C, Hioki, Japan) in frequencies from 102 Hz
to 5 MHz.

4. Conclusions

In this study, PANI/PbS nanocomposites were successfully synthesized via the so-
lution casting method and then irradiated by an oxygen beam with different fluences of
5 × 1016, 10 × 1016, and 15 × 1016 ions·cm−2. The XRD and DSC results demonstrated
that the irradiation reduced the crystallite size and crystallinity degree of the composites.
Both Tg and Tm values fell after ion irradiation; the Tm decreased from 262.7 ◦C to 257.9 ◦C
and the Tg decreased from 130.1 ◦C to 120 ◦C after irradiation. Meanwhile, the FTIR data
showed a decrease in peaks’ intensities upon irradiation, suggesting the existence of chain
scission in the irradiated samples. Furthermore, SEM micrographs revealed that the surface
roughness is influenced by the oxygen beam irradiation. The dielectric characteristics of
the pure and irradiated composites were investigated at wide range of frequencies. The
irradiation caused a modification in the dielectric properties and a considerable change in
the dielectric constant’s coefficients. This could be attributed to chemical bonds breaking,
leading to an increase in free radicals, as demonstrated by FTIR, SEM, DSC, and XRD
analyses. The influence of the oxygen beam on the dielectric properties, such as energy den-
sity effectiveness and electrical modulus, of the produced samples was also investigated.
Furthermore, the energy density was found to increase from 0.17 × 10−3 J/m3 for the
PANI/PbS, to 2.7 × 10−3 J/m3 for the irradiated composite, indicating that the irradiated
PANI/PbS film has higher impedance properties. The real modulus, M′, was lowered
from 0.046 for pure PANI/PbS, to 0.004 for 15 × 1016 ions.cm−2 for irradiated PANI/PbS.
These findings show that the irradiation improved the dielectric properties of PANI/PbS,
meaning these films are convenient for energy devices.
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