
Citation: Abbas, Z.; Naz, A.; Hussain,

S.; Muhammad, S.; Algarni, H.; Ali,

A.; Jung, J. First-Principles

Calculations to Investigate Structural,

Electronic, Optical and Magnetic

Properties of Pyrochlore Oxides

Eu2Tm2O7 (Tm = Hf, Sn, Zr) for

Energy Applications. Inorganics 2023,

11, 193. https://doi.org/10.3390/

inorganics11050193

Academic Editors: Nadezhda A.

Zhuk and Vladislav V. Kharton

Received: 25 March 2023

Revised: 19 April 2023

Accepted: 25 April 2023

Published: 29 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

inorganics

Article

First-Principles Calculations to Investigate Structural,
Electronic, Optical and Magnetic Properties of Pyrochlore
Oxides Eu2Tm2O7 (Tm = Hf, Sn, Zr) for Energy Applications
Zeesham Abbas 1, Adeela Naz 2, Sajjad Hussain 1, Shabbir Muhammad 3 , H. Algarni 4, Ahsan Ali 5,*
and Jongwan Jung 1,*

1 Department of Nanotechnology and Advanced Materials Engineering, Sejong University,
Seoul 05006, Republic of Korea; zeesham_66@yahoo.com (Z.A.)

2 Department of Physics, The University of Lahore, Sargodha Campus, Sargodha 40100, Pakistan
3 Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004,

Abha 61413, Saudi Arabia
4 Department of Physics, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
5 Department of Mechanical Engineering, Gachon University, Seongnam 13120, Republic of Korea
* Correspondence: ahsanali@gachon.ac.kr (A.A.); jwjung@sejong.ac.kr (J.J.)

Abstract: Three newly designed pyrochlore oxides, Eu2Tm2O7 (Tm = Hf, Sn, Zr), are analyzed for
their magnetic, optical and electronic properties using ab-initio calculations within the context of
density functional theory (DFT). We can refer these compounds as direct bandgap materials because
there is a very slight difference between the height of bands at the Γ- and M-point. It is observed
that bandgap engineering can be performed by replacing Hf with Sn and Zr. It is observed from
total density of states (TDOS) plots that shape and height of curves is not the same in spin up
and spin down channels, showing significant magnetic moment in these compounds. It is evident
from magnetic properties that a major portion of total magnetic moment (mtot) comes from Eu-
atoms. In all compounds, the magnetic moment of O, Hf, Sn and Zr atoms is negative, whereas
the magnetic moment of Eu-atoms is positive, showing their antiparallel arrangement. In both spin
channels, significant absorption of the incoming photons is also shown by these compounds in
the ultraviolet (UV) region. We can conclude on the basis of R(ω) that these compounds can be
utilized in applications such as anti-reflecting coatings. These compounds are potential candidates
for photovoltaic applications, such as solar cells, due to efficient absorption of incoming photons in
visible and UV regions.

Keywords: pyrochlore oxides; optoelectronic properties; magnetic properties; DFT; first-principles;
solar cell

1. Introduction

Pyrochlore oxides with the general formal A2B2O7 have attracted huge attention
from scientists due to their interesting thermal, piezoelectric, ferroelectric and dielectric
properties since their first discovery in the early 1960s [1–3]. Pyrochlores are promising
candidates for broad applications in technological [4–8] and industrial fields such as lu-
minescence powders [9,10], probes and sensors [11–13], thermal barrier coatings [14,15]
and solid oxide fuel cells [16]. Generally, pyrochlore oxides of the A2B2O7 type crystallize
into FCC (face centered cubic) crystals with the space group Fd3m (S. G. # 227). In ideal
pyrochlore structures, rare earth element and transition metal occupies the A-site (16d) and
B-site (16c), respectively. The anions take 8b and 48f Wyckoff positions to form an ordered
structure. The large and small size cations are placed at the A- and B-site, respectively, in
the crystal unit cell. The cation at the A- (positioned within a distorted polyhedron) and
B-site (positioned within a distorted octahedron) are 8- and 6-fold coordinated with oxygen
atoms, respectively [17,18]. The structural stability of pyrochlore oxides of the A2B2O7 type
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is significantly influenced by the ionic radius of the A- and B-site cations. In these type
of pyrochlores, the stable and suitable ordered cubic phase exists when the radii ratio of
A- and B-site cations (rA/rB) are between 1.46 and 1.78. The crystal geometry transforms
to monoclinic from the cubic phase when this value (rA/rB) is greater than 1.78. On the
other hand, a disordered (anion deficient fluorite structure) structure is formed, which
conforms with the Fm3m space group. In defective fluorite structures, A- and B-site ions
are randomly distributed at the 4a (cation sites) Wyckoff position, and the oxygen vacancies
are disordered at 8c (anion sites) Wyckoff positions [19,20]. In addition, this temperature-
and pressure-influenced phase transformation can significantly affect physical properties
(such as conductivity and compressibility) of the crystal [21,22].

Augilar et al. [23] reported that the efficiency of solar cells can be enhanced by using
a mixture of Tm2Ti2O7 and TiO2 for the photoelectrode while studying Tm2Ti2O7 for
the dye-sensitized solar cells. N. Ullah et al. [24] reported that Y2M2O7 (M = Ti, V and
Nb) pyrochlores are semiconducting compounds with excellent optical properties while
studying their optical and electronic properties. Magnetic properties of platinum base
pyrochlore oxides are also reported in the literature [25,26]. For industrial applications (such
as thermoelectric and photovoltaic devices), developing suitable materials is the primary
goal of researchers in the field of renewable energy. Exceptional chemical and physical
properties are a prerequisite for these materials. For catalysis and electrochemistry, Re-X-O
ternary systems exhibit numerous desired properties. Here, Re and X are used for rare
earth elements and platinum group metals, respectively [27]. For phase equilibrium and
thermodynamic properties, various ternary Re-X-O have extensively been investigated at
high temperatures [28]. For numerous technological applications, La2Pd2O7 is a promising
candidate from this family [29]. Ca1-xBixPd3O4 (n-type semiconductor) and Ca1-xLixPd3O4
(p-type semiconductor) are both fascinating candidates for thermoelectric applications.
Their low mobility due to large effective mass is the primary obstacle for their usability in
thermoelectric (TE) devices [30]. Attfield et. Al. [31] used a simple modeling technique
along with powder diffraction to analyze crystalline structures of pyrochlores such as
La4PdO7 and La2Pd2O5. Various types of energy production methods are available in the
literature [32,33].

Pyrochlore oxides are effective photon absorbers as well as promising candidates
for TE device applications due to appropriate TE characteristics. In this study, electronic,
optical and magnetic properties of Eu2Tm2O7 (Tm = Hf, Sn, Zr) are investigated using
first-principles-based DFT calculations. Ground state properties (electronic, optical and
magnetic) of Eu2Tm2O7 (Tm = Hf, Sn, Zr) are studied using the full-potential linearized
augmented plane wave (FP-LAPW) method to obtain an insight of their prospective appli-
cations in photovoltaic, spintronic and TE devices. The DFT technique is used to calculate
optoelectronic, structural and magnetic properties of Eu2Tm2O7 (Tm = Hf, Sn, Zr) to eval-
uate their potential for various industrial applications such as solar cells and memory
devices.

2. Results and Discussion

In this section, we discuss the investigated results for electronic, optical and magnetic
properties of Eu2Tm2O7 (Tm = Hf, Sn, Zr). Their potential for clean energy production
using photovoltaic devices has been explored. For optoelectronic applications, usability of
these pyrochlore oxides was investigated using their optoelectronic characteristics. The
magnetic properties are key parameters to explore the potential of Eu2Tm2O7 (Tm = Hf, Sn,
Zr) for spintronic applications such as memory devices. Based on the presented results,
it is established that Eu2Tm2O7 (Tm = Hf, Sn, Zr) has huge potential for spintronic and
optoelectronic devices.

2.1. Electronic Properties

In this section, we discuss the investigated electronic properties (density of states
(DOS)/band structure) for Eu2Tm2O7 (Tm = Hf, Sn, Zr). The role of various inter-
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band/intra-band electronic transitions is important to determine the adequacy of Eu2Tm2O7
(Tm = Hf, Sn, Zr) for prospective optoelectronic devices. In the first Brillouin zone, high
symmetry points were used to present energy band structures (from−3.0 to 5.0 eV) with the
Fermi level (Eg) at 0 eV. An energy range of−6.0 and 6.0 eV was used to present DOS spectra
that give vital information regarding the feasible transitions between valance/conduction
bands.

2.1.1. Energy Band Structure

For solid materials, the allowed and forbidden electronic energy levels are represented
by band structures. In crystalline materials, the energies of the crystal orbitals are presented
using 2D band structures. A band structure plot, sometimes called a “spaghetti diagram”,
can quickly reveal the nature of materials such as insulating, semi-metallic or metallic. The
nature of the energy bandgap (direct or indirect) for semiconductor materials as well as
magnitude of the bandgap can also be established using band structure plots. The difference
of the energies of valance band maxima (VBM) and conduction band minima (CBM) is
known as the energy bandgap. Moreover, the carrier mobility can also be determined using
the curvature of these bands. Energy band structures for Eu2Tm2O7 (Tm = Hf, Sn, Zr) are
calculated along high symmetry points R→Γ→X→M→Γ. The calculated band structure
plots for Eu2Tm2O7 (Tm = Hf, Sn, Zr) are presented in Figure 1. We can refer to these
compounds as direct bandgap materials because there is very slight difference between
the height of bands at the Γ- and M-point. The values of energy bandgaps for Eu2Hf2O7,
Eu2Sn2O7 and Eu2Zr2O7 were 1.78, 1.85 and 1.80 eV, respectively, in the spin up channel.
However, in the spin down channel, the values of energy bandgaps were 4.02, 2.42 and
3.98 eV for Eu2Hf2O7, Eu2Sn2O7 and Eu2Zr2O7, respectively. It was observed that bandgap
engineering could be performed by replacing Hf with Sn and Zr.
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2.1.2. Density of States

The number of various energy states that electrons can occupy at a specific energy
level, or the number of electronic states per unit volume per unit energy, are known as
the density of states (DOS). This function defines bulk properties of conductive solids
such as paramagnetic susceptibility, specific heat and other transport phenomena. In
semiconductors, energy band spacing can be determined using DOS calculations, as well
as the general distribution of states as a function of energy. The calculated total density
of states (TDOS) plots for Eu2Tm2O7 (Tm = Hf, Sn, Zr) are presented in Figure 2. We can
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note from TDOS plots that the shape and height of curves are not the same in spin up and
spin down channels, showing significant magnetic moment in these compounds. It can be
noted that TDOS of Eu2Hf2O7 are greater compared to Eu2Sn2O7 and Eu2Zr2O7, which
means that Eu2Hf2O7 has a greater probability for electronic transitions between valance
and conduction bands.
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Figure 2. Calculated TDOS plots for Eu2Tm2O7 (Tm = Hf, Sn, Zr).

The partial density of states gives information about the most probable electronic
transitions between VB and CB from various sub-orbitals of the atoms. The calculated
partial density of states (PDOS) plots for Eu2Hf2O7 are presented in Figure 3. We can
split the valance band of Eu2Hf2O7 into two segments: (i) −6.0 to −4.0 eV and (ii) −4.0 to
0 eV. In segment (i), all compounds were approximately silent in the spin down channel;
however, significant contributions in the spin up channel from Eu-atoms are evident from
Figure 3. From PDOS plots, significant contributions from Eu[4 f 7] orbitals are evident in
the spin up channel, along with minor contributions from O[2p4] orbitals. In segment (ii),
O-atoms were actively participating in VB, whereas minor contributions from Hf-atoms are
evident in both spin channels from Figure 3. From PDOS plots, significant contributions
from O[2p4] and Hf[5d2] orbitals are evident in both spin channels, along with minor
contributions from Hf[5p6] and Hf[4 f 14] orbitals. After that, there is a forbidden region for
electrons known as the energy bandgap until 1.78 eV in the spin up channel and 4.02 eV in
the spin down channel. A notable peak at 1.78 eV due to the hybridization of O, Eu and
Hf-atoms was present in the spin up channel. In this peak, major contributions came from
Eu[4 f 7] orbitals, along with minor contributions from O[2p4] and Hf[5d2] orbitals.
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The calculated PDOS plots for Eu2Sn2O7 are presented in Figure 4. We can split the
valance band of Eu2Sn2O7 into two segments: (i) −6.0 to −4.0 eV and (ii) −4.0 to 0 eV. In
segment (i), all compounds were approximately silent in the spin down channel; however,
significant contributions in the spin up channel from Eu-atoms are evident from Figure 4,
along with minor contributions from Sn-atoms. From PDOS plots, significant contributions
from Eu[4 f 7] orbitals are evident in the spin up channel, along with minor contributions
from Sn[5s2] orbitals. In segment (ii), O-atoms were actively participating in VB, whereas
minor contributions from Sn-atoms are evident in both spin channels from Figure 4. From
PDOS plots, significant contributions from O[2p4] and Sn[5p2] orbitals are evident in both
spin channels, along with minor contributions from Sn[4d10] orbitals. After that, there is
a forbidden region for electrons known as the energy bandgap until 1.85 eV in the spin
up channel and 4.42 eV in the spin down channel. A notable peak at 1.85 eV due to the
hybridization of O and Eu-atoms was present in the spin up channel. In this peak, major
contributions came from Eu[4 f 7] orbitals, along with minor contributions from O[2p4]
orbitals.
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Figure 4. Calculated PDOS plots for Eu2Sn2O7.

The calculated PDOS plots for Eu2Zr2O7 are presented in Figure 5. We can split the
valance band of Eu2Zr2O7 into two segments: (i) −6.0 to −4.0 eV and (ii) −4.0 to 0 eV. In
segment (i), all compounds were approximately silent in the spin down channel; however,
significant contributions in the spin up channel from Eu-atoms are evident from Figure 5.
From PDOS plots, significant contributions from Eu[4 f 7] orbitals are evident in the spin up
channel, along with minor contributions from O[2p4] orbitals. In segment (ii), O-atoms were
actively participating in VB, whereas minor contributions from Zr-atoms are evident in
both spin channels from Figure 5. From PDOS plots, significant contributions from O[2p4]
and Zr[4d2] orbitals are evident in both spin channels, along with minor contributions from
Zr[4p6] orbitals. After that, there is a forbidden region for electrons known as the energy
bandgap until 1.80 eV in the spin up channel and 3.98 eV in the spin down channel. A
notable peak at 1.80 eV due to the hybridization of O, Eu and Zr-atoms was present in the
spin up channel. In this peak, major contributions came from Eu[4 f 7] orbitals, along with
minor contributions from O[2p4] and Zr[4d2] orbitals.
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2.2. Magnetic Properties

In this section, we discuss the calculated magnetic properties for Eu2Tm2O7 (Tm = Hf,
Sn, Zr) to obtain an insight of prospective spintronic applications such as memory devices.
The magnetic moment in Eu2Tm2O7 (Tm = Hf, Sn, Zr) derives from the notable anisotropy
present in occupied electronic states in spin up and spin down channels. In Table 1, we
present calculated values of total/partial magnetic moments for aforesaid compounds.
It is evident from Table 1 that a major portion of total magnetic moment (mtot) comes
from Eu-atoms. All compounds have nearly equal values of total magnetic moments. In
all compounds, the magnetic moment of O, Hf, Sn and Zr atoms is negative, whereas
the magnetic moment of Eu-atoms is positive, showing their antiparallel arrangement.
Therefore, Eu2Tm2O7 (Tm = Hf, Sn, Zr) are promising candidates for prospective spintronic
applications.

Table 1. The calculated magnetic moments for Eu2Tm2O7 (Tm = Hf, Sn, Zr).

Compound Magnetic Moment (µB)

Eu2Hf2O7
mint mO mH f mEu mtot

0.31875 −0.37218 −0.00304 24.05657 24.00011

Eu2Sn2O7
mint mO mSn mEu mtot

0.33198 −0.38122 −0.00204 24.04723 24.00003

Eu2Zr2O7
mint mO mZr mEu mtot

0.32337 −0.3775 −0.00344 24.05768 24.00012

2.3. Optical Properties

In this section, we have discuss the investigated optical characteristics for Eu2Tm2O7
(Tm = Hf, Sn, Zr) to obtain an insight of the prospective optoelectronic applications such as
solar cells. For targeted materials, results obtained from band structure calculations can be
used to calculate their optical properties. To examine how a material responds to incident
radiation, it is crucial to analyze its optical characteristics. Electronic transitions between
the unoccupied and occupied states are the result of interactions between electric field and
photons. Frequency-dependent complex dielectric function ε(ω) is the basic linear optical
parameter that can be used to explain a crystal’s response to the incident electromagnetic
radiations. Equation (1) can be used to formulate ε(ω) [34].

ε(ω) = ε1(ω) + iε2(ω) (1)
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where ε1(ω) and ε2(ω) are, respectively, real and imaginary parts of the dielectric function.
The electronic structure of crystalline materials can be explained using the most effective
tool known as the optical absorption spectra. The real ε1(ω) and imaginary ε2(ω) part of
dielectric function and other dependent parameters (on ε1(ω) and ε2(ω)) are investigated
theoretically using an equilibrium constant of 0–14 eV. Equation (1) can be used to formulate
ε2(ω):

ε2 (ω) =
Ve2

2πm2ω2

∫
d3k ∑n,n′〈k, n|p|k, n′

〉2 f (kn)
[
1− f

(
kn′
)]

δ(Ekn − Ekn′ −ω) (2)

The first Brillouin zone is used to perform the integration in the above equation. The
following dipole matrix elements are used to specify matrix elements for direct transitions
between VB and CB:

Mcv = 〈uck|δ.∇|uvk〉 (3)

where vector potential of the electric field is represented by d. The imaginary part ε2(ω) of
the complex dielectric function and Kramer’s Kroning relation (KKR) is used to formulate
ε1(ω) using Equation (4) [35]:

ε1 (ω) = 1 +
2
π

∫ ∞

0

ε2 (ω)ω′dω′

ω′2 −ω2 (4)

The calculated spectra of ε1(ω) and ε2(ω) for Eu2Tm2O7 (Tm = Hf, Sn, Zr) using the
GGA+U approximation are shown in the Figure 6. The major peaks around 6.0 eV in the
spectra of ε1(ω) after static values show that the maximum dispersion of the incoming
photons by these materials occurs at this value. We can spot in the spectra of ε1(ω) that the
curves of Eu2Tm2O7 (Tm = Hf, Sn, Zr) enter the negative region at approximately 10 eV.
The materials show a metallic behavior in the negative region, and values at which the
curves cross the zero energy axis is known as the plasmon frequency. Values of the ε1(ω)
at zero frequency (ω = 0) are known as static values of the dielectric function ε1(0). The
values of ε1(0) and Eg are inversely related with each other using Equation (5), known as
Penn’s model [36]:

ε1 (0) = 1 +
(

hωp

Eg

)
(5)
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Calculated values of ε1(0) in the spin up channel are approximately 2,48, 2.53 and
2.61 for Eu2Hf2O7, Eu2Sn2O7 and Eu2Zr2O7, respectively. However, calculated values of
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the ε1(0) for the spin down channel are approximately 2.11, 2.13 and 2.15 for Eu2Hf2O7,
Eu2Sn2O7 and Eu2Zr2O7, respectively.

An important parameter that explains the optical transitions between VB and CB is
known as the imaginary part ε2(ω) of the dielectric function. The calculated spectra of
ε2(ω) for Eu2Tm2O7 (Tm = Hf, Sn, Zr) using the GGA+U approximation are shown in
Figure 6. Notable peaks in the visible region are due to the presence of an intermediate
band in the spin up channel. In both spin channels, significant absorption of the incoming
photons is also shown by these compounds in the UV region. Maximum values of ε2(ω)
occur around 6.0 eV for all compounds and in both spin channels. Inter-band transitions
between the VB and CB are responsible for these points. The selection rule states that the
allowed transitions are only those having change in the angular momentum ∆l = ±1. From
Figure 6, it is evident that initially, there is no peak in ε2(ω) plots and originates from some
finite energy values known as threshold energies. In the spin up channel, the values of
the threshold energy for ε2(ω) are 1.8 eV for Eu2Tm2O7 (Tm = Hf, Sn, Zr). However, for
the spin down channel, the threshold values of ε2(ω) are 3.97, 2.78 and 3.98 for Eu2Hf2O7,
Eu2Sn2O7 and Eu2Zr2O7, respectively. These compounds are potential candidates for
photovoltaic applications such as solar cells due to efficient absorption of incoming photons
in visible and UV regions.

Calculated values of the ε1(ω) and ε2(ω) are used to calculate other optical param-
eters such as the absorption coefficient α(ω), real optical conductivity σ(ω), refractive
index n(ω), extinction coefficient K(ω), reflectivity R(ω) and energy loss function L(ω).
Deep knowledge of these optical parameters is required while designing efficient optical
devices, i.e., ultraviolet (UV) photodetectors, semiconductor lasers and optically transpar-
ent electrodes. The following equations are used to calculate the aforementioned optical
parameters [37]:

ñ(ω) = n(ω) + ik(ω) (6)

n(ω) = 1 +
2
π

P
∫ ∞

0

k(ω′)
ω′ −ω

dω′ (7)

k(ω) = − 2
π

P
∫ ∞

0

n(ω′)− 1
ω′ −ω

dω′ (8)

n(ω) =


√(

ε2
1ω
)
+ ε2

2(ω)

2
+

ε1(ω)

2


1
2

(9)

k(ω) =


√

ε2
1(ω) + ε2

2(ω)

2
+

ε1(ω)

2


1
2

(10)

n(0) =
√

ε1(0) (11)

R(ω) =

∣∣∣∣ ñ(ω)− 1
ñ(ω) + 1

∣∣∣∣ = (1 + n)2 + k2

(1− n)2 + k2
(12)

σ(ω) =
ω

4π
ε2(ω) (13)

α(ω) =
√

2ω

[√
ε2

1(ω) + ε2
2(ω)− ε1(ω)

] 1
2

(14)

k(ω) =
c

2ω
α(ω) (15)
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L(ω) = −Im
(

1
ε(ω)

)
=

ε2(ω)

ε2
1(ω) + ε2

2(ω)
(16)

Handsome knowledge of n(ω) is essential before opting an optical material for techno-
logical device applications. A potential photovoltaic compound must have some fundamen-
tal properties such as high optical conductivity, high absorption coefficient, low emissivity
and high refractive index. The calculated spectra of n(ω) for Eu2Tm2O7 (Tm = Hf, Sn,
Zr) using the GGA+U approximation are shown in the Figure 7. The major peaks around
6.0 eV in the spectra of n(ω) after static values show that the maximum dispersion of the
incoming photons by these materials occurs at this value. We can spot in the spectra of
n(ω) for the spin up channel that the curves of Eu2Tm2O7 (Tm = Hf, Sn, Zr) become less
than unity at approximately 9.0 eV. Similarly, we can spot in the spectra of n(ω) for the
spin down channel that the curves of Eu2Tm2O7 (Tm = Hf, Sn, Zr) become less than unity
at approximately 10.0 eV. Values of the n(ω) at zero frequency (ω = 0) are known as static
values of refractive index n(0). The values of n(0) and Eg are related with each other using
Equation (17) [38]:

n(0) =

√
1 +

(
hωp

Eg

)
(17)
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Calculated values of n(0) for the spin up channel are 1.53, 1.57 and 1.61 for Eu2Hf2O7,
Eu2Sn2O7 and Eu2Zr2O7, respectively. However, calculated values of the n(0) for the spin
down channel are 1.49, 1.49 and 1.52 for Eu2Hf2O7, Eu2Sn2O7 and Eu2Zr2O7, respectively.

The calculated spectra of K(ω) for Eu2Tm2O7 (Tm = Hf, Sn, Zr) using the GGA+U
approximation are shown in Figure 7. We can note that ε2(ω) and K(ω) have an analogous
profile. Notable peaks in the visible region are due to the presence of an intermediate
band in the spin up channel. In both spin channels, significant absorption of the incoming
photons is also shown by these compounds in the UV region. Maximum values of K(ω)
occur around 8.0 eV for all compounds and in both spin channels. From Figure 6, it is
evident that initially there is no peak in K(ω) plots and originates from some finite energy
values known as threshold energies. In the spin up channel, the values of the threshold
energy for K(ω) is 1.9 eV for Eu2Tm2O7 (Tm = Hf, Sn, Zr). However, threshold values
of K(ω) are 3.97, 2.78 and 3.98 for Eu2Hf2O7, Eu2Sn2O7 and Eu2Zr2O7, respectively. We
can conclude on the basis of these results that the compounds under study are potential
candidates for photovoltaic applications such as solar cells due to efficient absorption of
incoming photons in the visible region.
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The ratio of reflected to incident photons for a material is known as reflectivity R(ω).
The calculated spectra of R(ω) for Eu2Tm2O7 (Tm = Hf, Sn, Zr) using the GGA+U approx-
imation are shown in Figure 8. It is evident from Figure 8 that these materials are weak
reflectors of incident photons, as they reflect approximately 25% of incident photons from
0 to 12 eV. Values of the R(ω) at zero frequency (ω = 0) are known as static values of
reflectivity R(0). Calculated values of R(0) for the spin up channel are 0.050, 0.052 and
0.058 for Eu2Hf2O7, Eu2Sn2O7 and Eu2Zr2O7, respectively. However, calculated values of
the R(0) for the spin down channel are 0.041, 0.43 and 0.49 for Eu2Hf2O7, Eu2Sn2O7 and
Eu2Zr2O7, respectively. We can conclude on the basis of these results that these compounds
can be utilized in applications such as anti-reflecting coatings.
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Energy loss function L(ω) plays an important role while investigating optical proper-
ties of the materials. The entire energy range is covered by L(ω), consisting of elastically
scattered and non-scattered electrons that are responsible for electronic transitions between
VB and CB. Energy lost by the electrons passing through the material with sufficient energy
is described by L(ω). Inter-band transitions are responsible for the major peaks in the
spectra of L(ω). The calculated spectra of L(ω) for Eu2Tm2O7 (Tm = Hf, Sn, Zr) using
the GGA+U approximation are shown in Figure 8. The major peaks specify the values
of plasmon resonance, and major peaks in the spectra of L(ω) occur at approximately
13.1, 12.7 and 13.2 eV for Eu2Hf2O7, Eu2Sn2O7 and Eu2Zr2O7, respectively, for the spin up
channel. However, for the spin down channel, major peaks occur at approximately 12.8,
13.1 and 12.9 eV for Eu2Hf2O7, Eu2Sn2O7 and Eu2Zr2O7, respectively.

The calculated spectra of real optical conductivity σ(ω) for Eu2Tm2O7 (Tm = Hf, Sn,
Zr) using the GGA+U approximation are shown in the Figure 9. Notable peaks in the
visible region are due to the presence of an intermediate band in the spin up channel.
In both spin channels, significant absorption of the incoming photons is also shown by
these compounds in the UV region. Maximum values of σ(ω) occur around 7.0 eV for all
compounds and in both spin channels. From Figure 9, it is evident that initially, there is
no peak in σ(ω) plots and originates from some finite energy values known as threshold
energies. In the spin up channel, the values of the threshold energy for σ(ω) are 1.9 eV for
Eu2Tm2O7 (Tm = Hf, Sn, Zr). However, threshold values of σ(ω) are 2.0, 2.88 and 3.2 for
Eu2Hf2O7, Eu2Sn2O7 and Eu2Zr2O7, respectively. It is a well-known fact that excitations
will be produced when photon energy is greater than Eg. We can conclude on the basis of
these results that the compounds under study are potential candidates for photovoltaic
applications such as solar cells due to efficient absorption of incoming photons in the visible
and UV regions.
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3. Materials and Methods

The electronic, optical and magnetic properties of pyrochlore oxides Eu2Tm2O7
(Tm = Hf, Sn, Zr) are calculated within the framework of DFT using the generalized
gradient approximation (GGA), taking into account the effect of the Hubbard potential
(GGA+U) as implemented in Wein2k [38]. An exceedingly precise, full potential linearized
augmented plane wave (FP-LAPW) technique [39] was used for the calculations of optical
and electronic properties of Eu2Tm2O7 (Tm = Hf, Sn, Zr). Relaxed structures were used
to calculate ground state properties of the aforementioned compounds. The unit cell was
divided into two regions while working with the FP-LAPW technique: (a) atomic Sphere
(Muffin-tin) and (b) interstitial region (IR).

Cut-off values for the plane wave basis set were assumed to be RMT × KMAX = 7.0
(RMT is smallest muffin-tin radius and KMAX is maximum length of fermi wave vector, re-
spectively). The value of lMAX equal to 10 (angular momentum with maximum length) was
taken to expand the wave function. Forces on the atoms in the unit cell were minimized up
to 10−3 Ry/a.u to obtain relaxed geometry. Self-consistent field calculations were terminated
when forces on atoms became less than 10−3 Ry/a.u. The value of −6.0 Ry was taken to
ensure no leakage of charge from the core state. The crystalline structures for Eu2Tm2O7
(Tm = Hf, Sn, Zr) are shown in Figure 10.
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4. Conclusions

The electronic, optical and magnetic properties of Eu2Tm2O7 (Tm = Hf, Sn, Zr) were
investigated using FP-LAPW-based ab-initio calculations. Band structure plots reveal that
these compounds are direct bandgap semiconductors. The presence of the intermediate
band in the spin up channel plays a vital role in electronic transitions between VB and
CB. To obtain insight into the active involvement of various atoms and electronic states
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in the electronic transitions of these materials, partial/total densities of states were also
examined. The shape and height of the curves were different for the spin up and spin
down channels in the TDOS spectrum, which shows that these compounds have strong
magnetic properties. Eu2Tm2O7 (Tm = Hf, Sn, Zr) possess nearly the same values of
magnetic moments. We discovered that band structures and DOS support the computed
optical properties. Based on the calculated n(ω), we can say that Eu2Tm2O7 (Tm = Hf,
Sn, Zr) are optically active compounds, as their refractive index is between 1.0 to 2.0. It
is concluded based on R(ω) results that these compounds are very weak reflectors of
incident photons. These compounds reflect approximately 25% of the incident photons.
The optical conductivity σ(ω) shows that these materials absorb the maximum of the
incident photons in visible and UV regions. These compounds are promising candidates for
potential optoelectronic applications such as solar cells working in visible and UV regions.
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