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Abstract: The stability of coordination compounds of metal ions with ligands is of fundamental
importance for elaborating upon practical sensors for the detection and quantification of metal
ions in environmental samples. In this work, the stability constants of silver(I) complexes with
2-mercaptoimidazole (2MI) in a mixed water–dimethyl sulfoxide (DMSO) solvent were determined
at 298.15 K and 308.15 K. It was found that with increasing temperature, the stability of the complexes
decreases. The dependence of lgβ1 on the water−DMSO solvent compositions has its minimum at a
concentration of dimethyl sulfoxide of 0.1 mol. fr. To explain the effect of the solvent, the solvation
characteristics of the reagents were analyzed. In this regard, the 2MI Gibbs energy of transfer from
water to aqueous dimethyl sulfoxide solvents was determined, and the influence of the aqueous
DMSO solvent on the thermodynamics of 2MI protonation was analyzed. The stabilization of the
silver ion and 2MI during the transition from water to a water–DMSO solvent makes a negative
contribution to the change in the Gibbs energy of complexation, while the solvation of a complex
particle promotes the complex formation. As a result, the Gibbs energy transfer values are slightly
increased. The results of these thermodynamic studies could be useful for the development of sensor
materials based on mercaptoimidazoles.

Keywords: complexation; complex stability; distribution coefficient; inorganic ion sensors; 1-methyl-
2-mercaptoimidazole; silver(I); solvation; thermodynamics; water−dimethyl sulfoxide solvents

1. Introduction

In recent years, there has been a significant increase in the number of studies devoted
to the search and study of new sensor materials and, in various approaches, aimed at
improving the analytical characteristics of sensors made on the basis of these materials.
Organic and inorganic materials−based colorimetric sensors are common and frequently
used sensors with high sensitivity and selectivity. However, to monitor metal ions, a
series of analytical methods have been developed, including inductively coupled plasma-
mass spectrometry, atomic absorption spectrometry, electrochemistry, fluorescence, ion
imprinting technology, surface-enhanced Raman scattering, and others [1].

Mercaptoimidazole derivatives are known for their use in pharmaceutics [2,3]. Their
use in the composition of various sensor materials for metal ions seems promising. Chemi-
cal sensors based on methylimidasole derivatives have the potential for various nanocom-
positions. For example, 2-mercaptoimidazole was immobilized onto surface silica so
that the silica would have selective properties to extract the heavy metal chromium(III)
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through the formation of a coordination compound between the 2-mercaptoimidazole
and chromium(III) [4]. A novel Schiff base designated as a 5-[(3-methylthiophene-2-yl-
methyleneamino)]-2-mercaptobenzimidazole sensor was successfully applied to the direct
determination of copper(II) ions in tap water, river water, and dam water samples [5]. The
biosensors screen-printed electrodes based on 1-methyl-2-mercaptoimidazole have been
described [6].

The process of complexation of rhenium(V) with 2-mercaptoimidazole in a wide
temperature range and HCl concentration was investigated using the developed redox
system [7]. This type of electrode system could be useful for studying the process of
complexation of metal ions in solutions by the potentiometric method. It is shown that
2-mecraptoimidazole in acidic solutions is oxidized under the action of molecular iodine to
the corresponding disulfide with the loss of one electron according to the following scheme:

2R-SH-2
−
e↔ R-S-S-R+2H+. Reversibility and the standard electrode potential of the system

were established, which was 165.3 mV.
The study [8] reported the development, characterization, and application of acetyl-

cholinesterase biosensors based on a gold electrode modified with a mercaptobenzothiazole
self-assembled monolayer and either poly(o-methoxyaniline) or poly(2,5-dimethoxyaniline)
in the presence of polystyrene sulfonic acid. A new synthetic strategy for the self-assembly
of Cu nanoparticles protected with imidazole-based bidentate ligands seems to be promis-
ing as a fluoric sensor. Biomedical applications of sensors in clusters are an active research
field aimed at finding better fluorescent contrast agents and therapeutic pharmaceuticals
for the treatment and prevention of diseases and the early diagnosis of cancers and other
potent diseases.

The current state of the use of graphene quantum dots (GQDs) as sensors for detecting
metal ions is described [9]. Despite the success of GQDs in this area, the mechanisms that
underpin GQD−metal ion specificity are rarely explored. This lack of information can
result in difficulties when attempting to replicate published procedures and can limit the
judicious design of new highly selective GQD sensors. Furthermore, there is a dearth of
GQD examples that selectively detect biologically relevant metals.

A new fluorescent probe based on 3,3′-(((1E,1’E)-((3-oxo-1,3-dihydroisobenzofuran-
1,1-diyl)bis(1-hydroxynaphthalene-4,2-diyl)))bis-(methanilyl-den))bis(azanilidene))bis-(2-
aminomaleonitrile) (PM) for the determination of Hg2+ in an aqueous solution of THF was
developed [10]. Thanks to its excellent fluorimetric properties, a portable smart platform
with smartphone support was created for convenient, cost-effective, and reliable Hg2+

detection. It is noteworthy that the detection of water samples from the environment in
the field was achieved with good extraction using a portable platform.

The development of electrochemical sensors for monitoring heavy metal ions has
rapidly increased [11–20]. These sensors use biological or biomimetic recognition elements,
such as enzymes, antibodies, aptamers, and molecularly imprinted polymers, in direct
contact with the electrode surface to provide quantitative or semi-quantitative detection of
the target ions. This type of sensor offers high sensitivity, selectivity, and cost-effectiveness,
making it an ideal tool for in situ monitoring of environmental contaminants. Factors
contributing to the growing interest in this technology include the identification of suitable
receptors and improved electrode designs and performances, including screen−printed
electrodes, miniaturized devices, and portable potentiostats.

When developing new chemical sensors, in addition to the spectral characteristics of
their sensory abilities, it is necessary to pay attention to the thermodynamic parameters
of complexation processes and solvation characteristics of reagents, which determine
the thermodynamics of selective binding processes in solutions [21–23]. Evaluating the
influence of mixed solvent composition on the thermodynamic solvation parameters of
both reagents and products (G, H, S) and deriving appropriate relationships between the
solvation parameters of the interacting particles and those of the reaction allows to devise
predictive models for complex formation. Therefore, it is possible to choose a suitable
solvent for the synthesis of complexes with the desired thermodynamic properties, such
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as stability and enthalpy of the complexation reaction. The thermodynamic parameters of
complexation could probably be used as additional sensory characteristics [24].

The effect of solvent on acid−base properties and reactivity of methylimidazole
derivatives was discussed in [25–29]. These results were an integral part of the studies of
the reactions of complexation of the silver ion with sulfur−containing ligands in mixed
solvents. To explain the solvent effects, the solvation of the ligand was studied, and the
solvation contributions of the reagents to the change in the stability of complex particles
was analyzed.

In particular, a potentiometric titration method was applied to study the process of com-
plexation of silver(I) with N, N-ethylene urea; 1-formyl; and 1-acetyl-3-thiosemicarbazide
in the temperature range 288−328 K in water and water−ethanol solvents [29]. It was
found that the stability constant of the monosubstituted silver(I) complex with the studied
ligands is twice as high as the stability of the two- and three-substituted complexes, which is
associated with steric factors. The ionic strength of the solution does not affect the number
of particles formed by the interaction of silver(I) with N, N-ethylene urea; 1-formyl; and
1-acetyl-3-thiosemicarbazide but affects the numerical values of the general and step stabil-
ity constants. When the complexation reaction is transferred from water to water–ethanol
solvents, the total stability constants of the complexes increase.

The Gibbs energies of resolvation of 2-mercaptoimidazole (2MI) and 1-methyl-2-
mercaptoimidazole (1MI) and their complexation with silver(I) in aqueous–ethanol solvents
were studied [28]. Analysis of thermodynamic parameters showed that in all aqueous-
ethanol solvent compositions, a compensatory effect of the solvation state of silver(I) ions
and ligands in the [Ag(2MI)]+ and [Ag(1MI)]+ complex stability is observed. The changes
in the solvate state of the complex particles ([Ag(2MI)]+, [Ag(1MI)]+) are key factors in the
equilibrium shift of the reactions.

The solvation of 1-methyl-2-mercaptoimidazole (1MI) in aqueous–dimethyl sulfoxide
solvents was studied by the interfacial distribution method with a control of analyte
concentration by UV spectrophotometry [27]. It was found that with an increase in the
DMSO content in the solution, the Gibbs resolvation energy (∆trG0) takes a negative value,
which is a consequence of a better solvation of 1MI in DMSO than in water.

The analysis of the literature data illustrates the possibility of practical application of
water–organic solvents to obtain more stable complexes of thioamide ligands with silver(I)
ions in comparison with aqueous solutions. This should be especially important to detect
metal ions presented in industrial waste water containing organic solvents.

The aim of this work is to determine the stability of silver(I) coordination compounds
with 2MI in water–DMSO solvents and to study the effect of the binary water–DMSO
solvent composition on the complex formation by a solvation–thermodynamic approach.
The solvation–thermodynamic analysis is based on the obtained thermodynamics pa-
rameters for the solvate state of 2-mercaptoimidazole and the acid–base equilibria of the
ligand, which are obtained in this work. The results of the presented thermodynamic
studies could be useful, in our opinion, for the development of sensor materials based
on mercaptoimidazoles.

2. Results

To establish the influence of the solvent nature on the acid−base properties and the
equilibrium of complexation using the solvation-thermodynamic approach, it is necessary
to know the Gibbs energy (∆trG0) of the transfer of reagents and reaction products. For
the Ag+ ion, the Gibbs energy of transfer from water to aqueous DMSO solvents is given
in [30], but such data are not available in the literature for 2MI. The Gibbs energy of
2MI transfer was determined by the method of interphase distribution of a substance
between two immiscible phases. Table 1 shows experimental data on the determination
of the equilibrium concentration of 2MI in water and aqueous DMSO solvents, calculated
distribution coefficients of 2MI in H2O−Hex and H2O−DMSO−Hex systems, as well
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as changes in the Gibbs energy of the 2MI transfer from water to aqueous–dimethyl
sulfoxide solvents.

Table 1. Equilibrium concentrations of 2MI in water and aqueous–dimethyl sulfoxide solvents;
distribution coefficients of 2MI in H2O-Hex and H2O-DMSO-Hex systems; and changes in the Gibbs
energy of 2MI transfer from water to aqueous–DMSO solvents, T = 298.15 K.

[2MI]H
2

O –DMSO × 105, mol L−1 [2MI]hex × 105, mol L−1 K1 K2 ∆trG0, kJ/mol

9.55 0.45
0.045 ± 0.01 - 09.60 0.40

9.83 1.70
- 0.017 ± 0.003 −2.38 ± 0.409.84 1.60

9.82 1.80
9.90 0.10

- 0.009 ± 0.002 −4.00 ± 0.709.92 0.80
9.91 0.90
9.45 5.50

- 0.056 ± 0.004 −1.55 ± 0.709.49 5.10
9.46 5.40

From the data in the Table 1, it can be seen that when transferring 2MI from water to
H2O−DMSO solvents, a minimum of ∆trG0 (2MI) is observed at the DMSO concentration
range of 0.1–0.25 mol. fr.. In general, when transferring from water to a water–DMSO
solvent, the oversolvation of 2MI is observed. Previously, we found a similar oversolvation
for 1-methyl-2-mercaptoimidazole when transferred from water to H2O–DMSO solvents
up to DMSO 0.3 mol. fr. (Figure 1) [27].
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Figure 1. The Gibbs energy change during the transfer of 2−mercaptoimidazole (1) and
1−methyl−2−mercaptoimidazole (2) from water to aqueous−dimethyl sulfoxide solvents at 298 K.

One of the conditions for obtaining the most accurate thermodynamic values of the
complexation reaction in aqueous organic solvents is to study the equilibrium of proton ad-
dition in ligand solutions. We studied the acid−base equilibrium of 2−mercaptoimidazole
in an aqueous solution (pKa value =2.97 ± 0.04). In continuation of these studies, we
determined the values of pKa 2−mercaptoimidazole in aqueous DMSO solvents at 298 K by
applying the potentiometric method. Table S1 (in Supplementary Materials) shows the pH-
metric titration data of 2MI at 298 K in a mixed solvent containing 0.1 mol. fr. DMSO. The
values of 2−mercaptoimidazole pKa in water and aqueous−dimethyl sulfoxide solvents
with variable DMSO content at 298.15 and 308.15 K are presented in the Table 2.
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Table 2. The values of 2-mercaptoimidazole pKa in water and water–dimethyl sulfoxide solvents at
298.15 and 308.15 K.

XDMSO, mol. fr.

0.0 0.1 0.25 0.5
298.15 2.97 ± 0.04 1.93 ± 0.07 2.34 ± 0.02 2.72 ± 0.08
308.15 2.76 ± 0.05 1.76 ± 0.04 2.23 ± 0.03 2.63 ± 0.07

The pKa = f(χDMSO) dependence has an extreme form with a minimum in the range
of DMSO concentration corresponding to 0.1 mol. fr.. A further increase in the content of
DMSO leads to a slight increase in the basic properties of 2MI.

3. Discussion

To analyze the effect of the H2O–DMSO solvent compositions on the thermodynamics
of the protonation process of 2MI, information on the solvation of all participants in the
acid–base equilibrium is needed. Data on the solvation of 2MI (∆trG0

2MI) were presented
in the Table 1. The change in the Gibbs energy of proton transfer (∆trG0

H
+) was taken from

the literature [30]. Using Equation (1) and data from Table 3, the values of the Gibbs energy
change of the 2MI protonation reaction during transfer from water to aqueous–dimethyl
sulfoxide solvents (∆trG0

r) are calculated. Using Equation (2), the values of the Gibbs
energy of the protonated particle H2MI+ (∆trG0

H2MI
+) were calculated.

∆trG0
r = ∆trG0

H2O − EtOH − ∆trG0
H2O (1)

∆trG0
r = ∆trG0

H2MI
+ − ∆trG0

H
+ − ∆trG0

2MI (2)

Table 3. The stability constants of silver(I) complexes with 2MI in a water−DMSO mixed solvents at
298.15 K and 308.15; I = 0.1 mol L−1 NaClO4.

XDMSO, mol. fr. 298 K

lgβ1 lgβ2 lgβ3
0 6.84 ± 0.03 10.56 ± 0.03 12.27 ± 0.04

0.1 7.18 ± 0.04 10.49 ± 0.09 12.64 ± 0.3
0.25 6.58 ± 0.01 10.46 ± 0.01 -
0.50 5.86 ± 0.01 10.17 ± 0.01 -

308 K
0 6.79 ± 0.03 10.36 ± 0.03 11.93 ± 0.4

0.1 6.88 ± 0.01 9.96 ± 0.02 11.60 ± 0.2
0.25 6.42 ± 0.01 9.72 ± 0.01 -
0.50 5.62 ± 0.01 9.81 ± 0.05 -

Figure 2 shows the dynamics of reagents solvation contributions to the change in the
Gibbs energy of the 2MI protonation in water−dimethyl sulfoxide solvents.

When transferring from water to aqueous–DMSO solvents, a slight weakening of
the reaction of protonation of 2-mercaptoimidazole is observed (Figure 2). In an aqueous
DMSO solvent, protonation of 2MI is characterized by significant increase in H+ and H2MI+

solvation. In contrary, the solvation of 2MI is slightly increased. It can be assumed that
the weakening of the protonation of 2MI is associated with a compensatory contribution
between H+ and H2MI+ and a slight increase in the solvation state of 2MI.

It was found that in aqueous solutions, silver(I) with 2MI forms three complex particles.
In contrast to imidazole [28], the stability of stepwise-formed silver(I) complexes with 2MI
decreases with increasing temperature.
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tion in water–dimethyl sulfoxide solvents.

Experimental potentiometric titration data for the analysis of equilibrium processes
involving 2-mercaptoimidazole and silver in aqueous DMSO solvents were processed
using KEV software [31]. To calculate the equilibrium of complex formation, the following
equilibria were introduced into the program in the form of a matrix:

H+ + 2MI = H2MI+ (1)

Ag+ + 2MI= [Ag(2MI)]+ (2)

Ag+ + 2(2MI) = [Ag(2MI)2]+ (3)

Ag+ +3(2MI) = [Ag(2MI)3]+ (4)

Ag+ +4(2MI) = [Ag(2MI)4]+ (5)

The most correct stoichiometric composition of silver(I) complexes with 2MI was de-
termined by varying the stoichiometric matrix in KEV, choosing one that gave the smallest
standard deviation for the stability constant and values of electrode potentials. Using
the described approaches, it was shown that coordination compounds of the composition
[Ag(2MI)]+, [Ag(2MI)2]+, and [Ag(2MI)3]+ were formed in the silver(I)–2MI–H2O–DMSO.
Figure 3 shows diagrams of particles distribution in the silver(I)–2MI–0.10 mol. fr. DMSO
system at 298.15 K.
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Analysis of the distribution diagrams shows that when silver(I) interacts with 2MI,
a step-by-step complexation occurs, and each complex form has a limit of its formation
depending on the concentration of the organic ligand.

According to the literature data [32], 1-methyl-2-mercaptoimidazole is coordinated by sil-
ver(I) due to the sulfur atom of the thione group. It can be assumed that 2-mercaptoimidazole
is also coordinated with silver(I) by the sulfur atom, forming a three-substituted complex
(Figure 4).
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Figure 4. Silver(I) complex with 1-methyl-2-mercaptoimidazole: 1-methyl-2-mercaptoimidazole
molecules coordination during [Ag(2MI)3]+ complex formation.

Table 3 shows the stability constants of silver(I) complexes with 2MI in a water–DMSO
mixed solvent at 298.15 K and 308.15 K. With increasing temperature, regardless of the
composition of the water–organic solvent, the stability of the complexes decreases. The
composition of the solvent affects not only the stability of the resulting complexes but also
their stoichiometry. The dependence of lgβ1 on the composition of the aqueous DMSO
solvent has an extremum at a concentration of 0.1 mol. fr. DMSO. In general, for mono-
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and bis-complexes, the stability of complexes decreases during the transition from water to
water–DMSO solvents.

The change in ∆trG0 of the mono-ligand complex formation reaction and the solvation
of the participants in this process in aqueous DMSO solvents is shown in Figure 5. The
stabilization of the silver ion during the transition from water to aqueous–DMSO solvents
makes a negative contribution to the equilibrium of complexation, with an insignificant
contribution from changes in the solvate state of 2MI. The changes in the solvate state of
the complex particle are similar to that of silver ion. As a result, the Gibbs energy transfer
values are slightly increased up to 5 kJ/mol at 0.5 mol. fr. DMSO.
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4. Materials and Methods

The Gibbs energy of the 2MI transfer from water to aqueous–dimethyl sulfoxide
solvents was determined as described in [27]. To determine the protonation constants of
2-mercaptoimidazole in the aqueous−DMSO solvent, a galvanic cell consisting of glass
and silver chloride electrodes was used. A hydrochloric acid solution with a concentration
of 0.01 mol L−1 in an aqueous DMSO solvent was used as a titrant. The pH values were
measured using a PH-150MP pH meter. The temperature in the cell was kept constant
using a water thermostat with an accuracy of maintaining a temperature of ±0.1 ◦C.

When studying the complexation of silver(I) with 2MI, the initial concentrations of
AgNO3 and 2MI and were 1.0 × 10−4 mol L−1 and 1.0 × 10−2 mol L−1, respectively.
The ionic strength of the titrant and solution in the potentiometric cell was kept constant
(0.1 mol L−1 NaClO4). A plate made of pure silver was used as an indicator electrode.
The reference electrode was a silver chloride electrode. Titration of the AgNO3 solution
with a solution of 2MI was carried out in aqueous−DMSO solvents containing 0.10, 0.25,
and 0.50 mol. fr. DMSO. The potential measurement of the Ag+/Ag system during
potentiometric titration was carried out using a PH−150 MP pH meter with an error of
±0.1 mV. The calculation of the equilibrium composition of the particles present in the
solution was carried out using the KEV program [31], taking into account the lgK(H+) of
2MI obtained in this work in the binary solvents under study.

Quantitative results on particles concentration in equilibrium could also provide
information useful to develop some sensor materials in Ag−2MI−H2O−DMSO systems.
Tables S1 and S2 (in Supplementary Materials) show, as an example, the equilibrium
concentrations of the complexes formed in an aqueous−DMSO solvent containing 0.10 mol.
fr. calculated according to the KEV program.
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5. Conclusions

The values of the Gibbs energy transfer of the 2-mercaptoimidazole were determined
by the interphase distribution method. It is shown that when 2MI is transferred from water
to water–DMSO, enhancement of the solvation of the protonated form occurs. The change
in the solvate state of 2MI is insignificant.

The stepwise complex formation of silver(I) with 2-mercaptoimidazole in water–
DMSO solvents of variable composition has been established. The change in ∆trG0

r for the
mono−ligand complex is discussed in the solvation−thermodynamic approach.

Stabilization of the silver ion during the transition from water to water−DMSO solvent
makes a negative contribution to the equilibrium of complexation, with an insignificant
contribution from changes in the solvate state of 2MI. The solvate state of the mono-complex
particle is similar to the change in the solvation state of silver(I) ion. As a result, the Gibbs
energy transfer values are slightly increased.

The thermodynamic parameters of complexation and solvation of the reagent obtained
in this work are of interest for fundamental science for understanding the processes of
coordination of silver(I) ions with thioligands in aqueous organic solvents. This knowl-
edge is also necessary to develop the sensor materials based on 2-mercaptoimidazole for
the quantitative identification of silver ions in water−organic solvents. In addition, the
potentiometric method traditionally used to determine the stability of complex compounds
could be useful for quantitative determination of the equilibrium composition of particles
in an analyte.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/inorganics11050199/s1. Table S1: pH-metric titration data of
2-mercaptoimidazole and calculated pKa values of 2-mercaptoimidazole in the H2O-DMSO solvent
at χDMSO = 0.1 mol. fraction, C2MI = 0.01 mol L−1. Table S2: Potentiometric titration data of AgNO3
solution by 2MI solution at T = 298.15 K, χDMSO = 0.10 mol. fr.. I = 0.1 mol L-1 NaClO4
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