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Abstract: The reactions of the diiron aminocarbyne complexes [Fe2Cp2(NCMe)(CO)(µ-CO){µ-CN(Me)(R)}]
CF3SO3 (R = Me, 1aNCMe; R = Cy, 1bNCMe), freshly prepared from the tricarbonyl precursors 1a–b,
with primary amines containing an additional function (i.e., alcohol or ether) proceeded with the
replacement of the labile acetonitrile ligand and formation of [Fe2Cp2(NH2CH2CH2OR’)(CO)(µ-
CO){µ-CN(Me)(R)}]CF3SO3 (R = Me, R’ = H, 2a; R = Cy, R’ = H, 2b; R = Cy, R’ = Me, 2c) in 81–95%
yields. The diiron-oxazolidinone conjugate [Fe2Cp2(NH2

OX)(CO)(µ-CO){µ-CN(Me)2}]CF3SO3, 3,
was prepared from 1a, 3-(2-aminoethyl)-5-phenyloxazolidin-2-one (NH2

OX) and Me3NO, and finally
isolated in 96% yield. In contrast, the one pot reactions of 1a-b with NHEt2 in the presence of Me3NO
gave the unstable [Fe2Cp2(NHEt2)(CO)(µ-CO){µ-CN(Me)(R)}]CF3SO3 (R = Me, 4a; R = Cy, 4b) as
unclean products. All diiron complexes were characterized by analytical and spectroscopic techniques;
moreover, the behavior of 2a–c and 3 in aqueous media was ascertained.

Keywords: organometallic chemistry; diiron complexes; aminocarbyne ligand; amine ligand; oxazolidinone

1. Introduction

The chemistry of diiron complexes has attracted considerable attention for several
reasons. First, iron is an earth-abundant and environmentally benign element, its com-
pounds are relatively cost-effective and nontoxic, and the advance of iron chemistry is an
important step forward in the urgent demand for developing new sustainable synthetic
processes [1–5]. The second point to be considered is that a bimetallic system is charac-
terized by cooperative effects arising from the two metal centers working in concert, thus
enabling uncommon reactivity patterns which would otherwise not be viable on related
monometallic species [6–11]. Finally, and relevant to this last point, the inorganic unit of a
class of hydrogenases [12,13], i.e., enzymes capable of producing dihydrogen from water, is
based on an organo-diiron core; therefore, a variety of diiron complexes has been intensively
investigated to efficiently mimic such natural catalysts in the perspective of a “hydrogen
economy” [14–17]. The dimeric compound [Fe2Cp2(CO)4] (Cp = η5-C5H5) is a commer-
cially available, convenient and cheap starting material to access diiron organometallic
chemistry [18–23]; in the last 20 years, our research in this field has focused on the synthesis
and reactivity of derivatives containing a bridging aminocarbyne ligand [24,25]. These
are obtained through a straightforward two-step procedure, consisting of the substitution
of one carbon monoxide ligand with an isocyanide (CNR), followed by alkylation of the
isocyanide ligand, which is usually performed with methyl triflate (Scheme 1) [26]. The
{CN(Me)R} moiety possesses some iminium character; the carbyne–nitrogen bond is par-
tially double, thus rotation of the amine group around the carbyne-N axis is hampered at
room temperature and above.
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Remarkably, complexes of type 1, and their cationic derivatives, are normally air-
stable and rather inert in aqueous solutions, and these features have recently fueled the 
exploration of their potential use in medicine [27–29] and catalysis [30–32]. The 
replacement of one or two carbonyls from 1 is key to their derivatization, including C-C 
and C-N coupling reactions involving the carbyne center [24,25,33]. However, the simple 
introduction of one terminal ligand (L) different from CO may produce a significant 
impact on the physicochemical properties and aqueous stability of the resulting diiron 
aminocarbyne compounds [29,34]. In principle, the CO/L mono-substitution reaction may 
generate cationic or neutral adducts (depending on the charge of L) existing in different 
isomeric forms, i.e., cis and trans isomers (with reference to the mutual geometry of the 
Cp rings with respect to the Fe-Fe axis), and α and β isomers (with reference to the mutual 
orientation of L and the aminocarbyne R substituent), as seen in Scheme 2 [24,25]. Relevant 
to the latter point, it should be noted that the α/β isomerism, arising from the double bond 
nature of the carbyne–nitrogen linkage, may be not observed when both R and L are bulky 
units (i.e., the α isomer largely prevails) [35,36], and disappears when R = Me. In contrast, 
cis isomers are usually more stable than the corresponding trans isomers, the latter being 
observed due to a combination of steric and electronic factors [25,37]. The interconversion 
in solution between trans and cis forms, and consequently between α and β forms, is 
practicable in certain cases under thermal treatment, and possibly obeys the Adams–
Cotton mechanism whereby ligands undergo site exchange through open-bridged 
structures [37–40]. 
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assessment of the behavior of a new series of diiron aminocarbyne complexes with 
primary amines bearing additional functions in aqueous media (solubility, stability). 

Scheme 1. Typical two-step synthesis of diiron µ-aminocarbyne complexes from commercially
available chemicals. R = alkyl or aryl (i,ii).

Remarkably, complexes of type 1, and their cationic derivatives, are normally air-stable
and rather inert in aqueous solutions, and these features have recently fueled the explo-
ration of their potential use in medicine [27–29] and catalysis [30–32]. The replacement
of one or two carbonyls from 1 is key to their derivatization, including C-C and C-N
coupling reactions involving the carbyne center [24,25,33]. However, the simple introduc-
tion of one terminal ligand (L) different from CO may produce a significant impact on the
physicochemical properties and aqueous stability of the resulting diiron aminocarbyne com-
pounds [29,34]. In principle, the CO/L mono-substitution reaction may generate cationic
or neutral adducts (depending on the charge of L) existing in different isomeric forms, i.e.,
cis and trans isomers (with reference to the mutual geometry of the Cp rings with respect
to the Fe-Fe axis), and α and β isomers (with reference to the mutual orientation of L and
the aminocarbyne R substituent), as seen in Scheme 2 [24,25]. Relevant to the latter point,
it should be noted that the α/β isomerism, arising from the double bond nature of the
carbyne–nitrogen linkage, may be not observed when both R and L are bulky units (i.e., the
α isomer largely prevails) [35,36], and disappears when R = Me. In contrast, cis isomers are
usually more stable than the corresponding trans isomers, the latter being observed due
to a combination of steric and electronic factors [25,37]. The interconversion in solution
between trans and cis forms, and consequently between α and β forms, is practicable in
certain cases under thermal treatment, and possibly obeys the Adams–Cotton mechanism
whereby ligands undergo site exchange through open-bridged structures [37–40].
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Scheme 2. Possible isomers in diiron µ-aminocarbyne derivatives: the net positive charge of the
complex is present if L = neutral, otherwise (L = monoanionic) the complexes are neutral. α/β forms
are observable when R 6= Me.

In this study, we report the synthesis, the spectroscopic characterization and the
assessment of the behavior of a new series of diiron aminocarbyne complexes with primary
amines bearing additional functions in aqueous media (solubility, stability).
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2. Results and Discussion
2.1. Synthesis and Spectroscopic Characterization

The diiron aminocarbyne complexes 1a–b were synthesized according to the procedure
shown in Scheme 1. They are 36-electron compounds and comprise firmly bound ligands;
therefore, the substitution of one CO with a more labile acetonitrile ligand was prelimi-
narily carried out with the aim of allowing amine coordination. Consequently, 1a–b were
converted into the acetonitrile adducts using the trimethylamine-N-oxide (TMNO) strat-
egy [41], which is commonly reliable with cationic complexes based on the M2Cp2(CO)3
core (M = Fe, Ru) [42–45]. The resulting derivatives, 1aNCMe and 1bNCMe [46], were then
employed as freshly prepared.

The reactions of 1aNCMe and 1bNCMe with ethanolamine and of 1bNCMe with 2-
methoxyethylamine were conducted at room temperature using an excess of the organic
reagents and were continued with quantitative acetonitrile –amine substitution to afford the
novel air-stable complexes 2a–c in 81–95% yields (Scheme 3). No traces of O-coordinated
adducts were detected, in alignment with the fact that N-coordination is favored over
O-coordination for potential nitrogen/oxygen donors on soft metal centers [47,48], whereas
O-coordination becomes easier with higher valent metal complexes [49].
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in this work.

Due to evidence that terminal amines form stable compounds with the [Fe2Cp2(CO)2{µ-
CNMe(R)}] scaffold, and that the synthesis reaction seems tolerant of additional heteroatom
functions on the amine, we moved to evaluate the possibility of exploiting the amine coordi-
nation as a carrier of a bioactive fragment. In particular, oxazolidinones are five-membered
cyclic carbamates which find important applications for their biological activity [50–52].
Reported synthetic procedures to obtain oxazolidinones are commonly metal-catalyzed and
make use of aziridines as atom-economical starting materials [53–56]. In the framework
of our interest in the chemistry of carbamates [57–60], we recently developed a catalyst-
free method to access 5-aryl-2-oxazolidinones directly from aziridine precursors, amines
and carbon dioxide, working at ambient temperature and pressure [61]. This strategy
allows for unprecedented access to molecules with uncommon substituents on the nitrogen
ring, including the -NH2 group and the skeleton of several natural α-amino-acids [62].
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We selected 3-(2-aminoethyl)-5-phenyloxazolidin-2-one (NH2
OX) as an appropriate amine

reagent towards diiron aminocarbyne acetonitrile complexes (Scheme 4).
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bromo-1-phenylethyl)dimethylsulfonium bromide, ethylenediamine and carbon dioxide in water
(T = 298 K, pCO2 = 1 atm).

The reaction of NH2
OX with freshly prepared 1aNCMe, in dichloromethane, proceeded

smoothly at room temperature to afford the unprecedented diiron-oxazolidinone conjugate
3; nevertheless, 3 was obtained in a purer form by allowing NH2

OX to react with 1a, in
tetrahydrofuran, in the presence of TMNO (Scheme 3). The same method was applied in the
past to obtain diiron complexes analogous to 2a–c and containing a terminal alkyl-amine
ligand [63]. Thus, complex 3 was isolated in almost quantitative yield after the work-up.
Compounds 2–3 are indefinitely stable in the solid state in air, well soluble and stable in
dichloromethane and acetone, almost insoluble in diethyl ether and insoluble in hexane.

Note that 1bNCMe did not react with aniline (PhNH2) and gave only partial substitu-
tion with diethylamine (Et2NH) and pyrrolidine [(CH2)4NH], suggesting that electronic
(PhNH2) and steric [secondary amine ≥ cyclic secondary amine > primary amine] factors
are crucial to let the amine win the competition for coordination with N≡CMe. To favor the
formation of the related adducts, these amines were added to a mixture of 1b and TMNO in
tetrahydrofuran. The reactions of 1b with TMNO, in the presence of aniline or pyrrolidine,
resulted in extensive decomposition; instead, 4b was formed from 1b/NHEt2/TMNO
and the analogous reaction from 1a/NHEt2/TMNO afforded 4a (Scheme 3). Both 4a
and 4b were obtained in admixture with inseparable impurities and are unstable species,
undergoing progressive degradation at room temperature both in the solid state and in
chlorinated solvents.

Compounds 2a–c and 3 were characterized by IR and multinuclear NMR spectroscopy
(see Supplementary Material), showing a general good degree of purity, whereas only a
limited characterization was possible for 4a–b due to the stability issues. As a general
consideration, NMR spectroscopy characterization of 2–3, and in general [Fe2Cp2(CO)4]
derivatives, is possible due to the diamagnetism of these species, which may be not
associated with the presence of an iron–iron bond [64].

The IR spectra (CH2Cl2 solutions, 2300–1500 cm−1 spectral region) share a com-
mon pattern consisting of three main bands ascribable to the terminal and bridging car-
bonyl ligands, falling in narrow ranges of wavenumbers (respectively at 1970–1978 and
1797–1800 cm−1, in CH2Cl2), and to the bridging carbyne–nitrogen bond. The latter band
is strongly affected by the aminocarbyne substituents and was found at ca. 1575 cm −1

for R = Me (2a, 3 and 4a) and ca. 1530 cm−1 for R = Cy (2b, 2c and 4b). For the sake of
comparison, the corresponding CO absorptions in the parent complexes 1a–bNCMe occur at
ca. 1985 and 1815 cm−1 [42,46], clarifying the major σ-donation supplied by primary alkyl-
amines compared to acetonitrile, resulting in a reinforced π back-bonding from the iron
centers to the carbonyl ligands in 2–4. Furthermore, the infrared band for the µ-CN moiety
falls at higher frequencies in 1a–bNCMe (1aNCMe: 1584 cm−1 [42]; 1bNCMe: 1562 cm−1 [46]),
indicating that the aminocarbyne ligand experiences a slightly increased back-donation
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from the metal centers in 2–4 than in 1a–bNCMe, weakening the carbyne–nitrogen bond.
Note that aminocarbyne ligands are usually regarded as strong π-acceptor ligands [24,65].
In 3, the absorption related to the carbonyl belonging to the carbamate moiety occurs at
1751 cm−1.

The 1H NMR spectrum of 2a shows two sets of resonances in a 4:1 ratio, which we
attribute to cis and trans isomers (Scheme 2). A distinctive feature is provided by the 1H
and 13C resonances of the N-Me units, which are quite close in the two isomers [cis: 4.73,
4.35 ppm (1H) and 54.5, 52.8 ppm (13C); trans: 4.80, 4.40 ppm (1H) and 53.9, 52.7 ppm (13C)].
In contrast, the NMR spectra of 2b–c display two sets of resonances, which are likely more
ascribable to α and β isomers differing in the orientation of the N-substituents with respect
to the amine ligand (see Scheme 2) [25]. As a matter of fact, the signals related to N-Me
undergo a significant shift going from one isomer to another [e.g., for 2b: α isomer, 4.50 (1H)
and 45.1 ppm (13C); β isomer, 4.09 (1H) and 46.4 ppm (13C)]. NMR resonances of 2b–c
were assigned to the two isomers (α and β) based on a comparison with literature data for
similar complexes containing the aminocarbyne {CNMe(Cy)} group and terminal nitrogen
ligands [46]; in particular, the N-bound methyl generally resonates, in the 1H NMR spectra,
at a lower chemical shift in the α isomer than in the β isomer, and the opposite trend is
observed in the 13C NMR spectra. Consistently, the α isomer is prevalent in both 2b and 2c
(α/β ratio≈ 2), placing the bulky cyclohexyl group on the same side of the carbonyl ligand.

The 1H NMR analysis of 3 (acetone-d6) revealed the presence of two species in equimo-
lar ratio, with signals close to each other. We hypothesize that the two species correspond
to the cis form (the chemical shift values of the Cp rings strictly match those related to the
cis isomer of 2a), existing as two diastereoisomers due to the chirality of the diiron core
associated with the presence of a stereocenter on the five-membered carbamate cycle. A
similar feature was previously observed upon tethering enantiopure sugar scaffolds to a
vinyliminium ligand bridging coordinated to the [Fe2Cp2(CO)2] core [66].

The coordinated amine moiety in 2–4 manifests itself with a high field 1H NMR signal
falling in the interval from −0.80 to −2.98 ppm. As a comparison, this signal occurs at
−0.94 ppm in 3 and at 2.28 ppm in uncoordinated NH2

OX. The N-bound methylene moiety
is significantly shielded in 2–3 with respect to the corresponding amines; for instance, it
has been detected at 2.35 and 2.17 ppm (two isomers) in the 1H NMR spectrum of 3 (to
be compared with δ = 3.24 ppm in free NH2

OX). Conversely, the resonances due to the
oxazolidinone ring do not undergo an appreciable shift on coordination to the iron center.

In the 13C NMR spectra of 2–3, the signals due to the aminocarbyne carbon have been
found in the 332.9–330.8 ppm range [24,67,68], while those of the terminal and bridging CO
ligands are at 214.5–212.2 ppm and 270.8–268.5 ppm, respectively. This feature confirms
that the amine coordination to iron does not affect the Fe2Cp2(CO)2 framework and the
aminocarbyne moiety [24,25].

2.2. Behavior in Aqueous Solutions

In view of possible aqueous applications of the novel diiron complexes 2a–c and 3, and
especially in the biological field, we assessed their behavior in aqueous media by means of
well-established spectroscopic methods (see Table 1 and Experimental for details). First,
we determined the solubility of the complexes in D2O by 1H NMR spectroscopy using
dimethylsulfone (DMSO2) as an internal standard. All complexes were fairly soluble, with
solubility values ranging from 9.6 mM (2c) to 0.47 mM (3); as a relevant reference, note
that the estimated water solubility of the leading metal drug cisplatin is 8.4 mM [69]. The
water stability was ascertained by 1H NMR analyses on CD3OD-D2O mixtures stored at
37 ◦C (DMSO2 as internal standard), and a similar study was performed in a deuterated
cell culture medium (DMEM-d) mixed with CD3OD. The results shown in Table 1 show the
fair inertness of 2a–c, with a variable amount (17–45%) of the starting material recovered
after 72 h; the stability of 2a (with a Me2N substituted carbyne) appears slightly better
and was also tested in the absence of methanol, leading to similar results. NMR spectra
did not suggest the formation of new organo-iron species, thus it is presumable that the
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decomposition of 2a–c proceeds slowly with extensive disassembly of the organometallic
structure, as previously described for similar compounds [28,34]. In contrast, complex
3 showed markedly less stability in the aqueous media, and extensive decomposition
with formation of a mixture of unidentified products including the precipitation of a solid
that was observed after ca. 24 h. This decomposition, which could not be quantified,
is presumably associated with the relative steric hindrance of the oxazolidinone moiety,
favoring the replacement of the amine ligand by one solvent molecule and triggering the
degradation process [34].

Table 1. Solubility of diiron amine complexes in D2O (based on 1H NMR spectroscopy, DMSO2 as
internal standard). Residual % of complex in aqueous media after 72 h at 37 ◦C, and solvent (D2O or
DMEM-d) over CD3OD ratio.

Complex Solubility/mol·L−1 % Stability
D2O/CD3OD

% Stability
DMEM-d/CD3OD

Solvent/CD3OD
Ratio

2a 2.0·10−3 45 45 2

49 29 ∞

2b 0.2·10−3 29 ≈10 2

2c 9.6·10−3 19 17 2

3 4.7·10−4 ≈0 ≈0 2

3. Experimental Section
3.1. Materials and Methods

Reactants and solvents were purchased from Alfa Aesar, Merck, Strem or TCI Chemi-
cals, and were of the highest purity available. Diiron complexes 1a–b [26,27] and (2-bromo-
1-phenylethyl)dimethylsulfonium bromide [70] were prepared according to published
procedures. Reactions were conducted under N2 atmosphere using standard Schlenk tech-
niques and monitored by means of liquid IR spectroscopy. Products were stored under N2
once isolated. Dichloromethane and tetrahydrofuran were dried with the solvent purifica-
tion system mBraun MB SPS5, while acetonitrile was used as received. Chromatography
separations were carried out on columns of deactivated alumina (Merck, 4% w/w water). IR
spectra of solutions were recorded using a CaF2 liquid transmission cell (2300–1500 cm−1)
on a Perkin Elmer Spectrum 100 FT-IR spectrometer. IR spectra were processed with Spec-
tragryph software [71]. The 1H and 13C NMR spectra were recorded at 298 K on a Jeol
JNM-ECZ500R instrument equipped with a Royal HFX Broadband probe. Chemical shifts
(expressed in parts per million) are referenced to the residual solvent peaks [72]. NMR
spectra were assigned with the assistance of 1H-13C (gs-HSQC and gs-HMBC) correlation
experiments [73]. NMR signals due to secondary isomeric forms (where it is possible to
detect them) are italicized. Elemental analyses were performed on a Vario MICRO cube
instrument (Elementar).

3.2. Synthesis and Characterization of Diiron Aminocarbyne Complexes with Primary Amines

General procedure. A solution of 1a–b (ca 0.2 mmol) in MeCN (15 mL) was treated
with Me3NO·2H2O (1.1 eq.), and the resulting mixture was stirred for 1 h, allowing the
outflow of the produced gas. The conversion of the starting material into the acetonitrile
adducts, 1aNCMe and 1bNCMe, was checked by IR spectroscopy, as is routine for this type of
reaction [42]. Volatiles were removed under vacuum, thus affording a brown residue. This
solid was dissolved in CH2Cl2 (ca. 10 mL), the selected amine (ca. 5 eq.) was added, and
this solution was stirred overnight at room temperature. The crude reaction mixture was
filtered on a celite pad, and the filtrated solution was evaporated under reduced pressure.
The residue was suspended in Et2O (15 mL) for 1 h, then the liquid was eliminated.
The resulting dark-brown powder was dried under vacuum. All products are soluble in
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acetonitrile, acetone, dichloromethane and tetrahydrofuran, and manifested hygroscopic
behavior; thus, they were conserved under N2 atmosphere.

[Fe2Cp2(κN-NH2CH2CH2OH)(CO)(µ-CO){µ-CN(Me)2}]CF3SO3, 2a (Figure 1).
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[Fe2Cp2(κN-NH2CH2CH2OMe)(CO)(µ-CO){µ-CN(Me)(Cy)}]CF3SO3, 2c (Figure 3).
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solid, yield 113 mg (81%). Anal. calcd. for C24H33F3Fe2N2O6S: C, 44.60; H, 5.15; N, 4.33; S,
4.96. Found: C, 44.32; H, 5.24; N, 4.42; S, 5.03. IR (CH2Cl2):
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/cm−1 = 1971vs (CO), 1799s
(µ-CO), 1532w (µ-CN). 1H NMR (CDCl3): δ/ppm = 5.66, 4.80* (m, 1 H, CHCy); 4.84–4.82 (s,
10 H, Cp); 4.48, 4.08 (s, 3 H, NMe); 3.02, 3.00 (s, 3 H, OMe); 2.37–2.30, 2.18–2.11, 2.07–1.99,
1.93–1.87, 1.85–1.81, 1.78–1.73, 1.55–1.49, 1.44–1.33 (m, 15 H, CH2

Cy + NCH2 + OCH2 +
NH); −2.13, −2.22 (m, 1 H, NH). *Overlapped with Cp resonance. 13C{1H} NMR (CDCl3):
δ/ppm = 330.8, 330.4 (µ-CN); 268.7, 268.5 (µ-CO); 212.2, 212.1 (CO); 120.6 (q, 1JCF = 320 Hz,
CF3); 88.2, 87.9, 87.7, 86.6 (Cp); 78.2, 75.1 (CHCy); 70.8, 70.7 (OCH2); 58.6, 58.3 (OMe); 47.9,
47.5 (NCH2); 46.2, 45.0 (NMe); 32.9, 32.7, 31.5, 31.2, 26.1, 26, 25.4, 25.3, 25.1, 24.2 (CH2

Cy).
α/β ratio = 2.

3.3. Synthesis of Diiron Aminocarbyne Complex with Oxazolidinone–Amine
3.3.1. Synthesis and Characterization of 3-(2-Aminoethyl)-5-phenyloxazolidin-2-one
(NH2

OX, Figure 4) [61]

The title compound was prepared using a slight modification of the literature pro-
cedure, which avoids chromatographic purification, affording a purer product. A round
bottom flask (volume = 100 mL) containing 30 mL of H2O was evacuated and then filled
with CO2. Ethylenediamine (2.05 mL, 30.7 mmol) was added. The mixture was stirred
until gas absorption ceased, and then (2-bromo-1-phenylethyl)dimethylsulfonium bromide
(1.000 g, 3.066 mmol) was added. A balloon (volume ≈ 1 L) filled with CO2 was connected
to the flask, and the mixture was stirred for 48 h under a constant pressure of CO2. Forma-
tion of an oily phase occurred; this oil was extracted with dichloromethane (3 × 20 mL)
and the organic phase was collected. The solvent was eliminated under reduced pressure,
affording a colorless/pale-yellow oil. Yield: 226 mg (36%). 1H NMR (CDCl3): δ = 7.41–7.29
(m, 5 H, C6H4); 5.40 (t, 3JHH = 8.2 Hz, 1 H, CH); 3.89, 3.33 (t, 3JHH = 8.3 Hz, 2 H, CH2); 3.33,
3.17 (m, 2 H, NCH2CH2); 2.78 (t, 3JHH = 6.2 Hz, 2 H, NCH2CH2); 2.28 (s, 2 H, NH2).
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3.3.2. Synthesis and Characterization of
[Fe2Cp2{κN-NH2

OX}(CO)(µ-CO){µ-CN(Me)2}]CF3SO3, 3 (Figure 5)

A solution of 1a (135 mg, 0.255 mmol) in THF (8 mL) was treated with NH2
OX (91 mg,

0.44 mmol) and then Me3NO·2H2O (56 mg, 0.51 mmol). The resulting mixture was left
stirring for 4 h, allowing for the outflow of produced gas. Volatiles were then removed
under vacuum, and the brown residue was washed with diethyl ether (20 mL) and then
with ethyl acetate/hexane 2:1 (v/v). The solid obtained was dissolved in a small volume of
CH2Cl2 and this solution was filtered through a celite pad. The solvent was removed under
vacuum, affording a brown solid. Yield 166 mg (96%). IR (CH2Cl2):
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[Fe2Cp2(κN-NH2CH2CH2OMe)(CO)(μ-CO){μ-CN(Me)(Cy)}]CF3SO3, 2c (Figure 3) 

/cm−1 = 1973vs (CO),
1797s (µ-CO), 1751vs (C=O), 1575m (µ-CN). 1H-NMR (acetone-d6): δ/ppm = 7.49–7.33 (m,
5 H, Ph); 5.47, 5.35 (s, 1 H, CH); 5.14, 5.12, 4.99, 4.98 (s, 10 H, Cp); 4.69, 4.68, 4.33, 4.32 (s,
6 H, NMe2); 3.91, 3.85, 3.31, 3.29 (m, 2 H, CH2); 3.17–2.90 (m, 2 H, NCH2CH2); 2.84 (m,
1 H, NH)*; 2.35, 2.17 (m, 2 H, NCH2CH2); −0.94 (m, 1 H, NH). 13C{1H} NMR (CDCl3):
δ/ppm = 331.5, 331.4 (µ-CN); 270.8, 270.5 (µ-CO); 214.5, 214.3 (CO); 159.0, 159.0 (C=O);
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CF3); 89.5, 89.4, 87.2, 87.2 (Cp); 75.6, 75.6 (CH); 54.5, 54.5, 52.8, 52.8 (NMe2); 53.1, 53.0 (CH2);
47.2, 46.8 (NCH2CH2); 46.2, 46.1 (NCH2CH2). Diastereoisomer ratio = 1. *Overlapped with
H2O signal.
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The title compound was prepared using a procedure analogous to that described for
the synthesis of 3, from 1a (38 mg, 0.071 mmol), TMNO (12 mg, 0.11 mmol) and NHEt2
(0.040 mL, 0.36 mmol). Dark-brown solid, yield 28 mg. 4a was obtained in admixture
with other by-products and could not be purified due to its instability. IR (CH2Cl2):
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Figure 2. Structure of 2b (left: α isomer; right: β isomer). 

From 1b (130 mg, 0.217 mmol) and NH2CH2CH2OH (65 μL, 1.1 mmol). Brown solid, 
yield 129 mg (95%). Anal. calcd. for C23H31F3Fe2N2O6S: C, 43.69; H, 4.94; N, 4.43; S, 5.07. 
Found: C, 43.46; H, 5.03; N, 4.36; S, 5.14. IR (CH2Cl2): ῦ/cm−1 = 1970vs (CO), 1799s (μ-CO), 
1532w (μ-CN). 1H NMR (CDCl3): δ/ppm = 5.66, 4.80* (m, 1 H, CHCy); 4.85, 4.83, 4.80, 4.79 
(s, 10 H, Cp); 4.50, 4.09 (s, 3 H, NMe); 3.60, 3.39–3.32 (m, 2 H, OCH2); 3.20–3.13, 2.84 (m, 2 
H, NCH2); 2.43–2.35 (m, 1 H, NH); 2.31–2.28, 2.20–2.11, 1.57–1.45, 1.41, 1.29 (m, 10 H, 
CH2Cy); −1.92, −2.14 (m, 1 H, NH). *Overlapped with Cp resonance. 13C{1H} NMR (CDCl3): 
δ/ppm = 331.1, 330.5 (μ-CN); 268.5, 268.1 (μ-CO); 212.6, 212.4 (CO); 120.5 (q, 1JCF = 320 Hz, 
CF3); 88.1, 87.9, 86.7, 86.6 (Cp); 78.4, 75.3 (CHCy); 61.0, 60.8 (OCH2); 50.7, 49.7 (NCH2); 46.4, 
45.1 (NMe); 33.0, 32.6, 31.8, 31.6, 31.1, 31, 30.8, 26.1, 26, 25.5, 25.3, 25.1, 24.5 (CH2Cy). α/β 
ratio = 2.  

[Fe2Cp2(κN-NH2CH2CH2OMe)(CO)(μ-CO){μ-CN(Me)(Cy)}]CF3SO3, 2c (Figure 3) 

/cm−1 = 1978vs (CO), 1800s (µ-CO), 1577w (µ-CN). 1H NMR (acetone-d6): δ/ppm = 5.12,
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4.96 (s, 10 H, Cp); 4.69, 4.34 (s, 6 H, NMe2); 1.43, 1.29 (m, 4 H, NCH2); 0.87, 0.70 (t,
3JHH = 6.9 Hz, 6 H, CH3); −1.20 (m, 1 H, NH).

[Fe2Cp2(NHEt2)(CO)(µ-CO){µ-CN(Me)2}]CF3SO3, 4b (Figure 7).
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The title compound was prepared using a procedure analogous to that described
for the synthesis of 3, from 1b (120 mg, 0.200 mmol), TMNO (44 mg, 0.400 mmol) and
NHEt2 (0.12 mL, 1.0 mmol). Dark-brown solid, yield 70 mg. 4b was obtained in admix-
ture with other by-products and could not be purified due to its instability. IR (THF):
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[Fe2Cp2(κN-NH2CH2CH2OMe)(CO)(μ-CO){μ-CN(Me)(Cy)}]CF3SO3, 2c (Figure 3) 

/cm−1 = 1963vs (CO), 1799s (µ-CO), 1534w (µ-CN). 1H NMR (CDCl3): δ/ppm = 4.91, 4.86
(s, 10 H, Cp); 4.62 (s, 3 H, NMe); 1.43–1.28 (m, 4H, NCH2); 0.79, 0.56 (t, 3JHH = 6.9 Hz, 6 H,
CH3); -2.97 (t, 1 H, NH).

3.5. Behavior of the Diiron Complexes in Aqueous Media
3.5.1. Solubility in D2O

A suspension of the selected diiron complex (3–5 mg) in a D2O solution (0.7 mL) con-
taining dimethylsulfone (DMSO2) as internal standard (4.64·10−3 M) was vigorously stirred
at room temperature for 1 h. The saturated solution was filtered over celite, transferred
into an NMR tube and analyzed by 1H NMR (delay time = 4s; number of scans = 25). The
concentration of the saturated solution (=solubility) was calculated by the relative integral
with respect to DMSO2 (δ/ppm = 3.16, s).

3.5.2. Stability in Aqueous Solutions

The selected diiron complex (ca. 5 mg) was dissolved in a CD3OD/D2O solution (ca.
0.8 mL) containing DMSO2 (4.64·10−3 M). The mixture was stirred for 30 min, filtered over
celite and transferred into an NMR tube. The solution (CFe = 6·10−3 M) was analyzed by
1H NMR (delay time = 4 s; number of scans = 25, see Table S1) and then heated at 37 ◦C for
72 h. After cooling to room temperature, the final solution was separated from a brown
solid using filtration over celite, and the 1H NMR spectrum was recorded. The residual
amount of the starting material in the solution (% with respect to the initial spectrum) was
calculated by the relative integral with respect to DMSO2 as an internal standard. The same
procedure was adopted for studying the stability in cell culture medium by dissolving the
selected diiron complex (3–5 mg) in the CD3OD/DMEM-d solution containing DMSO2
(4.64·10−3 M) as an internal standard [74]. Deuterated cell culture medium (DMEM-d)
was prepared by dissolving powdered DMEM (D2902, Merck) in D2O according to the
manufacturer’s instructions.

4. Conclusions

Diiron aminocarbyne complexes based on the [Fe2Cp2(CO)x] scaffold represent a ver-
satile class of organometallics, to which structural diversity may be supplied using different
strategies. Here, we describe the synthesis of new derivatives containing terminal amine
ligands, showing that the synthesis reaction, via a dissociative substitution mechanism, is
straightforward for primary alkyl-amines and tolerates heteroatom functions on the amine
substituent. Remarkably, through this approach, we report a rare example of conjugation
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of a biologically relevant cyclic carbamate with an organo-diiron core. The new cationic
complexes display sufficient water solubility, and those complexes with small alkyl sub-
stituents manifest a fair inertness in aqueous media under pseudo-physiological conditions,
thus justifying the reported synthetic strategy for the future development of water-tolerant
homogeneous catalysts and drug candidates. In contrast, steric factors appear to be crucial
in that bulkier amine substituents may lead to labile coordination in aqueous media, while
secondary amines do not form stable adducts.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/inorganics11030091/s1. NMR spectra of diiron complexes. Figure
S1: 1H NMR spectrum (401 MHz, acetone-d6) of 2a (integration refers to the major isomer); Figure
S2: 13C{1H} NMR spectrum (101 MHz, acetone-d6) of 2a; Figure S3: 1H NMR spectrum (401 MHz,
CDCl3) of 2b (integration refers to the major isomer); Figure S4: 13C{1H} NMR spectrum (101 MHz,
CDCl3) of 2b; Figure S5: 1H NMR spectrum (401 MHz, CDCl3) of 2c (integration refers to the major
isomer); Figure S6: 13C{1H} NMR spectrum (101 MHz, CDCl3) of 2c; Figure S7: 1H NMR spectrum
(401 MHz, CDCl3) of NH2

OX. Figure S8. 1H NMR spectrum (401 MHz, acetone-d6) of 3; Figure
S9. 13C{1H} NMR spectrum (101 MHz, acetone-d6) of 3; Figure S10. 1H NMR spectrum (401 MHz,
acetone-d6) of 4a (integration refers to the major isomer); Figure S11. 1H NMR spectrum (401 MHz,
CDCl3) of 4b (integration refers to the major isomer).
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