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Abstract: This report deals with the quantum-chemical evaluation of the energetics and thermody-
namics of the simultaneous encapsulation of HF and H2O by the IPR (isolated pentagon rule) C70

fullerene cage, yielding H2O·HF@C70 species which were synthesized and characterized recently, thus
further expanding the family of fullerene endohedrals with non-metallic encapsulates. The structures
were optimized at the DFT (density functional theory) M06-2X/6-31++G** level. The encapsulation
energetics were further refined by the advanced B2PLYPD/6-31++G** and B2PLYPD/6-311++G**
methods. After enhancement of the B2PLYPD/6-311++G** encapsulation energy for the BSSE and
steric corrections, the encapsulation energy gain was obtained, as 26 kcal/mol. The equilibrium
encapsulation thermodynamics were described using the M06-2X/6-31++G** partition functions.
The results correspond to our previous evaluations for the water dimer encapsulation by C84 cages.
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1. Introduction

In addition to metal encapsulations yielding metallofullerenes, it is also possible for
non-metals, and even small non-metallic molecules, to be encapsulated by fullerene cages.
Metallofullerenes themselves are stabilized via charge transfer of up to four electrons
from the metal to the cage. Such strong charge transfer and stabilization, primarily via
Coulombic interactions, does not occur with non-metal encapsulation. The stabilization
of non-metallic molecules is based [1] on non-bonding, in particular van der Waals in-
teractions. N2@C60 and N2@C70 primarily represent such endohedrals that encapsulate
non-metal molecules, prepared [2] by heating under high pressure. N2@C60 has also been
observed [3] in chromatographic separation after nitrogen ion implantation, otherwise
primarily yielding N@C60 [4–9]. Complexes of fullerenes with rare gas atoms [10–14] can
also be prepared using [10] high temperatures, high pressures, and a catalyst [13]. A new,
elegant encapsulation method for non-metallic molecules—such as molecular hydrogen
molecules [15] and water molecules [16]—places the species inside open-cage fullerenes,
and then closes the cage window synthetically [17,18]. Multi-step synthesis has even pro-
duced [19] (H2O)2@C70. Carbon monoxide [20,21] and H2O2 [22,23] have also been placed
inside open-cage C60 derivatives.

Fullerene encapsulations of non-metal species have also been computed [24–42]: for exam-
ple, the lowest-energy N2@C60 structure that has been identified [28] is the N2 unit, which
is oriented towards a pair of parallel pentagons, so that the complex exhibits D5d symme-
try. This type of minimum energy structure has also been computed [26] for NH3@C60.
With N2@C60 [28], the MP2 = FC/6-31G* encapsulation energies, before and after the
so-called basis set superposition error (BSSE) correction, are equal to −17.5 kcal/mol and
−9.28 kcal/mol, respectively. The BSSE-corrected MP2 = FC/6-31G* value for NH3@C60
is [26] −5.23 kcal/mol. Once the corresponding entropy change ∆So

T is evaluated, one can
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deal with the thermodynamics-controlling Gibbs energy term ∆Go
T . Using the partition

functions from the DFT calculations, and the enthalpy terms derived from the BSSE-
corrected MP2 = FC/6-31* stabilization energy, the ∆Go

T standard changes for productions
of N2@C60 and NH3@C60 at room temperature [26,28] read −2.64 and 1.53 kcal/mol, re-
spectively. Such stability evaluations have also been performed for water dimer and trimer
encapsulations, in particular by the D2(22)-C84 cage [36–39]. For example, when the encap-
sulation energy for the cyclic water-trimer encapsulation by D2(22)-C84 was computed at
the M06-2X/6-31++G** level with the BSSE correction, it was found that the trimer storage
in C84 yielded a potential-energy gain of 10.4 kcal/mol. The encapsulated trimer could
have two different forms: either the conformation known for the free-gas-phase water
trimer (trans, C1 symmetry) or the arrangement with the three non-hydrogen-bonded
H atoms on the same side of the OOO plane (cis, C3 symmetry). The latter endohedral
isomer was calculated [41] as lower in potential energy, by 0.071 kcal/mol, and formed
about 57% of the equilibrium mixture at room temperature. The mentioned examples
show that quantum-chemical calculations can productively complement observations of
the non-metallic fullerene endohedrals.

This report continues the computational research line, and deals with quantum-
chemical evaluation of the energetics and thermodynamics of the encapsulation of HF
and H2O into the IPR (isolated pentagon rule) C70 fullerene cage, yielding H2O·HF@C70
species synthesized and characterized [43] recently. The calculations could possibly be
applied in the organization of direct high-pressure preparation of the species used for other
systems [10–14] (where a temporary cage window is created by a catalytic action).

2. Calculations

The calculations began with geometry optimizations, performed using the density func-
tional theory (DFT) approach—namely, the M06-2X functional, tested recently [44]—as it
is the most reliable approximation for numerous application situations, including long-
range interactions, hydrogen bonds, thermochemistry, and kinetics. The M06-2X functional
was applied here with the standard 6-31++G** basis set [45] (i.e., the M06-2X/6-31++G**
treatment). In order to check the geometrical or physical nature of the stationary points
localized on the M06-2X/6-31++G** potential hypersurface, harmonic vibrational analysis
was carried out, thus confirming that the local energy minima had been found. An ultrafine
grid in numerical integrations of the DFT functional (or superfine grid for the endohe-
dral, to improve the reliability of low frequencies), and a tight SCF convergency criterion,
were used.

The encapsulation energetics were refined beyond the DFT level, in order to reliably
describe the electron-correlation effects, namely using the B2PLYPD treatment [46] with a
dispersion (D) correction, and considering all electrons (B2PLYPD = FU). The B2PLYPD ap-
proach is a relatively new method, representing the application of the original second-order
Møller–Plesset (MP2) perturbation treatment [47] to DFT wavefunctions. The B2PLYPD
treatment was performed here, in the the optimized M06-2X/6-31++G** structures, using
the 6-31++G**, and also 6-311++G** basis sets, i.e., B2PLYPD/6-31++G** and B2PLYPD/6-
311++G** quantum-chemical levels. Moreover, the basis set superposition error (BSSE)
was estimated by the Boys–Bernardi counterpoise (CP) method [48] (for a more detailed
description, see Appendix A). The CP correction is only rarely considered [49–52] with
fullerene species, though it can bring about significant energy changes. The BSSE-corrected
values were still further improved here by the recently suggested [37,53] steric correction.

All the computations were carried out with the Gaussian 09 program package [54].
The computations were performed in a parallel regime, with up to 24 processors (up to
3 GHz each).

3. Results and Discussion

The M06-2X/6-31++G** optimized structure of H2O·HF@C70 agreed with the ob-
served results [43]. In particular, the observed hydrogen-bond length is 1.39 Å, while the
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value calculated here was 1.481 Å. Similarly, the observed F-O distance is 2.438 Å, while
the calculated one was 2.447 Å. The calculations treated a free, gas-phase H2O·HF@C70
species, while the X-ray experiment [43] dealt with a porphyrin cocrystal.

Table A1 reports the calculated encapsulation energetics. The presented potential-
energy changes describe the gas-phase formation of H2O·HF@C70, i.e., the equilibrium
encapsulation processes,

H2O(g) + HF(g) + C70(g) = H2O·HF@C70(g), (1)

connected with an encapsulation potential-energy change ∆Eenc. The energy changes were
always negative (Table A1), i.e., there was a gain in energy; the encapsulation process (1) is
exothermic and, thus, convenient from the thermodynamic point of view. The calculated
terms were rather similar in both considered basis sets. On the other hand, the M06-2X
values differed significantly from the B2PLYPD ones. This situation can be interpreted as
the M06-2X functional not having described sufficiently the electron-correlation effects in
this type of system. Thus, the B2PLYPD terms should be preferred for the endohedrals.
Hence, the B2PLYPD/6-311++G** encapsulation energy value of −26.02 kcal/mol was
used for the thermodynamic treatment.

The energy terms presented in Table A1 include the BSSE correction evaluated in the
so-called CP3 scheme [37,55], i.e., the association of three species (1). The Boys–Bernardi
CP method [48] is still an approximative approach, introduced in order to ensure that each
component of a chemical process is formally treated with the same number of basis-set
functions. This formal unified description is achieved via so-called ghost atoms with
no electrons. The BSSE problem originates in the finiteness of basis sets, and it should
disappear in the rather hypothetical case of an infinite basis set. The BSSE correction is an
important term—oligomerization energy gain would otherwise be overestimated [37,55]
by several kcal/mol.

There is still another computational aspect related to the CP3 estimation of the BSSE
term. The original Boys–Bernardi counterpoise method was suggested [48] for dimers
handled with a fixed geometry (though the structures of the monomeric units differ in free
and dimeric form). Although a fully BSSE-respecting geometry optimization would, in
principle, be possible [56], it is feasible only for relatively simple systems. Nevertheless,
in order to reflect the geometry distortion, a simpler, straightforward steric-corrected
BSSE approach has recently been suggested [37,53] (for details, see Appendix A). In the
conventional CP3 treatment, the geometries of the three sub-units (H2O, HF, C70 in our case)
are taken to be the same as in the whole complex (H2O·HF@C70), so that only four energy
calculations are required, without any structure re-optimization. The steric-corrected BSSE
treatment [37,53] goes a step further, as it includes the difference between the energy of the
carbon-cage geometry simply taken from H2O·HF@C70 and the energy of the related fully-
optimized empty C70 cage (which has to be slightly lower). Similar steric corrections are
also computed for the H2O and HF components. For simplicity, the steric corrections in this
work were evaluated only at the M06-2X/6-31++G** level. The gain in the encapsulation
energy was in fact reduced by the steric correction at the M06-2X/6-31++G** computational
level, by some 1.49 kcal/mol (i.e., a somewhat larger reduction than that, for example,
found [37] for the CP3 steric corrections with (H2O)2@D2(22)-C84 and (H2O)2@D2d(23)-C84).

The encapsulation energies ∆Eenc, with the inclusion of the BSSE and steric correc-
tions, are presented in Table A1. The B2PLYPD/6-311++G** terms should be preferred
in further considerations, as they represent the most sophisticated of the approaches con-
sidered here. Interestingly, the observed [57] dissociation energy of a free H2O·HF com-
plex was also reproduced well by the B2PLYPD/6-311++G** method. The encapsulation-
energy gain for H2O·HF@C70 was somewhat larger than previously found, for exam-
ple, with (H2O)2@D2(22)-C84 [37,38]. With future developments in computer technology,
the B2PLYPD/6-311++G** approach should, however, be tested at a still higher level of
quantum-chemical methodology.
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Let us note for completeness that, in addition to the CP3 scheme considered here
for BSSE corrections, a simpler CP2 scheme was previously applied [37] to water-dimer
encapsulation. While the CP3 scheme deals with three sub-units, as in the above reaction (1),
the CP2 approach dealt simply with the encapsulation of the whole complex H2O·HF
by the C70 cage. Generally speaking, the CP3 scheme should produce larger energy
gains compared to the CP2 decomposition, owing to the additional stabilization energy
originating in the encapsulate formation from the monomeric units.

The encapsulation potential energy change, ∆Eenc, was enhanced, for the thermo-
dynamic treatment, by the vibrational zero-point energy ZPE, leading to encapsulation
enthalpy at absolute zero temperature ∆Ho

0,enc:

∆Ho
0,enc = ∆Eenc + ∆ZPEenc. (2)

Application of the heat content functions evaluated with the partition function treat-
ment yielded the standard encapsulation enthalpy change, at temperature T: ∆Ho

T,enc.
The partition function treatment also produced the standard encapsulation entropy change,
at temperature T: ∆So

T,enc. Thus, we arrived at the standard encapsulation Gibbs energy
change ∆Go

T,enc:
∆Go

T,enc = ∆Ho
T,enc − ∆TSo

T,enc. (3)

The encapsulation equilibrium constant Kp,enc for reaction (1), expressed in the partial
pressures p of the reaction components,

Kp,enc =
pH2O·HF@C70

pH2O pHF pC70

(4)

is related to the standard encapsulation Gibbs energy change ∆Go
T,enc by

∆Go
T,enc = −RTln Kp,enc (5)

where R denotes the gas constant.
Table A2 presents the thermodynamic characteristics for the equilibrium process (1)

at room temperature. Both terms, ∆Ho
T,enc and ∆Go

T,enc, remained negative. As already
noted with the simpler ∆Eenc term, the encapsulation process (1) was exothermic and,
thus, convenient from the thermodynamic point of view. The calculated ∆Go

T,enc value
of −5.63 kcal/mol (Table A2) was comparable to findings for water encapsulations by
the C84 fullerene cages [36–39,41]. As in our previous computational evaluations of non-
metallic fullerene endohedrals [26,28,36–41], the partition functions qi were basically of
the usual rigid rotor and harmonic oscillator (RRHO) quality [58] (as only was feasible
with the presently available computer resources). In terms of the partition functions qi and
the encapsulation enthalpy at the absolute zero temperature ∆Ho

0,enc, the encapsulation
equilibrium constant Kp,enc (4) was given by a formula [58],

Kp,enc =

qo
H2O·HF@C70

NA
qo

H2O
NA

qo
HF

NA

qo
C70
NA

exp
(
−

∆Ho
0,enc

RT

)
, (6)

where NA denoted the Avogadro number. The form of relation (6) allowed for some con-
venient cancellation of the higher contributions [59] beyond the RRHO approximation.
However, future efforts should deal with further improvements of the RRHO partition
functions commonly employed [36–39,60] for encapsulation thermodynamics. Such de-
velopments should, in particular, deal with encapsulate motions, important not only for
stability predictions but also for the cage symmetries effectively observed [18,61,62] as
a consequence of the related observational time scales [58]. The symmetry issue is also
closely related to the effective, dynamic symmetry numbers [38] in the rotational partition
functions [63], an aspect that is important for all endohedrals, regardless of the encapsu-
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late type: one option is to work with the so-called FEM approach [60], instead of RRHO
partition functions (the two treatments can possibly suggest bounds for thermodynamic
terms).

The encapsulation equilibrium constant in Table A2 was sensitive to the encapsu-
lation enthalpy term ∆Ho

T,enc, as its related encapsulation enthalpy at the absolute zero
temperature ∆Ho

0,enc appeared in relation [6] in the exponential function: this aspect, in
turn, highlights the importance of precise energy calculations.

4. Conclusions

Our quantum-chemical evaluation of the energetics and thermodynamics of the simul-
taneous encapsulation of HF and H2O by the IPR C70 fullerene cage further expands char-
acterization of the relatively new family of fullerene endohedrals containing non-metallic
encapsulates. The evaluations were carried out at the most advanced level presently appli-
cable, yielding to the encapsulation-energy gain of 26 kcal/mol. Nevertheless, the results
should in future be tested at still higher computational levels, such as the quadratic config-
uration interaction method, QCISD, or even the Gn theory [64], when allowed by computer
resources. Further developments are also needed in the construction of the partition func-
tions for thermodynamic evaluations, in order to somehow respect the anharmonic and
non-rigid features of the endohedrals, though this step is also at present limited by the avail-
able computational power. The obtained estimate of the encapsulation equilibrium constant
corresponded to the values previously derived [36–39,41] for the encapsulations of the
water dimer by C84 cages, and to other computed encapsulations [60]: the possibility is thus
not excluded that even H2O·HF@C70 could be prepared by direct catalytic high-pressure
treatment [10–14]. Similar computational treatments of other fullerene systems with non-
metallic encapsulates will offer a further insight into this newly established endohedral
class, even having some application potential as a different approach to modifications of
fullerene properties.
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Appendix A

Let us consider a general association process (regardless of the nature of the bonding
types involved):

A + B = C. (A1)

In the tradional approach, i.e., without the Boys–Bernardi counterpoise (CP) correc-
tion [48] (also called the BSSE correction), the reaction potential-energy change ∆Er is taken
as the difference of the potential energies of the reaction components, straightforwardly
evaluated in their own basis sets (indicated in the upper indexes):

∆Er,noCP = E(C)
C − E(A)

A − E(B)
B . (A2)
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As the basis sets used in relation [8] are different, the three energy terms are not
calculated at the same level; therefore, they are not consistent: thus, they are not strictly
comparable or directly applicable.

In the CP-corrected treatment, the three reaction components are described by the
same basis set, namely by the basis set of the product C:

∆Er,CP = E(C)
C − E(C)

A − E(C)
B . (A3)

As the basis set of C is larger than that of either A or B, there has to be energy
decrease: E(C)

A < E(A)
A , and similarly E(C)

B < E(B)
B (potential energy decreases with in-

creasing basis set). In other words, the absolute value of the reaction energy will also be
reduced: |∆Er,CP| < |∆Er,noCP|. For example [37], for the water-dimer encapsulation by
the D2(22)-C84 cage, the M06-2X/6-31++G** potential-energy reaction change, without
the CP2 correction, is −23.4 kcal/mol, while with the CP2 correction the term changes to
−19.2 kcal/mol. Similarly [37], for the D2d(23)-C84 cage, the reaction change before the
BSSE correction is −21.8 kcal/mol, while after the BSSE correction the term amounts to
−17.8 kcal/mol.

Let us move to yet another correction. In the previous paragraph, the geometries
of the two reactants A and B were simply taken from the optimized structure C. Now,
the geometries of the free reactants will also be optimized. The additional step brings new
energies for the reactants A and B (the new energies are somewhat lower, as geometry
optimization means searching for a local energy minimum), denoted by o in the lower
index, E(A)

A,o and E(B)
B,o . Hence, we can move to a steric-corrected term,

∆Er,noCP,o = E(C)
C − E(A)

A,o − E(B)
B,o (A4)

and subsequently to the steric correction ∆Ester itself:

∆Er,noCP,o = ∆Er,noCP + ∆Ester. (A5)

In an approximation, the steric correction ∆Ester from relation (A5) is then straightfor-
wardly used also for the improvement of the ∆Er,CP term. In the above example [37] of
the water-dimer encapsulation by the D2(22)-C84 cage, the M06-2X/6-31++G** potential-
energy reaction change, with the CP2 correction of−19.2 kcal/mol, amounts, after the steric
correction, to −16.9 kcal/mol. Similarly [37], for the D2d(23)-C84 cage, the reaction term is
changed from −17.8 kcal/mol to the final value of −14.4 kcal/mol. The steric correction is
positive, as the geometry optimizations still lower the energies of reactants A and B.

Table A1. The encapsulation energy ∆Eenc for H2O·HF@C70, calculated by selected approaches a and
inclusion of the CP3 BSSE and steric corrections.

∆Eenc/kcal·mol−1

Calc. Level 6-31++G** 6-311++G**

M06-2X −31.29 −31.79
B2PLYPD −25.75 −26.02

a In the M062X/6-31++G** optimized geometry, see Figure A1.
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Figure A1. Two views of the M06-2X/6-31++G** optimized structure of H2O·HF@C70.

Table A2. The standard a enthalpy ∆Ho
T,enc, entropy T∆So

T,enc, Gibbs energy ∆Go
T,enc changes, and the

equilibrium constants Kp,enc for the gas-phase equilibrium formation (1) of H2O·HF@C70, evaluated b

at room temperature T = 298.15 K.

∆Ho
T ,enc T∆So

T ,enc ∆Go
T ,enc Kp,enc

(kcal/mol) (kcal/mol) (kcal/mol) (atm−2)

B2PLYPD/6-311++G** −23.24 −17.60 −5.63 1.346 × 104

a The standard state—ideal gas phase at 1 atm = 101,325 Pa pressure. b The partition functions based on the
M062X/6-31++G** molecular characteristics.
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