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Abstract: One of the most effective synthetic pathways to produce unsaturated compounds and poly-
mers, meant for both industrial and pharmaceutical applications, is olefin metathesis. These useful
reactions are commonly promoted by ruthenium-based precatalysts, namely the second-generation
Grubbs’ catalyst (GII) and complexes bearing a styrenyl ether ligand, referred to as the second-
generation Hoveyda–Grubbs’ catalyst (HGII). By altering the steric and electronic characteristics
of substituents on the backbone and/or on the nitrogen atoms of the NHC ligand, it is possible to
increase the reactivity and stability of second-generation ruthenium catalysts. The synthesis of an
HG type II complex bearing two anti-phenyl backbone substituents (anti-HGIIPh-Mes) with mesityl
N-substituents is reported. The catalytic performances of the new complex were investigated in
standard ring-closing metathesis (RCM) and ring-opening metathesis polymerization (ROMP) and
compared to those of the analogue complex syn-HGIIPh-Mes and to the classic HGII complex. A
thorough analysis of the temperature dependence of the performances, along with a detailed com-
parison with the commercially available HGII, is conducted. The HGIIPh-Mes complexes are more
thermally stable than their parent HGII, as shown by the fact that their activity in the ROMP of
5-ethylidene-2-norbornene does not alter when the polymerization is carried out at room temperature
after the complexes have been held at 180 ◦C for two hours, making them particularly interesting for
materials applications.

Keywords: NHC-Ru(II); ligand design; RCM; ROMP

1. Introduction

Olefin metathesis is an effective and versatile synthetic method for the preparation
of different compounds, including polymers, natural products, and biologically active
substances [1–6]. It has a very wide range of industrial applications, such as biochemi-
cals [7–9], pharmaceuticals [10–12], cosmetics [13–15], agrochemicals [16–21], and advanced
materials [22–26]. Olefin metathesis reactions [1,2] are classified into three categories: cross
metathesis (CM), ring-closing metathesis (RCM), and ring-opening metathesis (ROM). The
accepted reaction mechanism, characterized by the formation of a metallacyclobutane
intermediate, was first proposed by Chauvin [27].

Among the various metal-based precatalysts used in these reactions, the well-defined
ruthenium–carbene complexes, known as Grubbs’ catalysts, display exceptional functional
group tolerance and have been extensively studied in olefin metathesis. The development
of very active systems, also useful for an effective metathesis of electron-deficient substrates,
involved ruthenium compounds with 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene as a
carbene ligand (second-generation Grubbs’ catalyst—GII) and complexes bearing a styrenyl
ether ligand (second-generation Hoveyda-Grubbs’ catalyst—HGII) [28,29] (Figure 1).
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The reactivity and stability of second-generation ruthenium catalysts can be im-
proved by modifying the steric and electronic properties of substituents on the backbone 
and/or on the nitrogen atoms of the NHC ligand [30,31]. 

Several studies have shown that decreasing the size of the aryl groups on the NHC 
nitrogen atom is advantageous for RCM and CM of hindered substrates [32,33], while 
unsymmetrical NHC ruthenium(II) catalysts display beneficial properties, including 
strong thermodynamic stability, chemical latency, and exceptional selectivity in several 
specialized metathesis processes [34,35]. 

According to several research publications, the presence of backbone substituents on 
NHC ligands results in more stable complexes since they hamper the rotation of the sub-
stituents on the nitrogen atoms, thus limiting the decomposition of complexes by C–H 
activation [36–41]. Furthermore, the electronic effects of the substituents of the NHC back-
bone enhance the σ donor ability of carbene carbon [34]. 

A catalyst with these features has been used for the development of smart composite 
materials capable of self-repair in aeronautical structures. In fact, some of us synthesized 
and characterized a stable initiator (1) for ROMP reactions, suitably designed to be em-
bedded in structural resins for self-healing applications (Figure 2) [42]. 

 
Figure 2. Hoveyda–Grubbs type catalysts. 

Interesting results were obtained by solubilizing syn-HGIIPh-mes in epoxy matrix struc-
tural resins, hardened by curing cycles up to 180 °C. Despite the difficult environment 
represented by this thermosetting material and the high temperatures to which the cata-
lyst is exposed during the curing cycles, it was found active for the ROMP of 5-ethylidene-
2-norbornene (ENB), which is the monomer used for the self-healing of these composite 
materials in the aviation sector [43]. The same tests performed in the presence of anti-
HGIIPh-Mes (2) (Figure 2) give different results. In fact, the latter catalyst is active in this hos-
tile environment, but only if cured at temperatures up to 90 °C [44]. 

In this paper, we report the details of the synthesis and characterization of anti-
HGIIPh-Mes (2) and the comparison of syn- and anti-HGIIPh-Mes activities with respect to the 

Figure 1. Second generation Grubbs’ (GII) and Hoveyda–Grubbs’ (HGII) catalysts.

The reactivity and stability of second-generation ruthenium catalysts can be improved
by modifying the steric and electronic properties of substituents on the backbone and/or
on the nitrogen atoms of the NHC ligand [30,31].

Several studies have shown that decreasing the size of the aryl groups on the NHC
nitrogen atom is advantageous for RCM and CM of hindered substrates [32,33], while
unsymmetrical NHC ruthenium(II) catalysts display beneficial properties, including strong
thermodynamic stability, chemical latency, and exceptional selectivity in several specialized
metathesis processes [34,35].

According to several research publications, the presence of backbone substituents
on NHC ligands results in more stable complexes since they hamper the rotation of the
substituents on the nitrogen atoms, thus limiting the decomposition of complexes by C–
H activation [36–41]. Furthermore, the electronic effects of the substituents of the NHC
backbone enhance the σ donor ability of carbene carbon [34].

A catalyst with these features has been used for the development of smart composite
materials capable of self-repair in aeronautical structures. In fact, some of us synthe-
sized and characterized a stable initiator (1) for ROMP reactions, suitably designed to be
embedded in structural resins for self-healing applications (Figure 2) [42].
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Figure 2. Hoveyda–Grubbs type catalysts.

Interesting results were obtained by solubilizing syn-HGIIPh-mes in epoxy matrix
structural resins, hardened by curing cycles up to 180 ◦C. Despite the difficult environment
represented by this thermosetting material and the high temperatures to which the catalyst
is exposed during the curing cycles, it was found active for the ROMP of 5-ethylidene-
2-norbornene (ENB), which is the monomer used for the self-healing of these composite
materials in the aviation sector [43]. The same tests performed in the presence of anti-
HGIIPh-Mes (2) (Figure 2) give different results. In fact, the latter catalyst is active in this
hostile environment, but only if cured at temperatures up to 90 ◦C [44].

In this paper, we report the details of the synthesis and characterization of anti-
HGIIPh-Mes (2) and the comparison of syn- and anti-HGIIPh-Mes activities with respect to the



Inorganics 2023, 11, 244 3 of 11

commercial complex HGII (Figure 1) in the ring-closing metathesis and in the ring-opening
metathesis polymerizations.

2. Results and Discussion
2.1. Synthesis and Characterization of Anti-HGIIPh-Mes Complex

The synthesis of complex anti-HGIIPh-Mes (2) is described in Scheme 1. It was ob-
tained using the same procedure developed in Ref. [38] to obtain 1 syn-HGIIPh-Mes. The
enantiomerically pure ruthenium complex is prepared in three steps by using the slightly
modified procedure reported in Ref. [41]. 1R,2R-diphenylethylenediamine was coupled
with 2-bromomesitylene by palladium-catalyzed reaction to give diarylated diamine A
((1R,2R)-N,N’-di(mesityl)-1,2-diphenylethylenediamine) as an orange dusty solid in 92%
yield. The 1H and 13C NMR spectra of A are consistent with the structure reported in the
literature. The doublet signals at 4.78 and 4.01 ppm in the 1H NMR spectrum are attributed
to NCHPh, and the signals at 141.2 and 141.9 ppm in the 13C NMR spectrum are attributed
to quaternary carbons of the mesityl and phenyl groups, respectively [41].
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Scheme 1. Synthesis of 2 anti-HGIIPh-Mes.

The resulting diamine is reacted with triethyl orthoformate and ammonium tetraflu-
oroborate to form the imidazolium tetrafluoroborate salt B. The cyclization is confirmed
by the signals at 8.36 ppm in the 1H- and at 158.6 ppm in the 13C NMR spectra, at-
tributable to hydrogen and carbon, respectively, of the cationic CH methine group be-
tween the nitrogen atoms. The treatment of B with potassium-hexamethyldisilazide
(KHMDS) generates the carbene, which was not isolated and was reacted with dichloro
(o-isopropoxyphenylmethylene) (tricyclohexylphosphine)ruthenium (II) (HGI) to give an
enantiopure complex anti-HGIIPh-Mes as a bright green solid (30% 38 yield). The reaction
was monitored by 1H NMR following the disappearance of the methine proton of B be-
cause of the formation of the carbenic carbon and the shift of the benzylidenic proton of
anti-HGIIPh-Mes respect to that of HGI. The complex, purified by flash chromatography,
was stable in the solid state. The 1H NMR analysis of the complex shows the charac-
terization signal of the benzylidene proton at 16.35 ppm, and the 13C NMR spectrum
displays signals at 214.5 and 298.3 ppm due to the carbene carbons of the N-heterocyclic
and benzylidene, respectively.

Mass Spectrometry (ESI-MS) confirmed the obtaining of the ruthenium complex, with
the peak corresponding to the values of ESI+MS m/z of 742.90 Dalton in accordance with
the mass of the fragment [C43H47ClN2ORu]+.

2.2. Metathesis Reactions: Activity Studies
2.2.1. Ring Closing Metathesis Activity Studies

The catalytic activity in the olefin metathesis processes may be affected by the distinct
phenyl dispositions (syn and anti) on the backbone. In order to assess the activities of
the two precatalysts, syn-HGIIPh-Mes and anti-HGIIPh-Mes, benchmark RCM and ROMP
reactions were performed. Thus, we decided to evaluate the activities of the two complexes
and compare them with those of the classic Hoveyda–Grubbs II complex. The ring-closing
metathesis of diethyl-diallylmalonate C (Figure 3) and diethyl-allylmethallylmalonate E
(Figure 4) was carried out in the presence of 0.1 mol% of ruthenium catalysts in C6D6
at 60 ◦C. The conversion of each olefin to a product was checked over time by 1H NMR
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spectroscopy, and the corresponding kinetic profiles are shown in Figures 3 and 4. For RCM
of C, all precatalysts showed similar catalytic activities: HGII reaches maximum conversion
within 4 min, while for syn- and anti-HGIIPh-Mes, the conversions are about 95% and 98%
for the same time, respectively.
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For the RCM of E, precatalyst HGII was found to be slightly more active than syn-
and anti-HGIIPh-Mes: diethyl-allylmethallylmalonate total conversion was observed in
18 min, whereas syn- and anti-HGIIPh-Mes reached 97% and 98% conversion within 26 min,
respectively. So, although highly efficient, precatalysts syn- and anti-HGIIPh-Mes are slightly
less active than classical HGII for these reactions.

In the more sterically demanding RCM of diethyl-dimethylallylmalonate G, a 5% mol
catalyst loading was employed in C6D6 at 60 ◦C (Table 1). There were marked differences
in the reactivity among the three catalysts. After one hour, HGII converts to 20%, whereas
precatalysts anti-HGIIPh-Mes and syn-HGIIPh-Mes convert to 11% and 4%, respectively. After
72 h, the activities of the three catalysts are only slightly different; in fact, HGII achieves
a conversion of 63%, while anti-HGIIPh-Mes and syn-HGIIPh-Mes reach about 60 and 55%,
respectively. As a result, whereas syn-HGIIPh-Mes and anti-HGIIPh-Mes exhibit lower initial
activity than HGII, over a long period of time, they behave similarly.

In the literature, the observed trend is that sterically bulky catalysts [38,45,46] are
significantly slower in the RCM of hindered olefins.
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Table 1. RCM conversion of diethyl-dimethylallylmalonate (G).
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substitution of oxygen by the isopropoxide group by an associative or interchange mech-
anism. 
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G H 

Time (h) Conversion %
HGII

Conversion %
syn-HGIIPh-Mes

Conversion %
anti-HGIIPh-Mes

1 20.0 [47] 4.40 11.1

24 54.5 44.8 51.0

48 60.1 52.7 56.5

72 63.3 55.1 59.8

96 63.5 55.1 61.8

2.2.2. Ring-Opening Metathesis Polymerization Activity Studies

Successively, we tested the catalytic activity of syn- and anti-HGIIPh-Mes in the Ring
Opening Metathesis Polymerization (ROMP) of 1,5-cyclooctadiene (COD), 2-norbornene
(N), and 5-ethyliden-2-norbornene (ENB).

Figure 5 shows the ROMP of COD kinetic profiles in the presence of 0.01 mol% HGII,
syn- and anti-HGIIPh-Mes ruthenium complexes to induce polymerization of COD by ring
opening, providing the same polymer produced by 1,4-polyaddition of 1,3-butadiene. Both
syn- and anti-HGIIPh-Mes are efficient catalysts for the polymerization of COD, reaching
full monomer conversion within 11 and 15 min, respectively. The compound HGII gives
the same result in 5 min. Thus, observing the kinetic profiles of these ruthenium-based
pre-catalysts, we can affirm that syn- and anti-HGIIPh-Mes complexes are slightly less active
than the complex lacking the substituents on the backbone. Furthermore, by observing
the ROMP kinetic profile of COD with syn-HGIIPh-Mes, the catalyst’s need for an induction
time is evident (see Figure 5).
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Probably, because in this compound, due to steric effects, the coordination of the incom-
ing monomer could be more difficult than that in complex HGII and in anti-HGIIPh-Mes, and
maybe this could make the elimination of the ligand in trans to NHC harder. In other words,
we can consider the coordination of the incoming monomer as a nucleophilic substitution
of oxygen by the isopropoxide group by an associative or interchange mechanism.

It may be useful to recall that, as reported by Grisi et al. [48], the stability and reac-
tivity of complexes with different substituents on the nitrogen atoms of NHC are strongly
influenced by the syn or anti-configuration of the phenyl groups on the ligand backbone.
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In fact, the complex with the phenyls in the anti-configuration is more stable and active
than the homologue in the syn configuration. In the present work, only the stereochemical
effects of the phenyls in positions 4 and 5 are evaluated because the nitrogen atoms have
the same mesityl substituents. Our catalysts are highly efficient in both RCM catalysis of
olefins and ROMP.

ROMPs of 2-norbornene and 5-ethyliden-2-norbornene were carried out at room
temperature for 1.00 min, using a catalyst/monomer ratio of 1/3000. The results are
summarized in Table 2 (runs 1–6).

Table 2. ROMP of 2-norbornene and 5-ethyliden-2-norbornene.
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a Run Catalyst Monomer Amount of
Polymer (g)

Conversion
%

1 HGII 2-norbornene 0.991 95.3

2 syn-HGIIPh-Mes 2-norbornene 0.908 87.4

3 anti-HGIIPh-Mes 2-norbornene 0.997 95.9

4 HGII ENB 1.21 91.7

5 syn-HGIIPh-Mes ENB 1.08 81.2

6 anti-HGIIPh-Mes ENB 0.670 50.4
b 7 HGII ENB 0.736 55.4
b 8 syn-HIIPh-Mes ENB 1.01 76.0
b 9 anti-HGIIPh-Mes ENB 0.585 44.0

c 10 HGII ENB 1.31 98.7
c 11 syn-HGIIPh-Mes ENB 1.08 81.7
c 12 anti-HGIIPh-Mes ENB 1.32 >99

a Mol cat = 3.72 × 10−6; mol monomer 1.11 × 10−2; 99 mL THF, 25 ◦C, 1 min. b The catalysts were kept at 180 ◦C
for 2 h. c Run performed at −50 ◦C for 2 h.

In contrast to syn-HGIIPh-Mes, which converts to polymer at a slightly lower rate,
complexes HGII and anti-HGIIPh-Mes provide a conversion of greater than 95% after 60 s.
The difference could depend on the necessary activation time for this complex. Results of
runs 4–6 (Table 2) of ROMP of 5-ethyliden-2-norbornene show that, in the polymerization
of this monomer, the activities of the ruthenium-based catalysts seem apparently lower
than those of the ROMP of 2-norbornene, but in this case we obtain a highly cross-linked
polymer, therefore the access to the catalytic site by the monomer could be prevented. For
instance, anti-HGIIPh-Mes produces a polymer with a grade of cross-link higher than 80%.

In order to compare the thermal stability of three ruthenium-based catalysts, they
were kept at 180 ◦C for two hours, after which they were used to catalyze the ROMP
of 5-ethyliden-2-norbornene at room temperature (see runs 7–9). Comparing the results
of runs 4–6 with those of runs 7–9, it is possible to note that the activities of syn- and
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anti-HGIIPh-Mes are substantially similar, whereas the one of HGII is significantly lower.
The results of these tests demonstrate that the two complexes with phenyls on the backbone
are much more thermally stable than HGII, so much so that their catalytic activity does
not change much, while that of HGII is reduced by about 40%. The complexes also under-
went stability tests using thermogravimetry (TGA) and differential scanning calorimetry
(DSC). The TGA investigation showed that the complexes are stable up to 230 ◦C, after
which time a degradation process starts with a commensurate weight loss. DSC analyses
supported this conclusion as well (see SI). It is also worth noting that HGII is active in the
forbidding environment of epoxy resin-based thermosetting material, but only if it is cured
at temperatures up to 90 ◦C.

The catalysts are very efficient at very low temperatures as well. In fact, polymer-
izations of 5-ethyliden-2-norbornene performed at −50 ◦C for two hours with all three
ruthenium complexes gave very high conversions (see runs 10–12).

3. Experimental Part

All reactions were performed in an oxygen- and moisture-free atmosphere using stan-
dard Schlenk and glovebox techniques. All solvents were thoroughly deoxygenated and
dehydrated under nitrogen atmospheres by heating at reflux over suitable drying agents.
NMR-deuterated solvents (Euriso-Top products) were kept in the dark over molecular
sieves. Reagents were purchased from Sigma-Aldrich and TCI Chemicals and used without
further purification; HGII complex was purchased by Sigma-Aldrich and purified by silica
gel chromatography before use. NMR spectra were recorded at room temperature on a
Bruker AM 300 spectrometer (300 MHz for 1H) and a Bruker AVANCE 400 spectrome-
ter (100 MHz for 13C). NMR samples were prepared by dissolving about 10 mg of the
complex in 0.5 mL of deuterated solvent. The 1H NMR and 13C NMR chemical shifts are
referenced to the residual proton impurities of the deuterated solvents with respect to
SiMe4 (δ = 0 ppm) as internal standard singlet signals (CD2Cl2: δH = 5.32, 13C δC = 53.84).
Multiplicities are abbreviated as singlet (s); septuplet (septet); and multiplet (m). Elemental
analyses for C, H, and N were obtained by a Thermo-Finnigan Flash EA 1112 according
to standard microanalytical procedures. ESI-MS spectra were obtained by using a Wa-
ters Quattro Micro triple quadrupole mass spectrometer equipped with an electrospray
ion source.

(R,R)-1,3-bis(2-mesityl)-4,5-diphenylethylenediamine (A) and imidazolium tetrafluo-
roborate salt (B) were synthesized following an adapted method previously reported in the
literature [49]. Synthesis of syn-HGIIPh-Mes was performed following the same procedure
described in the literature by some of us [43].

3.1. Synthesis of 4R,5R-(1,3-Bis-mesityl)-(4,5-diphenyl-imidazolin-2-ylidene)-dichloro-(2-isopro-
poxybenzylidene)-ruthenium(II) (Anti-HGIIPh-Mes)

In a glovebox, a 50-mL flask was charged with imidazolinium salt (B) (0.340 g,
0.620 mmol) and potassium hexamethyldisilazide (0.136 g, 0.682 mmol) in dry toluene.
After a few minutes, the first-generation Hoveyda–Grubbs catalyst (0.196 g, 0.329 mmol)
was added. The reaction mixture was heated to 70 ◦C for four hours. After this time, the
reaction mixture was concentrated and purified by flash column silica gel chromatography
(hexane/diethyl ether from 5/1 to 3/1) to afford the desired ruthenium catalyst as a green
solid (7.72 × 10−2 g, yield 30%).

1H NMR (300 MHz, CD2Cl2): δ 16.35 (s, 1H, Ru = CHPh); 7.57–6.84 (m, 18H, aro-
matic carbons); 5.86 (s, 2H, N(CHPh)2N); 4.87 (septet, 1H, (CH3)2CHOAr); 2.88–1.18 (24H,
OCH(CH3)2 + 6xCH3 mesityl). 13C{1H} NMR (100 MHz, CD2Cl2): δ 298.3 (Ru = CH–
oOiPrC6H4); 214.5 (NCN), 152.5; 145.7; 141.3; 140.0; 139.4; 138.1; 137.2; 135.6; 133.2; 130.6;
130.2; 130.1; 129.9; 129.7; 129.0; 122.8; 113.4; 75.6 (OC(CH3)2); 74.5 (N(CHPh)2N); 73.4
(N(CHPh)2N); 32.1; 23.2; 22.2; 21.3; 19.7; 19.4 (methyl groups). Anal. Calcd (%) for
C43H46Cl2N2ORu (778.20): C 66.31, H 5.95, N 3.60. Found: C 66.22, H 6.02, N 3.52. ESI-MS,
(m/z), 742.9 Dalton [C43H46ClN2ORu]+, 783.8 Dalton [C43H47ClN2ORuK]+.



Inorganics 2023, 11, 244 8 of 11

3.2. Ring Closing Metathesis
3.2.1. RCM of Diethyl-diallylmalonate (C)

An NMR tube with a screw-cap septum top was charged inside a glovebox with
0.80 mL of a solution of the catalyst (0.1%) in C6D6. The NMR tube was equilibrated at
60 ◦C in the NMR probe before C (19.3 µL, 19.2 mg, 0.080 mmol, 0.1 M) was added via
syringe. The conversion to D was determined by integrating the methylene protons of the
reagent at δ 2.84 (dt) and of the product at δ 3.14 (s).

3.2.2. RCM of Diethyl-allylmethallylmalonate (E)

An NMR tube with a screw-cap septum top was charged inside a glovebox with
0.80 mL of a solution of the catalyst (0.1%) in C6D6. A 20.5 µL portion of E was injected into
a heated NMR tube containing 0.80 mL of catalyst solution (0.1 mol %). The conversion to
F was determined by integrating the methylene protons of the reagent at δ 2.96 (d), 2.93 (s),
and of the product at δ 3.18 (m), 3.07 (s).

3.2.3. RCM of Diethyl-dimethallylmalonate (G)

An NMR tube with a screw-cap septum top was charged inside a glovebox with
catalyst stock solution (0.016 M, 250 µL, 4.0 µmol, 5.0 mol%) and C6D6 (0.55 mL). Olefin G
(21.6 µL, 21.5 mg, 0.080 mmol, 0.1 M) was added via syringe, and the sample was placed
in an oil bath regulated at 60 ◦C. The conversion to H was determined by comparing the
ratios of the integrals of the methylene protons in the starting material, δ 2.97 (s), and of the
product at δ 3.14 (s) for the different times.

3.3. Ring Opening Metathesis Polymerization
3.3.1. ROMP of 1,5-Cyclooctadiene (COD)

An NMR tube with a screw-cap septum top was charged with 0.80 mL of a C6D6
solution of catalyst (0.40 µmol). After equilibrating at 30 ◦C the sample in the NMR probe,
49.1 µL (0.40 mmol) of COD was injected into the tube. The polymerization was monitored
as a function of time, and the conversion to poly-COD was determined by integrating the
methylene protons in the starting monomer, δ 2.30 (m), and those in the product, δ 2.13
(br m), and 2.11 (br m).

3.3.2. ROMP of 2-Norbornene and 5-Ethyliden-2-Norbornene

Polymerization of 2-norbornene (or 5-ethyliden-2-norbornene) was carried out in a
flask equipped with a magnetic stirrer at ambient temperature. In a typical experiment, a
solution of initiator (3.72 × 10−6 mol in 1 mL of THF) was mixed with a stirred solution of
1.11 × 10−2 mol of monomer in 99 mL of THF. The reaction was terminated by adding a
few drops of ethyl vinyl ether. The polymers were precipitated in methanol, recovered by
filtration, washed with hexane, and dried in a vacuum.

4. Conclusions

Since the development of Hoveyda-Grubbs 2nd generation of catalysts in the early
2000s, countless modifications of the imidazolium nitrogen substituents as well as the
ortho-isopropoxybenzylidene moiety (often referred to as the Hoveyda chelate) have been
reported. At the same time, fewer examples of imidazolium’s backbone structural changes
were documented. In this paper, novel Hoveyda-Grubbs type II catalysts functionalized
with two phenyl substituents on the imidazolium ring, either in syn or anti configuration,
are reported.

These, compared with the HGII classical complex, display similar, high efficiency
in the RCM catalysis of olefins also sterically hindered. The same catalysts are very
active in ROMP even at extremely low temperatures (−50 ◦C). At room temperature,
the anti-HGIIPh-Mes complex produces a highly cross-linked polymer with 5-ethylidene-
2-norbornene; hence, this may have an impact on its activity, making it less active than
the HGII and syn-HGIIPh-Mes complexes. The most remarkable result is that HGIIPh-Mes
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complexes are significantly thermally stable since their activity in the ROMP of 5-ethylidene-
2-norbornene does not change by conducting the polymerization at room temperature
after holding the complexes for two hours at 180 ◦C. This does not account for HGII,
making these derivatives especially interesting for material applications such as self-healing
composite materials.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/inorganics11060244/s1, Figure S1: 1H NMR (300 MHz, CD2Cl2): δ 16.35
(s, 1H, Ru = CHPh); 7.57–6.84 (m, 18H, aromatic carbons); 5.86 (s, 2H, N(CHPh)2N); 4.87 (septet, 1H,
(CH3)2CHOAr); 2.88–1.18 (24H, OCH(CH3)2 + 6xCH3 mesityl); Figure S2: 13C{1H} NMR (100 MHz,
CD2Cl2): δ 298.3 (Ru = CH–oOiPrC6H4); 214.5 (NCN), 152.5; 145.7; 141.3; 140.0; 139.4; 138.1; 137.2;
135.6; 133.2; 130.6; 130.2; 130.1; 129.9; 129.7; 129.0; 122.8; 113.4; 75.6 (OC(CH3)2); 74.5 (N(CHPh)2N);
73.4 (N(CHPh)2N); 32.1; 23.2; 22.2; 21.3; 19.7; 19.4 (methyl groups); Figure S3: Thermogravimetric
analysis (TGA) of HGII; Figure S4: Thermogravimetric analysis (TGA) of HGIIPh-Mes; Figure S5:
Differential scan calorimetry analysis (DSC) of HGII; Figure S6: Differential scan calorimetry analysis
(DSC) of HGIIPh-Mes.
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