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Abstract: The current research is about the synthesis of pure nickel sulfide, a series of Te (0, 0.5, 1, 1.5,
2, and 3 wt.%)-doped NiS (Te@NiS) nanoparticles (NPs), and a series of S-g-C3N4 (10, 30, 50, 70, and
80 wt.%)/Te@NiS nanocomposites (NCs), fabricated through a hydrothermal route. XRD and FTIR
spectroscopic techniques demonstrated the successful synthesis of NPs and NCs. SEM-EDX images
confirmed the flakelike structure and elemental constituents of the fabricated materials. Tauc plots
were drawn, to calculate the band gaps of the synthesized samples. Te doping resulted in a significant
reduction in the band gap of the NiS NPs. The photocatalytic efficiency of the NPs and NCs was
investigated against MB, under sunlight. The results obtained for the photocatalytic activity, showed
that 1%Te@NiS nanoparticles have an excellent dye degradation capacity in sunlight. This was made
even better by making a series of SGCN/1% Te@NiS nanocomposites with different amounts of S-g-
C3N4. When compared to NiS, Te@NiS, SGCN, and 70%SGCN/1%Te@NiS, the 70%SGCN/1%Te@NiS
NCs have excellent antifungal ability. The higher impact of SGCN/Te@NiS, may be due to its
enhanced ability to disperse and interact with the membranes and intracellular proteins of fungi. The
70%SGCN/1%Te@NiS NCs showed excellent antibacterial and photocatalytic efficiency. Thus, the
70%SGCN/1%Te@NiS NCs might prove fruitful in antibacterial and photocatalytic applications.

Keywords: synthesis of NiS; synthesis of Te@NiS; synthesis of S-g-C3N4/Te@NiS nanocomposites;
antibacterial study; photocatalytic activity

1. Introduction

The textile industry is an important contributor to the global economy. It accounts
for a large part of global exports and creates many jobs. Still, it has also been regarded
as a significant contributor to global pollution [1–4]. Most of the damage that the textile
industry does to the environment, is caused by the discharge of untreated effluent into
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waterways, which accounts for about 80% of all emissions from the industry [5–7]. The
effluent discharged by the textile industry, is a combination of metals, dyes, and other
pollutants [8]. Textile dyes are our biggest concern, because they are mutagenic, can cause
cancer, and stay in the environment for a long time. They also affect whole food chains
and bioaccumulate, which means that species higher up the food chain have higher levels
of contamination than their prey [5,9–11]. In this regard, azo-type textile dyes deserve
special attention, because during the dyeing process, approximately 15% to 50% of them
are discharged into water that emerging countries regularly utilize for irrigation [12].
This water has negative impacts on the soil and living beings, and enters the food chain.
Therefore, in order to preserve the sustainability of the ecosystem for future generations,
remediation measures must be implemented [13–15].

Regarding solving problems that arise from textile effluent, semiconductor-based pho-
tocatalysts, such as metal oxides (e.g., TiO2 [16,17], ZnO [18,19], Bi2WO6 [20], CuO [21,22],
WO3 [23], and Fe2O3 [24]), metal sulfides (e.g., ZnS [25,26], CuS [27,28], CdS [29,30],
Ag2S [31], Bi2S3 [32], and NiS [33]), and chitosan coated zinc oxide (CS-ZnO) nanocompos-
ites [34], have attracted wide attention because of their ability to degrade organic pollutants
by utilizing solar energy [35–37], and for the production of hydrogen [38]. Among these
photocatalysts, metal-sulfide-based semiconductors are the most well-known for degrading
dyes with cost-effective, eco-friendly, and long-lasting treatment methods [39,40]. Among
the metal sulfide photocatalysts, NiS plays an ideal role in the selection of p-type semi-
conductors, that match with the energy levels of TiO2 [41]. Furthermore, its binary Ni–S
systems have more earth abundant resources, possessing multiple phases, such as Ni3S2,
Ni9S8, Ni7S6, NiS2, Ni3S4, NiS, etc. [42]. NiS2 nanostructures, including nanoparticles,
hollow microspheres, nanowires, and nanosheets, have been hailed as potential semicon-
ducting materials [43] for catalytic applications because of their stability, affordability, and
nontoxic nature [42,44,45]. However, despite having optoelectronic properties [46], the
efficiency of photodegradation remains low when using metal sulfides, due to the fast
electron–hole recombination [47]. Similarly, photocorrosion and low quantum efficiency
also affect metal sulfides. So, overcoming these issues before applying metal sulfides as
photocatalysts, is necessary [48]. In this regard, enormous efforts have been undertaken,
such as modifications to the structure of the nanoparticles, or doping.

Doping of high-surface-area particles or materials is required for increasing the pho-
tocatalytic performance and charge transfer characteristics of the catalyst [49]. Ceramic
oxide nanodoping (Al2O3, TiO2, SiO2, etc.) can improve the dielectric characteristics of
composites, while maintaining their high thermal durability [50]. Electrocatalytic H2 gen-
eration can be improved by doping with a non-noble metal catalyst. This helps to solve
the issue of low efficiency related to the production of either metal electrocatalytic H2
or non-noble metal H2. Previously, metal/nonmetal doping has been used to improve
the morphology and characteristics of nanodoped NiS. Cobalt doping on nickel sulfide
improves its efficiency to evolve electrocatalytic hydrogen [51].

Properly engineered heterojunctions/nanocomposites are the newest trend in nanos-
tructured material development. They are characterized as a mixture of two or more phases
with distinct structures and compositions, one of which is in the nanoscale regime [52]. NiS
is a p-type semiconductor, whereas g-C3N4 is typically thought of as an n-type semiconduc-
tor. Both of these semiconductors’ p-n heterostructures can aid in the promotion of charge
transfer and separation [41,53]. The p-n heterostructures of both, can help to promote the
charge transfer/separation [54,55]. Previous studies have also shown that the synergistic
interactions between g-C3N4 and the other parts of the heterostructures, inhibit the re-
combination of photogenerated charge carriers and give the photocatalysts some unique
properties [56]. A photocatalyst consisting of NiS/g-C3N4/SrTiO3 (NS/CN/STO) was
prepared using a hydrothermal method. The combination of the CN/STO heterojunction
and NiS cocatalyst, resulted in enhanced photocatalytic hydrogen evolution activity in the
NS/CN/STO system [57]. A p-n heterostructured NiS/BiVO4 (NiS/BVO) photocatalyst
was designed, by pairing NiS (p-type) nanoparticles with nanostructured BVO (n-type),
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and used to photodegrade an organic anion dye, in Li et al. The light harvesting and the
separation and transfer of electrons were improved. A molar ratio of 0.7 for NiS/BVO,
gave the highest photocatalytic capability, of 95.6%, within 90 min of irradiation, and a
degradation rate of 1.7970 h−1 was achieved, which was almost 16 and 33 times greater than
pure BVO and NiS, respectively [58]. Vignesh et al. developed the magnetically separable
g-C3N4/α-Fe2O3 nanocomposite, for the photocatalytic degradation of mixed RhB and
MB pollutants. They observed that the NC exhibited better photocatalytic efficiency than
g-C3N4 and α-Fe2O3 [59].

We first describe the hydrothermal synthesis process of sulfur-doped graphitic carbon
nitride composites with Te@NiS nanoparticles (SGCN/Te@NiS), and then study their
photocatalytic and antibacterial activity. In the current work, initially, NiS NPs were doped
with a series of weight percentages of Te (0.5, 1, 1.5, and 3%) to improve their photocatalytic
efficiency. In the photocatalytic MB degradation experiment, 1%Te@NiS NPs exhibited the
best catalytic activity. Next, 1%Te@NiS NPs were homogenized with S-g-C3N4. The weight
percentages of S-g-C3N4, in a series of S-g-C3N4/Te@NiS nanocomposites, were 10, 30, 50,
70, and 80 wt.%. The photocatalytic and antibacterial activity of the S-g-C3N4/Te@NiS
composite was found to be better than that of Te@NiS and S-g-C3N4. Te doping in the
NiS matrix and simultaneous coupling with S-g-C3N4, were primarily responsible for
this improvement. A logical photocatalytic mechanism has also been postulated for the
synthesized composite’s enhanced photocatalytic and antibacterial activities under sunlight
irradiation.

2. Experimental
2.1. Chemicals

The chemical reagents required for the synthesis of NiS, SGCN, Te@NiS nanoparticles,
and the SGCN/Te@NiS nanocomposite, and for photocatalytic activity, were thiourea
(CH4N2S), nickel nitrate hexahydrate (Ni (NO3)2.6H2O), sodium dodecyl sulfate (SDS)
(C12H25O4S.Na), methylene blue (MB) (C16H18C1N3S), ethanol (for washing only) (C2H5OH),
and tellurium (Te). Nutrient broth and nutrient agar were used in the antibacterial study.
All chemicals/reagents were used as purchased.

2.2. Synthesis of NiS and Te@NiS Nanoparticles

The NiS nanoparticles were assembled using a modified version of a previously
reported hydrothermal technique. The typical synthesis experiment involved preparing
two solutions: solution “A” was prepared by dissolving 0.75 g of thiourea into 10 mL of
distilled water, under magnetic stirring. Nickel nitrate hexahydrate (1.63 g) and 1 g of
sodium dodecyl sulfide, were added to 15 mL of distilled water, under constant stirring.
This solution was marked as solution “B.” Then, solutions A and B were mixed in one
beaker, and constantly stirred for about 20 min. Next, this solution was transferred into a
25 mL Teflon-lined, sealed stainless autoclave. The autoclave was kept in an oven at 80 ◦C
for about 8 h. Greyish-black precipitates were obtained and ground into powder. Following
filtering and rinsing with water/ethanol, the residues were dried in an oven at 70 ◦C, for
two hours. A series of weight percentages of Te (0.5, 1, 1.5, and 3%) was doped into NiS
nanoparticles, employing the same process, except for varying the tellurium concentration.

2.3. Synthesis of SGCN

To fabricate SGCN nanosheets by simple means of calcination, 10 g of thiourea was
placed in a covered alumina crucible and calcined in a muffle furnace. The temperature
was raised progressively until it reached 550 ◦C, and then that temperature was maintained
for about 4 h. The resulting yellowish product was cooled and then ground into a fine
powder [60].
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2.4. Synthesis of SGCN/Te@NiS Nanocomposites

The Te@NiS NPs were modified by integrating 0.11, 0.34, 0.63, 0.84, and 0.93 g of
SGCN, to prepare 10, 30, 50, 70, and 80 wt.% nanocomposites. To synthesize 70 wt.%
SGCN/Te@NiS composites, 1.22 g of nickel nitrate hexahydrate and 1 g of sodium dodecyl
sulfide were dissolved in 15 mL of distilled water, with constant stirring at room tempera-
ture (solution A). Solution “B” was prepared by dissolving 0.75 g of thiourea, 0.014 g of
tellurium powder, and 0.84 g of SGCN. After that, the two solutions were put into one
beaker and constantly stirred for about 20 min. Then, that solution was poured into a 25 mL
Teflon-lined autoclave and placed in an oven at 200 ◦C, for about 8 h. The greyish-black
residue obtained, was dried at 80 ◦C for 2 h. Later on, the composite was collected and
stored for characterization. Other nanocomposites were prepared in a similar fashion.
Figure 1 depicts a schematic diagram for the fabrication of the nanocomposites.
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2.5. Photocatalytic Study

A volume of 100 mL of MB aqueous solution was mixed with 0.2 g of each material.
in a typical photocatalytic experiment. The mixture was left to stir in the dark for around
30 min, to reach the adsorption–desorption equilibrium. After that, the suspension was
placed in an open environment, with sunlight, and the degradation of the MB dye was
checked by taking 5 mL aliquots at regular intervals (30 min). After centrifuging these
aliquots, a UV-visible spectrophotometer was used to record the samples’ absorption
spectra. In order to determine the rate constant for degradation, k, from the first-order plot,
it was hypothesized that the rate of degradation would follow pseudo-first-order kinetics
(Equation (1)).

ln
(

A0

A

)
= kt (1)

where A0 is the initial absorbance, A is the absorbance after a time (t), and k is the pseudo-
first-order rate constant.

The percentage degradation efficiency of the polluted dyes was studied using Equation (2):

Degradation % age efficiency =
Ao − Ae

Ao
× 100 (2)
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2.6. Band Gap Calculations for Photocatalysts

The band gap was calculated by using UV-visible spectroscopy, to measure the ab-
sorbance of samples, and then converting the absorbance data into a Tauc plot. The Tauc
plot was drawn with energy on the x-axis and (αhv)2 on the y-axis. The calculation involves
the following equation: (

α hv)γ = A(hv − Eg) (3)

where, hv is easily calculated by

hv =
1240
λ(nm)

(4)

and α is calculated by the Beer-Lambert equation

α =
4πA
λ(nm)

(5)

2.7. Antimicrobial Study

Antimicrobial activities were carried out with the best photocatalytic activity NPs
and NCs. The Antimicrobial activity determination was carried out using the agar-well
diffusion method. The process that was followed is described below:

1. The cultured bacteria and fungi were used to prepare inoculum. Two flasks were taken,
having 25 mL water each with 0.32 g of nutrient broth. The flasks were autoclaved
for about 15 min and labeled with the name of bacterial strains, i.e., Bacillus subtilis
(B. subtilis) and Escherichia coli (E. coli) and fungi strains i.e. Monilinia laxa (M. laxa) and
Fusarium oxysporum (F. oxysporum). Two drops of bacterial strain were added into the
respective flasks and placed in a shaker for 24 h. The fungal strains were incubated
for 48 h.

2. Then, the photocatalyst solutions (mg/L) were prepared, by using the relation:
M1V1 = M2V2

3. The medium was prepared by adding 1 g agar and 2 g broth to 100 mL water, in
a flask. The solution was heated until it boiled. The sample was poured into Petri
dishes and was allowed to cool down and solidify.

4. After cooling, holes were punched in the gel by hole puncture, according to the
number of mg/L solutions prepared (blank, 100 ppm, 200 ppm, 300 ppm, 400 ppm,
500 ppm). The prepared mg/L solutions were added into the respective holes. The
Petri dishes were covered and incubated for about 24 h at 37 ◦C and at 28 ◦C for 48 h
for fungal strains.

3. Results and Discussion
3.1. Fourier-Transform Infrared Spectroscopy (FTIR)

FTIR spectroscopy was employed to analyze the functional groups present in the
samples. The FTIR spectrum of NiS (Figure 2a), revealed a stretching vibration of –OH
at approximately 3261.7 cm−1 and at around 3116.9 cm−1 for 1%Te@NiS, showing the
presence of water. The occurrence of strong adsorption peaks for Te@NiS in a lower
frequency range, at 973 and 609 cm−1, is an indication of the successful incorporation of
tellurium into the NiS NPs (Figure 2b). The stretching modes of the C–H group have been
attributed to the bands appearing at approximately 2949.6 and 2919.02 cm−1. A distinct
absorption band at 973 cm−1 was identified as a specific peak for the Ni–S bond. The
development of a metal–sulfur coordination bond was confirmed by the lower C=S shift
stretching frequency at 609.9 cm−1. These peaks showed a slightly greater sharpness, and
wavenumbers that are almost identical to the absorption bands of NiS. The FTIR spectrum
of SGCN (Figure 2c), showed a sharp and prominent absorption band at 808 cm−1, that is
assigned to the stretching mode of the triazine group. The presence of C–N heterocycles
and their vibrational stretching, is indicated by the absorption bands detected in the range
of 1228–1616 cm–1. A broad band at 3111 cm−1, is probably attributable to O–H bond
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stretching and uncondensed amine groups. These observed peaks agree with earlier
reported research [61]. Specific peaks at 2923.2, 1631.2, and 1315.7 cm−1 in the composite
spectrum, correspond to Te@NiS peaks, while peaks at 1242.3, 1452.2, and 1542.2 cm−1,
correspond to SGCN’s absorption bands. This demonstrates that the SGCN/Te@NiS
nanocomposite was successfully synthesized (Figure 2d).
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3.2. X-ray Diffraction Pattern

X-ray diffractograms were used to distinguish the phase, and lattice parameters of the
synthesized photocatalysts (NiS, Te@NiS, SGCN, and SGCN/Te@NiS). The XRD pattern of
nickel sulfide showed peaks at 2θ◦ = 30.70◦, 32.62◦, 36.07◦, 38.36◦, 40.94◦, 49.38◦, 50.21◦,
52.73◦, 56.67◦, 57.89◦, 60.08◦, 71.09◦, and 73.08◦, which correspond to the 101, 300, 021, 220,
211, 131, 410, 401, 321, 330, 312, and 431 crystalline planes of NiS (Figure 3a). The most
intense peak was found at angle 2θ = 46.22◦. These outcomes were consistent with earlier
work [62]. The XRD patterns of Te@NiS and SGCN/Te@NiS, show a minor shift towards the
lower angles, demonstrating the effective doping of Te into NiS and the coupling of SGCN
with Te@NiS photocatalysts, respectively (Figure 3b). These findings show that nickel has
been adequately replaced by tellurium in the NiS lattice. Figure 3c shows the XRD pattern
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for SGCN has two distinct peaks, at 13.52◦ and 27.2◦, having facets of crystals (100) and
(002), respectively. Figure 3c shows the XRD pattern for SGCN, with a distinct peak at
13.52◦, having the facet of crystal (100). In the X-ray diffractogram of SGCN@Te/NiS, the
distinct peaks obtained at 2θ = 11.42◦, 28.28◦ are due to SGCN, while other peaks observed
(31.73◦, 34.22◦, 37.83◦, 38.59◦, 40.93◦, 50.33◦, 51.75◦, 53.98◦, 56.47◦, 57.49◦, 60.13◦, 70.79◦,
and 72.77◦), correspond to the crystalline planes of Te@NiS.
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3.3. SEM

Figure 4 displays SEM images showing the morphological structure of NiS, Te@NiS
NPs, and SGCN/Te@NiS NCs. Figure 4a,b show SEM images of NiS at two different
magnifications. In these images, NiS showed a two dimensional flakelike structure. In
Figure 4c,d, the agglomerated Te@NiS nanoparticles can be seen in various sizes. Two
distinct magnifications of SGCN/Te@SGCN are shown in Figure 4e,f. The images reveal
that the agglomerated flakes found in the Te@NiS NPs, are aligned on the surface of the
SGCN sheets. The EDX spectrum of SGCN/Te@NiS (Figure 4g), revealed the existence
of carbon (C), nitrogen (N), nickel (Ni), oxygen (O), tellurium (Te), and sulfur (S). The
percentage composition of the components found in the SGCN/Te@NiS composite was in
the order Ni > C > O > S > Te. This demonstrates that C and O have greater content ratios,
whereas Te has the lowest concentration. The detected elements in the EDX spectrum,
confirm the successful synthesis of SGCN/Te@NiS.
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3.4. Band Gap

The band gap is the key property for determining the photocatalytic performance of
the synthesized samples. The calculated band gap for NiS is about 3.70 eV [63] (Figure 5a),
which decreases to 3.23 eV on doping with Te (Figure 5b), confirming the massive reduction
in e−/h+ pair recombination rate, resulting in an increase in the photodegradation efficiency
of MB. The calculated band gap for SGCN is 2.67 eV (Figure 5c). This energy bandgap
of SGCN is similar to that previously reported [64]. A further decrease in the band gap
(to 2.60 eV) was observed, by the hybridization of SGCN with Te@NiS (Figure 5d). It was
deduced from the results, that the photogenerated e− can easily jump from the impure
state to the conduction band, or from the valence band to the impure state. In other words,
the photodegradation efficiency of NiS NPs is enhanced by the formation of composites.
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3.5. XPS

XPS was used to analyze the surface chemistry of SGCN/Te@NiS, as well as the interac-
tion between SGCN and Te@NiS. The binding energy at 283.3 eV might be attributed to the
C–C coordination of the surface adventitious carbon, while that at 284.8 eV corresponds to
sp2-bonded carbon, according to the high-resolution spectrum of C 1s (Figure 6a) (C–NH2).
This shift was attributed to the interactions between SGCN and Te@NiS, since the binding
energies of C 1s for SGCN/Te@NiS NCs, were somewhat lower than the published values
for SGCN [65,66]. The graphitic N, pyrrolic N, and pyridine N could each be identified by
one of three different peaks, at 402.5, 399.1, and 397.6 eV, in the SGCN N 1s peak. When
compared to the previously published value for SGCN (398.5 eV), the binding energy of
pyridine N in the SGCN/Te@NiS sample was reduced by 0.18 eV, thus demonstrating
the interfacial contact between SGCN and Te@NiS (Figure 6b) [67,68]. Four characteristic
peaks, of Te 3d5/2 (573.21 eV), Te 3d3/2 (583.21 eV), and TiOx (576.71 and 587.04 eV), were
assigned to the metallic Te and tellurium ions, Te4+, in the Te 3d XPS spectrum (Figure 6c),
which fully corresponds with the literature. The Ni 2p3/2 and Ni 2p1/2 can be ascribed to
the peaks that occurred at 853.34 eV and 870.74 eV, respectively, in the Ni 2p spectrum of
SGCN/Te@NiS (Figure 6d). Furthermore, the signal’s satellite peaks, occurring at 862.41
and 880.24 eV, are similar to those noted elsewhere in the literature. Additionally, as shown
in Figure S1, the deconvoluted XPS spectrum of the S 2p was performed for SGCN/Te@NiS,
to analyze the valence state of the S. In SGCN/Te@NiS NCs, sulfur is generally associated
with two distinct peaks, at 159.93 and 160.13 eV.
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3.6. Photocatalytic Activity Measurements

Using a UV-visible spectrophotometer, the photodegradation of methylene blue by
pure NiS, Te@NiS nanoparticles, and SGCN/Te@NiS nanocomposites was observed under
sunlight. The organic dye, methylene blue, was degraded by the synthesized nanocatalysts,
resulting in the formation of the inorganic species H2O and CO2. UV-visible spectropho-
tometer results are shown in Figure 7a,b. The rate of degradation of methylene blue was
found to be wavelength dependent. A high rate of degradation was observed in the visible
region, at ~664 nm, and a low rate was found in the UV region, at ~292 nm (Figure 7c). The
absorption strength reduced over time, which aided in increasing the photodegradation of
methylene blue (Figure 7c). In the series of doped photocatalysts, the 1%Te@NiS nanoparti-
cles were found to show excellent degradation of MB dye, as compared to other Te@NiS
nanoparticles (Figure 7a,b), due to the synergistic photocatalytic effect of both Te metal and
NiS. The decrease in the bandgap due to Te doping, helps to increase the charge separation
and degradation rate of the MB dye. Thus, the degradation rate of MB increased for Te@NiS
NPs, as compared to NiS NPs, and 1%Te@NiS exhibited the best photocatalytic activity.
Next, 1%Te@NiS nanoparticles were integrated with SGCN (10, 30, 50, 70, and 80 wt.%), to
develop more effective nanocomposites, and their photocatalytic activity against MB was
examined.
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From the photocatalytic activity of the prepared series of nanocomposites, it was
observed that, as the proportion of SGCN increased, so did the degrading tendency of
MB. The fabricated NCs were mixed with dye and placed in the dark under stirring, to
check the dye adsorption ability of the NCs (Figure 8). Then, the sample and dye mixtures
were exposed to the sunlight, to verify their photocatalytic efficiencies against the model
pollutant. In the composite photocatalyst series, 70%SGCN/Te@NiS deteriorated MB faster
(97%) than the other composites (Figure 8a).

Inorganics 2023, 11, x FOR PEER REVIEW 12 of 18 
 

 

From the photocatalytic activity of the prepared series of nanocomposites, it was ob-

served that, as the proportion of SGCN increased, so did the degrading tendency of MB. 

The fabricated NCs were mixed with dye and placed in the dark under stirring, to check 

the dye adsorption ability of the NCs (Figure 8). Then, the sample and dye mixtures were 

exposed to the sunlight, to verify their photocatalytic efficiencies against the model pollu-

tant. In the composite photocatalyst series, 70%SGCN/Te@NiS deteriorated MB faster 

(97%) than the other composites (Figure 8a). 

All of the synthetic photocatalysts were found to adhere to first-order kinetics (Fig-

ures 7b and 8b). The following sequence of kinetic rates was determined from the pseudo-

first-order reaction: SGCN/Te@NiS > Te@NiS > NiS. The 70% SGCN is naturally the best 

concentration for the SGCN/Te@NiS NC, to achieve its highest photocatalytic activity. Ad-

ditionally, a rise in SGCN concentration (< 70%) may result in e–h pair combination cen-

ters, which gradually reduce photocatalytic efficiency. The fact that the kinetic rate of 

SGCN/Te@NiS was higher than that of Te@NiS and NiS, suggests that SGCN/Te@NiS has 

outstanding photocatalytic activity against MB. The photocatalytic activity of the 7% 

SGCN/Te@NiS NC was found to be better than that of some recent reported composites, 

because SGCN and Te@NiS might successfully develop good heterojunctions [55–61] (Ta-

ble 1). Te atoms may also aid in the transport and separation of e- and h+ in the composite. 

 

Figure 8. Degradation efficiency (a). Kinetic study of photocatalytic degradation of MB by 

SGCN/Te@NiS NCs (b). 

Table 1. Photocatalytic efficiency of the SGCN/Te@NiS NCs and some previously reported work. 

Sr. No Photocatalyst 
Target  

Pollutant 

Light 

Source 

Radiation 

Time 

(min.) 

Degradation % Ref 

1 ZnS MB Xe lamp 120 77.2 [69] 

2 MgS/Ag2MoO4 MB Visible 200 90 [70] 

3 BiSbO4 MB Xe lamp 10 h 96.7 [71] 

4 FeOOH-LDO MB Xe lamp 180 92 [72] 

5 BiSbO4 MB Xe lamp 10 h 96.7 [71] 

6 
Cr-ZnFe2O4/S-g-

C3N4 
MB Solar 90 100 [73] 

7 Pt-BiFeO3 MG Solar 240 96 [74] 

8 Co-SnO2/SGCN MB Solar 120 98 [75] 

9 SGCN/Te@NiS  MB Solar 70 97 
Present 

Work 

Figure 8. Degradation efficiency (a). Kinetic study of photocatalytic degradation of MB by
SGCN/Te@NiS NCs (b).

All of the synthetic photocatalysts were found to adhere to first-order kinetics
(Figures 7b and 8b). The following sequence of kinetic rates was determined from the
pseudo-first-order reaction: SGCN/Te@NiS > Te@NiS > NiS. The 70% SGCN is naturally
the best concentration for the SGCN/Te@NiS NC, to achieve its highest photocatalytic
activity. Additionally, a rise in SGCN concentration (< 70%) may result in e–h pair combina-
tion centers, which gradually reduce photocatalytic efficiency. The fact that the kinetic rate
of SGCN/Te@NiS was higher than that of Te@NiS and NiS, suggests that SGCN/Te@NiS
has outstanding photocatalytic activity against MB. The photocatalytic activity of the 7%
SGCN/Te@NiS NC was found to be better than that of some recent reported composites, be-
cause SGCN and Te@NiS might successfully develop good heterojunctions [55–61] (Table 1).
Te atoms may also aid in the transport and separation of e- and h+ in the composite.

Table 1. Photocatalytic efficiency of the SGCN/Te@NiS NCs and some previously reported work.

Sr. No Photocatalyst Target
Pollutant

Light
Source

Radiation
Time (min.)

Degradation
% Ref

1 ZnS MB Xe lamp 120 77.2 [69]
2 MgS/Ag2MoO4 MB Visible 200 90 [70]
3 BiSbO4 MB Xe lamp 10 h 96.7 [71]
4 FeOOH-LDO MB Xe lamp 180 92 [72]
5 BiSbO4 MB Xe lamp 10 h 96.7 [71]

6 Cr-ZnFe2O4/S-
g-C3N4

MB Solar 90 100 [73]

7 Pt-BiFeO3 MG Solar 240 96 [74]

8 Co-
SnO2/SGCN MB Solar 120 98 [75]

9 SGCN/Te@NiS MB Solar 70 97 Present
Work
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The EPR spectra of 70%SGCN/1%Te@NiS NCs were studied, to further corroborate the
validation of the functional species ·O2

− and ·OH in the photocatalysis event (Figure 9a,b).
Although the signals are not visible in the dark, the obvious ESR signals are associated
with the DMPO−•OH and DMPO−•O2

− adducts under sunlight, indicating that both
•OH and •O2

− are formed during the photocatalysis reaction. The EPR results not only
confirm the development of the 70%SGCN/1%Te@NiS NCs, but also show how effective
the self-assembled approach, built using SGCN/Te@NiS, is for pollutant degradation.
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3.7. Antimicrobial Activity

The antimicrobial activity was explored by using various concentrations of NiS, Te-
doped NiS nanoparticles, and composites (100, 200, 300, 400, and 500 mg/L solutions),
against two bacteria (B.subtilis and E. coli) and two fungi (M. laxa and F. oxysporum) strains.
The corresponding bactericidal results were noted by measuring the zone of inhibition
(ZOI) and are given in Table 2. It was noted that the SGCN/Te@NiS with a concentration of
500 mg/L showed excellent antibacterial behavior and produces a 19 ± 0.8 mm ZOI against
Bacillus subtilis, and 18 ± 0.8 mm ZOI against E. coli (Table 2). The ordered bactericidal
effect of the samples against bacteria was found to be NiS < Te@NiS < SGCN/Te@NiS.
According to the proposed photocatalytic and bactericidal mechanism, the synthesized
nanocatalysts generate e–/h+ pairs and reactive oxygen species (ROS) under light irra-
diation (Figure 10) [76,77]. The maximal zone of inhibition values of 3Te-ZnO@40SCN
NCs, for M. laxa and F. oxysporum, are 39.2 mm and 36.5 mm, respectively, according to the
antifungal potential data (Table 2). The resulting reactive species cause the degradation
of the dye and the damage to the cellular membrane, which leads to the death of the
microbial cell [78]. In the SGCN/Te@NiS composite, SGCN acts as an electron acceptor,
which helps with charge transfer and separates charge carriers, to slow down the rate of
recombination. The prolonged lifetime of the e–/h+ pair, produces more radicals, which
enhances the bactericidal activity of the SGCN/Te@NiS composite. Thus, the improved
antibacterial behavior of composites refers to the synergistic effect of the Te@NiS and SGCN
substrates. As a result, SGCN/Te@NiS NCs could be used in future pollution remediation
and antimicrobial applications.
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Table 2. NiS, Te@NiS, SGCN, and SGCN/Te@NiS NCs have zones of inhibition for their antifungal
potential when employed in the agar-well diffusion method.

Antibacterial and Antifungal Potential

Bacterial strains Samples Blank Zone of Inhibition (mm)

B. subtilis

NiS 0 11

Te@NiS 0 13

SGCN 0 15

SGCN/Te@NiS 0 19

E. coli

NiS 0 10

Te@NiS 0 12

SGCN 0 14

SGCN/Te@NiS 0 18

M. laxa

NiS 0 15.6

Te@NiS 0 21.4

SGCN 0 22.7

SGCN/Te@NiS 0 39.2

F. oxysporum

NiS 0 13.8

Te@NiS 0 19.1

SGCN 0 21.9

SGCN/Te@NiS 0 36.5
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4. Conclusions

In this study, a series of Te-doped nickel sulfides were made, by adding tellurium
as an impurity (wt.%), and a series of composites were made, by integrating different
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concentrations (wt.%) of SGCN into 1%Te@NiS. The successful syntheses of NiS, Te@NiS,
and SGCN/1Te@NiS were examined by various characterization techniques, where XRD
results confirmed crystallinity, SEM checked the structural morphologies, EDX verified
the elemental composition, and FTIR spectra validated the presence of functional groups.
The antimicrobial and photocatalytic efficiency of the synthesized samples was checked
against bacteria, fungi and MB, respectively. The photocatalytic activity and antimicrobial
results showed that the 70%SGCN/1%Te@NiS nanocomposite is an efficient photocatalyst.
Further, the good photocatalytic efficiency of the NCs was validated by applying a kinetic
study. The Te doping and coupling of SGCN with NiS material, played a vital role in
improving the efficiency of the SGCN/Te@NiS NCs. Consequently, the SGCN/Te@NiS NC
is a promising material, with prospective uses in water disinfection and purification via
photocatalytic decomposition of contaminants.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/inorganics11040156/s1, Figure S1: High-resolution S 2p XPS
spectrum of 70%SGCN/1%Te@NiS NCs.
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