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Abstract: The investigation of the interaction of cyclic trinuclear silver(I) pyrazolate [AgPz]3 (Pz = 3,5-
bis(trifluoromethyl)pyrazolate) with pyridine-based chalcones (anthracen-9-yl and phenyl-substituted
ones) has been performed by IR-, UV-vis, and NMR spectroscopies in the solution. The carbonyl
group participates in coordination with metal ions in all complexes. However, the network of π-
π/M-π non-covalent intermolecular interactions mainly influences complex formation. The spectral
data suggest retaining the structures for all studied complexes in the solution and solid state. E-Z
isomerization in the case of anthracene-containing compounds significantly influences the complexa-
tion. E-isomer of chalcones seeks the planar structure in the complexes with [AgPz]3. In contrast, the
Z-isomer of chalcone demonstrates the chelating coordination of O- and N atoms to silver ions. The
complexation of anthracene-containing chalcones allows the switching of the emission nature from
charge transfer to ligand-centered at 77 K. In contrast, phenyl-substituted chalcone in complex with
macrocycle demonstrates that the emission significantly shifted (∆ = ca. 155 nm) to the low-energy
region compared to the free base.

Keywords: cyclic trinuclear complex; pyrazolate adducts; silver(I); non-covalent interactions;
photoluminescence

1. Introduction

Non-covalent intermolecular interactions are one of the important driving forces in
coordination and organometallic chemistry [1–3]. Hydrogen or halogen bonding, π−π
stacking, and other types of donor-acceptor interactions lead to the formation of supramolec-
ular aggregates determining their structures and properties [4–7]. Complexes possessing
metallophilic interactions has been of rising interest in the last decade. The ability of such
complexes to realize the metal-involved inter- or intra-molecular interactions, allowing
the formation of the coordination compounds and supramolecular aggregates, determines
their properties and practical use in areas such as photoluminescence [8–14], gas sens-
ing, molecules recognition [8–11,15–18], and catalysis [5–7,19–21]. Weak intermolecular
interactions play an important role in the chemistry of cyclic trinuclear coinage metal
pyrazolate complexes [22–24]. Firstly, Dias et al. demonstrated the ability of this type of
compound for infinite stacks via intermolecular metal-metal interactions [25,26]. Trinuclear
metal pyrazolates are polydentate Lewis acids and interact with bases of wide nature and
structures. For example, it demonstrates the significant affinity to compounds possess-
ing π-electronic systems, such as alkenes, arenes, alkynes, etc. [16,27–32]. From another
hand, trinuclear metal pyrazolates form stable complexes with boron hydrides or halide
substituents/ligands [33–37]. Interaction of this class of compound with P- or N-donor
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ligands allows the rearrangement of the central core with the formation of di-, tri-, tetra-, or
pentanuclear cores [15,38–44]. Our studies of the host-guest complexes of the macrocyclic
coinage metal pyrazolates with ketones or isocoumarines possess their coordination via
the oxygen atom of the C=O group and demonstrate the formation of 1:1 complexes in
the solution. The preferable µ3-coordination of the O atom to three metal ions has been
observed in the crystal [45,46]. Based on the ability of trinuclear metal pyrazolates to form
complexes with compounds possessing carbonyl groups and basic nitrogen atoms, the
pyridine-containing chalcones were chosen as agents for the complexation with silver(I)
trinuclear macrocycle ([AgPz]3, Pz = 3,5-bis(trifluoromethyl)pyrazolate anion). The ability
of pyridine-chalcones to chelate metal ions is known because this class of compound has
been suggested as a structural analog of bipyridine-type ligands [47–50].

Herein, we report the investigation complexation of trinuclear silver(I) 3,5-
bis(trifluoromethyl) pyrazolate [AgPz]3 with pyridine-based chalcones containing antra-
cenyl or phenyl substituents. In the case of anthracenyl-substituted compound, two isomers
E/Z have been studied (E-3-(anthracen-9-yl)-1-(pyridin-2-yl)prop-2-en-1-one—E-1, and
Z-3-(anthracen-9-yl)-1-(pyridin-2-yl)prop-2-en-1-one—Z-1; Scheme 1). In contrast, the
phenyl-substituted analog demonstrates only stability of E-isomer (E-3-phenyl-1-(pyridin-
2-yl)prop-2-en-1-one, E-2) substituents (Scheme 1). This work aimed to reveal the center of
coordination, composition, and structures of complexes obtained, and the photolumines-
cence properties.
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Scheme 1. Chemical structures of cyclic silver(I) pyrazolate and chalcones 1-2.

2. Results and Discussions

Pyridine-based chalcones possess various potential centers of coordination to the
silver(I) pyrazolate complex [AgPz]3: carbonyl-group, pyridine-fragment, or extended
π-electronic systems within a double bond and aromatic substituents. The complexation
of [AgPz]3 in solution was investigated using IR, UV-vis, and NMR spectroscopy. The
interaction of [AgPz]3 with bases is preferable in low-polar solvents. The investigation of
the complexation was performed in CCl4 based on the better solubility of initial chalcones.
Compounds E-1 and E-2 show intense bands of the ν(C=O) stretching vibration at 1677
and 1675 cm−1, respectively (Figure 1). Chalcones also demonstrates the intense bands of
C=C double bond stretching vibrations (ν(C=C)) at 1603 and 1610 cm−1, for E-1 and E-2
correspondingly. The titration of chalcones solution in CCl4 with [AgPz]3 leads to a decrease
in the intensity of initial ν(C=O)free and ν(C=C)free bands and an increase in the new low-
frequency bands ν(C=O)bond (1650 and 1655 cm−1) and ν(C=C)bond (1590 and 1591 cm−1).
The participation of the functional group in coordination with metal ions is accompanied
by the arising of low-frequency bands in the IR spectrum, demonstrating that the carbonyl
group and C=C double bond participate in the interaction with macrocycle [AgPz]3.



Inorganics 2023, 11, 175 3 of 13

Inorganics 2023, 11, x FOR PEER REVIEW 3 of 13 
 

 

the carbonyl group and C=C double bond participate in the interaction with macrocycle 
[AgPz]3. 

    

(a) (b) 

Figure 1. The IR spectra of E-1 (a) and E-2 (b), (c = 0.015, d = 1 mm, black line), in the presence of 0.5 
(red), 1 (green), and 2 (blue) equivalents of [AgPz]3; CCl4, 298 K. * δ(C-N)[AgPz]3. 

E-1 and E-2 have one, relatively easy-to-isomerize, double bond. These compounds 
also possess two single C-C(O) bonds allowing the formation of the eight iso-
mers/rotamers (Scheme 2; also see Scheme S1 in SI). 

 
Scheme 2. Possible rotations in chalcone 1. 

In the case of anthracene-containing chalcone, all possible isomers/rotamers are 
within the 5.2 kcal/mol Gibbs energy range, while six of them are in the 2.8 kcal/mol 
range. Due to the various local surroundings of the C=O group, it possesses different IR 
spectral patterns. This includes both band position and intensity (Table 1). 

Table 1. Calculated CO and CC frequencies (in cm−1, scaled by 0.95 [51], intensities (in km/mol), 
and relative energies of isomers (in kcal/mol). 

 ΔG298 ν(C=O) (A) ν(C=C) (A) 
anti-E-1 0.0 1682 (269) a 1611 (573) b 
anti-E-1′ +2.7 1691 (278) a 1613 (553) b 
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Figure 1. The IR spectra of E-1 (a) and E-2 (b), (c = 0.015, d = 1 mm, black line), in the presence of 0.5
(red), 1 (green), and 2 (blue) equivalents of [AgPz]3; CCl4, 298 K. * δ(C-N)[AgPz]3.

E-1 and E-2 have one, relatively easy-to-isomerize, double bond. These compounds
also possess two single C-C(O) bonds allowing the formation of the eight isomers/rotamers
(Scheme 2; also see Scheme S1 in SI).
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Scheme 2. Possible rotations in chalcone 1.

In the case of anthracene-containing chalcone, all possible isomers/rotamers are within
the 5.2 kcal/mol Gibbs energy range, while six of them are in the 2.8 kcal/mol range. Due to
the various local surroundings of the C=O group, it possesses different IR spectral patterns.
This includes both band position and intensity (Table 1).

Table 1. Calculated CO and CC frequencies (in cm−1, scaled by 0.95 [51], intensities (in km/mol),
and relative energies of isomers (in kcal/mol).

∆G298 ν(C=O) (A) ν(C=C) (A)

anti-E-1 0.0 1682 (269) a 1611 (573) b

anti-E-1′ +2.7 1691 (278) a 1613 (553) b

syn-E-1 +2.1 1658 (700) 1638 (118)
syn-E-1′ +3.7 1671 (685) 1634 (159)
anti-Z-1 +2.8 1690 (287) a 1637 (84); 1627 (5)
anti-Z-1′ +5.2 1696 (303) a 1637 (112); 1627 (4)
syn-Z-1 +2.0 1671 (601) 1632 (27); 1625 (11)
syn-Z-1′ +2.7 1680 (591) 1631 (26); 1624 (21)

a highly mixed with ν(C=C); b highly mixed with ν(C=O).

The frequencies of ν(C=O) are systematically higher for the Z-isomer, while intensities
are higher for the syn C=C-C(O) rotamer (CH-syn-to-CO). The ν(C=C) is located at the
same wavenumbers, except for the anti-E-1 and anti-E-1′ where it is ca. 20 cm−1 lower



Inorganics 2023, 11, 175 4 of 13

and of rather high intensity. The pyridine rotation does not lead to significant changes in
the ν(C=O)/ν(C=C) intensities ratios after shifting ν(C=O) by ca. 10 cm−1 higher in the
rotamer without CHPy···O contact. Since this kind of rotamer is systematically higher by
energy, it could be excluded from further consideration in the solution.

Therefore, free E-1 adopts anti-E geometry in the solution evidenced by the high-
intensity ν(C=C) band in the IR spectra, comparable to those of ν(C=O). Since ν(C=C) and
ν(C=O) are highly mixed at this geometry, the complex formation leads to low-frequency
shifts of both bands in the spectra.

The complexation in the case of anthracene-containing chalcone E-1 was accompanied
by a change of the solution color from orange to orange-red. The interaction of chalcones
with silver pyrazole complex has been investigated by UV-vis spectroscopy. Compound E-1
shows a broad band with a vibronic structure in the UV-vis spectrum (340, 364, 386, 413, and
440 nm; Figure 2). It could be assigned to charge transfer from the anthracene fragment to
the pyridine-carbonyl fragment (ILCT) and π→π* transitions within the extended aromatic
system of anthracene. The titration of E-1 solution in CCl4 with silver(I) complex leads to
the decrease in the initial bands and arising of a new low-energy band at ca. 503. Increasing
the amount of [AgPz]3 leads to a further decrease in the initial bands and an increase in the
new band, demonstrating the complexation.
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In contrast, phenyl-substituted chalcone E-2 does not possess charge transfer and
exhibits only π→π* transitions demonstrating high-energy bands centered at ca. 320 nm
(Figure S16). The titration of E-2 solution with [AgPz]3 leads to the same behavior: the
intensity of a free chalcone decrease and a new low-energy band increase.

The compositions of complexes were determined by Job’s method in the example of
chalcone E-1. It was shown using IR and UV-vis spectroscopy (see supporting information)
that a complex containing one molecule of E-1 per one molecule of macrocycle at molar ra-
tios from 7:1 to 1:7 is formed in the CCl4 solution. Thus, the complexes could be formulated
as {E-1·[AgPz]3} (E-1Ag) and {E-2·[AgPz]3} (E-2Ag).

Crystallization from the equimolar solution (E-1/[AgPz]3 = 1/1) in CCl4 at ambient
conditions by slow solvent evaporation (air, room temperature, unprotected from light)
led to the formation of crystals suitable for XRD experiments. Interestingly, the Z-form
of chalcone 1 has been established in the complex obtained (Figure 3, Scheme S3). It is
known that anthracene-containing chalcones undergo E-Z isomerization under ambient
light [52]. Complex obtained could be formulated as {(Z-1)·[AgPz]3} (Z-1Ag, Z-1 = anti-
Z-1′). Complex Z-1Ag contains one molecule of chalcone per one molecule of [AgPz]3.
The oxygen atom of the carbonyl group and the nitrogen atom in the pyridine fragment
chelated one silver atom in the trinuclear core. The Ag1 . . . O1 and Ag1 . . . N7 bonds are
2.611(3) and 2.403(4) Å, respectively. There is a shortened contact Ag2 . . . O1 (2.951(4) Å)
in complex Z-1Ag. The carbonyl group oxygen atom and pyridine nitrogen atom chelate
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a single silver ion in the trinuclear complex, leading to a tetracoordinate environment. A
practically linear (175.6◦) NPz-Ag-NPz angle in free [AgPz]3 adducts [53] is bent to 142.8◦ in
complex Z-1Ag. Consequently, corresponding NPz-Ag bonds increase to 2244 and 2168 Å
(typically ca. 2.1 Å in a free [AgPz]3) [53]. The corresponding Ag . . . O and Ag . . . N bonds
are in a similar range compared to the complexes of silver(I) pyrazolates with carbonyl
compounds or diimines [42,43,45,46].
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Figure 3. XRD structure of complex Z-1Ag with thermal ellipsoids set at the 15% probability level.
Hydrogen and Fluorine atoms are sticks for clarity.

Supramolecular packing of complex Z-1Ag is realized via a network of Ag-πantra

(3.317–3.401 Å, antra = anthracene) and πPy-πCO (3.328) intermolecular interactions. The
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Considering that E-1 could be easily converted to Z-1, the crystals of complexes
[AgPz]3 with chalcones E-1 and E-2 were obtained from equimolar reagents CCl4 solution
after staying at −5 ◦C and being protected from the light with an aluminum foil. In a
crystal, complexes E-1Ag and E-2Ag contain one chalcone per macrocycle. These complexes
demonstrate significant differences in the complex Z-1Ag described above. Both E-1 and
E-2 possess almost planar geometry (Figure 5, Scheme S2). The carbonyl group participates
in coordination with the silver ions. However, the Ag-O distances are significantly longer
(3.345(3) and 2.887(4) Å) than that in Z-1Ag, evidencing weaker interactions. Moreover, a
silver ion in complex E-1Ag also interacts with a carbon atom in the C=O group (3.367(4) Å).
There are also weak NPy . . . Ag (3.110(3) Å), Ag . . . CC=C (3.468(4) Å), and Ag . . . CAntra
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(3.463(4) Å) contacts in complex E-1Ag. It should be noted, that this complex possesses
steric repulsions demonstrating their low stability. Chalcone E-1 is the most favorable
anti-E-1 conformer in complex E-1Ag (vide supra) correlating with DFT calculations. These
results demonstrate the similar structures of complexes in the solution and the solid state.
In contrast, E-2Ag shows very tight packing with significantly shorter Ag-C contacts.
For example, Ag2 interacts with Ph substituent (3.087(4), 3.264(4) Å) and Ag3 with one
carbon atom of C=C double bond (Ag . . . C is 3.306(3) Å). The presence of several shortened
contacts with different fragments of E-2 leads to higher stability of complex E-2Ag. It should
be noted that the water molecule is also observed in the structure of E-2Ag leading to the
alternative anti-E-2′ conformation of chalcone. Although pyridine ligand is already rotated
into position to form a chelate complex with silver, as in Z-1Ag, there is no such interaction
in E-2Ag, additionally evidencing that pyridine rotation is only due to intermolecular
interactions with water.
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Supramolecular packing of complexes E-1Ag and E-2Ag is also realized via the net-
work of Ag-πantra, π-π, F-F, F-H, and H-π intermolecular interactions.

Based on the possibility of easy E-Z isomerization of 1, we investigated the interaction
of [AgPz]3 with Z-1 in the solution at conditions similar to that for E-1. Z-isomer has
been obtained by UV irradiation from its solution in CHCl3. Chalcone Z-1 shows an
intense band of the ν(C=O) stretching vibration at 1677 in the IR spectrum (Figure 6).
The intensity of ν(C=C)free (1610 cm−1) in this case is lower. Although the DFT predicts
that syn-Z-1 is 0.7 kcal·mol−1 preferred over anti-Z-1, the spectral pattern (retention of
ν(C=O) intensity compared to anti-E-1, and ν(C=C) intensity being only 2–3 times lower
than that of ν(C=O), and it is not one order of magnitude lower) suggests that, namely,
anti-Z-1 conformer predominate in the solution. Adding [AgPz]3 to the solution of Z-1
leads to the initial ν(C=O)free band decrease and increase in the new low-frequency band
at 1642 cm−1, corresponding to the coordinated silver atoms carbonyl group. In this case,
the ∆ν(C=O) shift is 43 cm−1 which is larger than that observed for a complex with anti-
E-1 (∆ν = 27 cm−1). This data demonstrates the possibility of different coordination of
pyridine-based chalcones to [AgPz]3 in the solution. The intensity of the ν(C=C)free does
not exhibit significant dependence on complexation, since in the anti-Z-1 it is not mixed
with the ν(C=O). Moreover, there is no low-frequency ν(C=C)bond band observed in the
spectrum. Probably, ν(C=C)in compl could be located near the ν(C=C)free forming a whole
spectral shape.
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(red), 1 (green), and 2 (blue) equivalents of [AgPz]3; CCl4, 298 K. * δ(C-N)[AgPz]3.

The interaction of Z-1 with [AgPz]3 is also accompanied by the changing of color. The
initial orange solution of Z-1 became red-orange upon the addition of the macrocycle. The
crystallization from the saturated solution of chalcone Z-1 with macrocycle [AgPz]3, an
equimolar reagents ratio, leads to the formation of previously described complex Z-1Ag,
which was obtained by the crystallization of chalcone 1 (E-isomer) under the light.

Investigation of the [AgPz]3 interactions with Z-1 and E-1 in the solution was carried
out using 1H and 13C NMR spectroscopy in CCl4/C6D6 mixture (v/v=9/1) (Figures S1–S8).
The resonances of all protons in Z-1 and E-1 undergo a high-field shift in the presence
of the macrocycle. The main differences have been observed in the 13C NMR spectra.
The carbonyl group carbon atom resonance of E-1 does not possess any changes upon
the addition of [AgPz]3. In contrast, the peak for the carbon atom of the CO group Z-
1 undergoes a low-field shift by 0.66 ppm upon adding even a 0.5 equivalent of silver
macrocycle at room temperature. The resonances of carbon atoms (numbers 4–8 in Table 2)
in the pyridine fragment of E-1 undergo only a low-field shift. The resonances of C4 and
C6-7 in the pyridine fragment of chalcone Z-1 show the high-field shifts demonstrating
the participation of this fragment in coordination. Carbon atoms in anthracenyl fragments
are mostly shifted to the high-field in E-1Ag, but there are only two carbons in anthracene
substituents of Z-1 demonstrating the same behavior. The low-field shift of resonances of
the carbon atoms in aromatic fragments demonstrates the presence of coordination [54].

Finally, we have investigated the photophysical properties of the complexes obtained
in the solid state. It should be noted that free chalcones Z-1 and E-1, as well as their
complexes E-1Ag, and Z-1Ag, have not demonstrated isomerization in the solid state.
Anthracene-containing chalcones exhibit unstructured broad bands of charge-transfer
nature at ca. 560 nm at 298 K (Figure 7A) [55]. Complexes E-1Ag and Z-1Ag demonstrate
practically the same maxima. A temperature decrease leads to the shifting of maxima of
the initial Z-1 and E-1 to 605 and 575 nm, respectively (Figure 7B). Complexes E-1Ag and
Z-1Ag demonstrate structured bands centered at 580 and 590 nm (Figure 7B). Complexation
leads to the changing of the emission profile only at low temperatures. It could be assigned
to the arising effect of the silver ions only at 77 K. It is known that silver pyrazolate adducts
commonly emit light only at low temperatures [53]. In contrast, the complexation leads
to the structured emissions that are typical for the π→π*/n→π* emission of extended
π-electronic systems (Figure 7B). Chalcone E-2 exhibits non-intense structured emission of
π→π*/n→π* nature (Figure 7C). Complexation leads to the shifting of the emission to the
low-energy region (maxima 620 nm). The observed emission is near to the observed for
complex E-1Ag demonstrating the same structure of the chalcone. It could be assigned to a
similar emission with the silver ion effect.
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Table 2. 13C NMR chemical shifts of E-1 and Z-1 in the presence of different amounts of [AgPz]3,
CCl4/C6D6 (v/v = 9/1), 298 K.
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4 154.34 +0.04 154.29 −0.59
5 148.63 +0.62 148.27 +0.19
6 128.10 +0.15 126.69 −0.10
7 136.37 +0.33 136.14 −0.07
8 122.82 +0.48 122.30 +0.21

C=C
1 140.85 +0.08 140.55 −0.65
2 130.63 −0.6 131.17 −0.27

Anthracene

9 131.32 −0.26 131.78 −0.15
10 128.66 −0.16 128.30 +0.08
11 126.07 +0.55 125.75 −0.26
12 125.12 −0.11 124.81 +0.31
13 125.67 −0.18 125.22 +0.27
14 130.00 −0.18 128.66 +0.03
15 129.85 −0.24 128.63 −0.04
16 126.20 +0.42 125.94 +0.13
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3. Materials and Methods
3.1. Physical Measurement and Instrumentation

1H and 13C NMR measurements were carried out on Bruker Avance 400 (Bruker).
Infrared (IR) spectra were collected on a Shimadzu IRPrestige 21 FT-IR spectrometer in
KBr pellets (Shimadzu, Kyoto, Japan). The UV-vis spectra of solutions were measured
on Cary 50 (Varian, Palo Alto, CA, USA). The photoluminescence spectra in the solution
were measured on Shimadzu RF-6000 (Shimadzu, Kyoto, Japan). The samples for these
measurements were packed in quartz capillaries.

3.2. Crystal Structure Determination

Single-crystal X-ray diffraction experiments were carried out with a Bruker SMART
APEX II diffractometer (Bruker). The APEX II software [56] was used for collecting frames
of data, indexing reflections, determination of lattice constants, integration of intensities
of reflections, scaling, and absorption correction. The structures were solved by a dual-
space algorithm and refined in anisotropic approximation for non-hydrogen atoms against
F 2 (hkl). Hydrogen atoms were calculated according to the idealized geometries and
refined with constraints applied to C-H and N-H bond lengths and equivalent displace-
ment parameters (U eq (H) = 1.2U eq (X), X denotes central atom of XH2 group; U eq
(H) = 1.5U eq (Y), Y denotes central atom of YH3 group). All structures were solved with
the ShelXT [57] program and refined with the ShelXL [58] program. Molecular graphics
were drawn using OLEX2 [59] program. CCDC 2252898-2252900 contains the supplemen-
tary crystallographic data for this paper. These data can be obtained free of charge from the
Cambridge Crystallographic Data Centre.

3.3. Computational Details

The DFT computations were performed with the ORCA 5.03 package [60,61], applying
ωB97X-D3 functional [62,63] and the def2-TZVP [64] basis set with the ZORA relativis-
tic Hamiltonian. The ground states were fully optimized without any constraints. The
RIJCOSX procedure was used to speed up calculations.

3.4. Synthesis and Characterization

All reactions were performed under an argon atmosphere using anhydrous solvents
or solvents treated with an appropriate drying reagent. The chalcones [55] and [MPz]3 [65]
were synthesized as described.

4. Conclusions

The investigation of the interaction of [AgPz]3 with pyridine-substituted chalcones
allows us to establish the general features of the structure, the sites of coordination, and
the role of E-Z isomerization on the complexes’ formation. The non-covalent π-π/M-π
interactions play a key role in the formation of complexes of pyridine-based chalcones
with the trinuclear silver(I) pyrazolate even in the presence of pyridine fragments and
carbonyl groups. It is shown that chalcones in E-isomeric form seek to planar structure in
the complexes with trinuclear pyrazolate adduct [AgPz]3 via multiple π-π/M-π. Carbonyl
and pyridine fragments also take place in coordination with the [AgPz]3. In contrast, Z-1
chalcone coordinates to silver(I) macrocycle via the chelating of metal ions by O- and
N atoms. The results of the DFT calculation show the presence of possible eight iso-
mers/conformers of 3-(anthracen-9-yl)-1-(pyridin-2-yl)prop-2-en-1-one interpreting the
complicated IR-spectral behavior. These data demonstrate the non-possibility of establish-
ing quantitative characteristics of the complexes obtained due to the presence of several
bands. However, shifts of IR-spectral bands as well as NMR resonances demonstrate
the preferable coordination of the carbonyl group with the silver ions in Z-isomers. The
spectral data suggest retaining the structures for all studied complexes in solution and
solid state. The complexation in the case of anthracene-containing chalcones allows the
switching of the emission nature from charge-transfer to ligand-centered at 77 K. In contrast,
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in the case of phenyl-containing chalcone, possessing only π→π*/n→π* transitions, the
complexes formation leads to the significant emission (∆ = ca. 155 nm) shifting to the
low-energy region.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/inorganics11040175/s1. Scheme S1: Possible isomers for pyridine-
chalcones.; Scheme S2: Schematic representation of supramolecular packing of E-1Ag and E-2Ag;
Scheme S3: Schematic representation of supramolecular packing of Z-1Ag; Table S1: Crystal data,
data collection, and structure refinement parameters for E-1Ag, E-2Ag Z-1Ag; Figure S1: 1H NMR
spectrum of E-1 in the mixture CCl4/benzene-d6 (9/1); Figure S2: 13C NMR spectrum of E-1 in
CCl4/benzene-d6 (9/1) mixture; Figure S3: 1H NMR spectrum of E-1 + 1 eq. [AgPz]3 in CCl4/benzene-
d6 (9/1) mixture; Figure S4: 13C NMR spectrum of E-1 + 1 eq. [AgPz]3 in CCl4/benzene-d6 (9/1)
mixture; Figure S5: 1H NMR spectrum of Z-1 in CCl4/benzene-d6 (9/1) mixture; Figure S6: 13C NMR
spectrum of Z-1 in CCl4/benzene-d6 (9/1) mixture; Figure S7: 1H NMR spectrum of Z-1 + 0.5 eq.
[AgPz]3 in CCl4/benzene-d6 (9/1) mixture; Figure S8: 13C NMR spectrum of Z-1 + 0.5 eq. [AgPz]3
in CCl4/benzene-d6 (9/1) mixture; Figure S9: IR spectra of E-1 in KBr; Figure S10: IR spectra of
E-1Ag in KBr; Figure S11: IR spectra of Z-1 in KBr; Figure S12: IR spectra of Z-1Ag in KBr; Figure S13:
IR spectra of E-2 in KBr; Figure S14: IR spectra of E-2Ag in KBr; Figure S15: UV-vis spectra of
E-1 + [AgPz]3 c = 0.015, d = 0.047 mm in CCl4; Figure S16: UV-vis spectra of Z-1 + [AgPz]3, c = 0.015,
d = 0.047 mm in CCl4; Figure S17: UV-vis spectra of E-1 + [AgPz]3 c = 0.015 d = 0.047 mm in CCl4;
Figure S18: The Job’s plot: dependence of the ν(CO)bond band intensity of [AgPz]3]*[Z-1] (1674 cm−1)
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spectra for conformers of chalcone E-1. Frequency scales by 0.950, FWHH set to 19.
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