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Abstract: Bonding in the C2 molecule is investigated with CAS(8,8) wave functions using canonical
MOs. In a subsequent step, orthogonal atomic orbitals are constructed by localizing the CASSCF
MOs on the two carbon atoms with an orthogonal transformation. This orbital transformation causes
an orthogonal transformation of the configuration state functions (CSF) spanning the function space
of the singlet ground state of C2. Instead of CSFs built from canonical MOs, one obtains CSFs of
orthogonal deformed atomic orbitals (AO). This approach resembles the orthogonal valence bond
(OVB) methods’ CSFs, which are very different from the conventional VB, based on non-orthogonal
AOs. To become used to the different argumentation, the bonding situations in ethane (single bond),
ethene (double bond), and the nitrogen molecule (triple bond) are also studied. The complex bonding
situation in C2 is caused by the possibility to excite an electron with a spin flip from the doubly
occupied 2s AO into the 2p subshell, and the resulting high-spin 5Su state of the carbon atom allows
for a better reduction of the Pauli repulsion. However, the electron structure around the equilibrium
distance does not allow one to say that C2 in its ground state has a double, or triple, or even a
quadruple bond.
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1. Introduction

Covalent bonding is a central concept in chemistry but its semantic is not unique. In
physical parlance, bonding means the energetic stabilization of an unspecified size of a
system composed of interacting subsystems by any kind of interactions [1] or any kind
of attraction [2]; the result of bonding is a bonded system and often it is said that there is
a bond in the stabilized system [2]. Depending on the amount of energy released during
bonding, i.e., the bond energy, one can distinguish between weak (secondary) and strong
(primary) bonding. In chemistry, chemical bonding is the thermodynamic stabilization of a
molecular system at ambient conditions composed of atoms, free radicals, ions or molecules.
Frequently, Coulomb interactions between negatively charged particles such as electrons or
atomic anions and positively charged nuclei or atomic cations are said to be responsible
for the stabilization of ionic solids, but even in such systems the Coulomb interaction is
not solely responsible for it. Mainly responsible for the repulsion of many-electron ions is
the fermionic character of the electrons, which prohibits identical electrons from coming
too close. However, the bonding of non-charged subsystems needs a different description
of system stabilization, called covalent bonding. The high reactivity of radicals with odd
numbers of electrons and the observation that most stable molecules have an even number
of electrons led Lewis to the assumption that linking radicals with one unpaired electron
each yields a stabilized molecular system with an even number of electrons; this is the
rule of two [3]. According to this view, the stabilization is caused by the formation of an
electron pair that is shared by the atoms where the unpaired electrons are located. In the
bonded system, these two atoms form a group with a characteristic short distance between
them. This atom group with short distance is evidence for the formation of a covalent bond
between the atoms. If more than one unpaired electron is located at each of the interacting
atoms, multiple bonds can be formed. The number of bonds each atom can form is its
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valence. However, this captivating Lewis model gives no convincing physical explanation
for what causes the energetic stabilization.

The purely electrostatic model was first proposed by Slater [4] and is still most often
used—not only in introductory textbooks—to explain covalent bonding. The line of rea-
soning is as follows: Electrons between the bonded atoms are attracted by both nuclei; if
the electron density in the midbond region increases due to electron sharing, the (negative)
potential energy and therefore also the total energy is lowered. However, this model does
not agree with Earnshaw’s theorem [5], which says that electrostatic interactions alone can
never hold a system of charged particles in a stable, stationary state; the charges must be
moving, and, therefore, the kinetic energy must play a central role in the stabilization of the
system. According to Hellmann [6], the increase in the region of space where the shared
electrons can be found causes a decrease in the kinetic energy and thus in the total energy,
and this is the main reason for the stabilization of the system. The role of the kinetic energy
was neglected for decades in both the physical and the chemical community. In 1962,
Ruedenberg [7] demonstrated in a seminal paper that the kinetic energy is responsible for
energetic stabilization, but it took another 40 years until Ruedenberg and coworkers [8–12]
in a series of high level calculations could again substantiate the claim very convincingly.
In addition, at the same time, they could also demonstrate that the energetic stabilization
during covalent bonding is indeed a 1-electron effect, not a 2-electron effect.

The first molecule treated with quantum theory (Heitler and London, 1927) [13] was
the hydrogen molecule: the archetypal molecule representing a covalent bond caused by
an electron pair, as proposed by Lewis. The bonding electron pair was represented by the
Heitler–London wave function ΦHL, which is the product of a two electron spatial wave
function, also called a geminal, and the singlet spin function α(1)β(2) − β(1)α(2). All
wave functions that are eigenfunctions of the square of the spin operator are called con-
figuration state functions (CSF); therefore, because of its product form, ΦHL is a CSF.
The spatial part of ΦHL is a linear combination of products of atomic orbitals (AO),
1sA(1)1sB(2) + 1sB(1)1sA(2), each of the two hydrogen atoms A and B contributes one 1s
AO (normalization factors are omitted). Because the Heitler–London CSF ΦHL described
the qualitatively correct bonding of two univalent hydrogen atoms by an electron pair, it
was called the covalent wave function; the valence bond (VB) method uses wave functions
that are generalizations of ΦHL. Around the same time, Hund and Mulliken supposed
the existence of molecular orbitals (MO) in molecules similar to AOs in many-electron
atoms [14–22]. For diatomic molecules, correlation diagrams correlating the orbital ener-
gies of the molecule to the orbital energies of the separated atoms and the united atoms
allowed one to guess the energetic ordering of the MOs and to classify them as bonding
and antibonding. Starting from the dissociated molecules, Lennard-Jones was the first to
introduce positive and negative linear combinations of AOs to approximate MOs and to
make the first quantitative calculation using MOs in the LCAO approximation [23]. The
acronym LCAO (linear combination of atomic orbitals) was coined by Mulliken in 1932 [24];
the acronym is still used, although, in actual quantum chemical calculations not orbitals of
free atoms but AO-like basis functions are used. The first quantitative SCF (self consistent
field) calculation of the H2 molecule with MOs was conducted by Coulson [25] using MOs
in elliptic coordinates. However, it took another 20 years until SCF calculations with the
LCAO approximation could be made [26,27]. The MOs were calculated as eigenfunctions
of the Hermitian Hamiltonian and, thus, were known to be orthogonal to each other, which
was not only a great computational advantage over the VB method but also had a great
conceptual importance, e.g., an electron occupying a bonding MO can never occupy also
an antibonding MO. Using a single Slater determinant |σσ|, which is also a CSF, with the
doubly occupied bonding σ MO, the bond energy of H2 calculated by Goodisman [28] was
about 0.5 eV lower than the bond energy calculated with ΦHL. On the other hand, it was
also known that the single CSF |σσ| gives reasonable results only for molecular structures
close to the equilibrium geometry [29], but not when bonds are highly stretched; in contrast



Inorganics 2023, 11, 245 3 of 22

to the VB method, the dissociated H2 system has an energy that is much too high. Thus,
both wave functions have deficiencies that must be corrected.

To improve the description of the ground state of H2, Weinbaum [30] suggested to
approximate the ground state wave function by a linear combination ΨW1 ∝ ΦHL + µΦion
of ΦHL and the ionic CSF Φion ∝ 1sA(1)1sA(2) + 1sB(1)1sB(2) and demonstrated that
optimization of the variation parameter µ improves the bond energy considerably. A
second linear combination ΨW2, which can be made with ΦHL and Φion, describes an
excited state of H2. In the dissociation limit, ΦHL describes two neutral atoms, and thus
is called a neutral CSF, whereas Φion describes an anion-cation pair, and is accordingly
termed an ionic CSF. However, when the interatomic distance is zero and atom A and
atom B coalesce, not only the two different AOs but also the CSFs ΦHL and Φion become
identical. This means, with decreasing interatomic distance, ΦHL loses its neutral character
and acquires ionic character; for Φion, it is the other way around.

If the LCAO approximation is used for the bonding MO σ ∝ 1sA + 1sB, and if the
CSF |σσ| is expanded, one obtains a linear combination |σσ| ∝ Φion + ΦHL with equal
coefficients of the linear combination for all bond lengths. It is this equal contribution of
Heitler–London and ionic VB CSFs to the MO CSF |σσ| that is the reason for the inability of
the SCF wave function to describe the dissociation. The expansion of |σ∗σ∗|with the doubly
occupied antibonding MO σ∗ ∝ 1sA − 1sB again provides a linear combination of ΦHL and
Φion with coefficients of equal modulus but now with a different relative phase, |σ∗σ∗| ∝
Φion − Φcov. With a linear combination of these two MO CSFs, ΨMO1 ∝ |σσ| − λ|σ∗σ∗|,
λ > 0, the ionic contribution to the ground state wave function can be reduced and will
disappear for long intermolecular distances; similarly, in a second linear combination
ΨMO2, the neutral contributions to the excited state are reduced. Linear combinations
of Slater determinants or CSFs are called CI (configuration interaction) wave functions;
the variationally optimized CI wave functions ΨMO1 and ΨMO2 are equivalent with the
optimized Weinbaum functions.

This shows that CI wave functions, both with VB and MO CSFs, provide qualitative
correct and quantitative satisfying descriptions of the H2 molecule and the dissociation
reaction. The reason for the failure of the Slater determinant |σσ| to describe correctly
the dissociation is that two electrons occupying the bonding MO can never completely
separate. In the ground state, each electron should locate during the dissociation at different
atoms, and the corresponding electron distribution is correctly described by ΨHL, but not
by |σσ| because the form of the σ MO forces the electrons to stay too close together. The
antibonding MO σ∗, with the node between the atoms, describes an electron distribution
where the electrons can never meet in the mid-bond region. The spatial correlation of the
electrons in a midbond region is called a left–right correlation. Electrons that tend to stay
on different sides of a plane in a molecule demonstrate angular correlation. To describe
these two correlation types, only AOs of the valence shell are needed; a third correlation
type, the in–out correlation, needs AOs with an additional radial nodal surface. Left–right
and angular correlation contribute essentially to what is called non-dynamic correlation.

The most important reason for electron correlation is not charge redistribution caused
by Coulomb interaction but the fermionic character of the electrons. The Pauli exclusion
principle (PEP) says that identical electrons, which are electrons that agree also in the
spin projection, avoid coming spatially close. Thus, if the total spin of the electrons in
an atom changes from a low-spin state to a high-spin state, the electrons must locate in
different spatial regions. Moreover, this spatial correlation of identical electrons is much
more effective than the correlation due to the Coulomb repulsion. Non-dynamic correlation
covers both spin redistribution and charge redistribution.

When two or more covalent bonds must be described, technical and conceptual prob-
lems emerge. Canonical MOs obtained as eigenfunctions of Fock operators are in general
delocalized over the whole molecule; bonding between two neighboring atoms, which
requires localized MOs, is hidden when canonical MOs are used. However, as elements
of a vector space, orbitals can be linearly combined, and, therefore, local information can
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be revealed by using proper transformations in the orbital space. The same is true for
information hidden in CSFs made with canonical MOs. The methodological and technical
improvements of quantum chemical methods in the last 60 years allowed for high-precision
data such as bond energies or force constants, but the interpretation of bonding still uses
concepts from the early times of theoretical chemistry. For example, the concept of bond
order in MO theory is the half difference of the number of valence electrons occupying
bonding MOs and the number of electrons occupying antibonding MOs; if the molecular
state considered is represented by a wave function that consists of a single Slater deter-
minant, the MOs can be occupied by two, one or zero electrons, and the bond order is
an integer or half-integer. Although the description of chemical bonding is intrinsically
multiconfigurational, for certain molecular geometries a single Slater determinant may
dominate the multiconfigurational wave function, and only then the use of bond order
to describe the bonding situation is justified. Also problematic is the identification of the
Lewis electron pair with a covalent bond or the concept of a covalent bond with a Heitler–
London geminal, or the identification of everything. The discussion about bonding in the
C2 molecule is paradigmatic for this semantic hodgepodge. In 2011, Shaik and Hiberty [31]
published a VB study on C2; in 2013, a quadruple bond was claimed in this molecule [32].
This was the starting point for a vivid discussion between critics of this claim [33–36] and
its defenders [32,37–39]. The controversial issues were: (a) What contributions to the wave
function must be counted to end up with four bonds; (b) how can one decide on whether
or not an alleged bond is indeed a bond? The valence electron configuration in C2 at
the equilibrium geometry is assumed to be 2σ2

g2σ2
uπ4 with energy-ordered MOs. The σ

MOs are linear combinations of sp hybride AOs with the large lobe pointing towards to
other C atom; because bonding and antibonding MOs are doubly occupied, this electron
configuration describes a double bond made with two π MOs. With the second set of sp
hybrides with the lobes pointing away from the other C atom, another set of σ MOs can
be formed, and the electron configuration 2σ2

g π43σ2
g can be regarded as describing two σ

and two π bonds; thus, it is a quadruple bond. Sherrill and Piecuch [40] demonstrated
that CAS(8,8) wave functions cover all non-dynamic correlation effects in the C2 molecule,
which are essential for describing covalent bonding, and Frenking and Hermann [33]
demonstrated that the CSFs corresponding to the first and the second electron configu-
rations have weights of about 70% and 14%, respectively, in a CAS(8,8) wave function.
Similarly, Xu and Dunning [41] using GVB (generalized VB) found that the perfect-pairing
CSF, representing the four bonds by four singlet geminals, is not dominant in the wave
function, and they simply stated: . . . C2 does not have a set of traditional covalent σ and π bonds
such as N2. As one possible reason, it was assumed that the bonding properties of the 3σg
MO are less pronounced than those of the 2σg MO, but this was not considered to corrupt
the idea of a quadruple bond. After all, . . . everyone in the discussion necessarily agrees that the
X 1Σ+

g ground state of C2 possesses four electron pairs [37], but there was no agreement about
the strengths of the bonds, even when one can speak of a bond. This is a fundamental
semantic question. If one remembers that energy is the most important basis for scales in
science, the question raised by Ramos-Cordoba et al., . . . what measures do we accept to define
what a “chemical bond” is? Ref. [42], is indeed fundamental, but . . . if there is electron pairing
and if this brings about energy lowering more than a hydrogen bond, then we have a bond [43,44]
together with the variant A bond is a bond is a bond [32] of Gertrud Stein’s famous phrase, is
not a convincing answer. What puzzles me is the minor role that the fermionic character of
electrons plays in this dispute. Pauli repulsion between electron pairs in bonds is discussed
by Xu and Dunning [41]; Frenking mentions the Pauli principle between electrons with the
identical spin projection [33]; it is discussed which state of the carbon atom is better suited
as a reference state, the 3P ground state of the carbon atom or the 5S high-spin [32,33,35,45].
The discussion suggests that the authors expect that only either of the two atomic states
can be reference states along the whole reaction coordinate. However, this would be a very
shortsighted position, excluding the possibility of spin flips from low-spin to high-spin
states in order to reduce any kind of repulsion between the electrons. If spin flipping does
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occur one has to ask: what triggers it, is it geometry dependent, and does it occur in every
state or is it symmetry dependent? These questions are in the center of this OVB analysis.
There are indications for a preference of local high spin arrangements in the ground state
around the local minimum, but the OVB—or any other—analysis of the electronic states
of C2 cannot provide a definite answer, because the carbon atoms in the molecule are
entangled and thus are in mixed states. An expectation value of the local spin state needs
the calculation of reduced density matrices for the subsystems considered, in this case of
the carbon atoms.

2. Basics of OVB

The Heitler–London type geminal for H2 ΦHL = (1sA(1)1sB(2) + 1sB(1)1sA(2))/√
2(1 + S2) with two hydrogen 1s AOs, which are in general not orthogonal to each

other, S = 〈1sA|1sB〉 6= 0, describes for only large interatomic distances a neutral electron
distribution, i.e., two hydrogen atoms in their respective ground states. Moreover, for only
the dissociated molecule, ΦHL is orthogonal to the ionic geminal Φion = (1sA(1)1sA(2) +
1sB(1)1sB(2))/

√
2(1 + S2), as can be observed from 〈ΦHL|Φion〉 = 2S/(1 + S2). When

the interatomic distance goes to zero, S goes to one and the overlap of the two geminals
is one. That means ΦHL and Φion become linearly dependent; this poses problems for
the interpretation of the VB CSFs: the characteristics of the geminals for the dissociated
system are as different as can be, neutral vs. ionic, but at finite distances, especially
around the equilibrium distance, ΦHL has already acquired a substantial ionic character.
This goes in parallel with the increase in the overlap integral, which is a measure of the
superposition of the atomic states and thus of covalent bonding. That ΦHL describes
so well the ground state of H2 [46] is the result of the increase in ionic character, and
this makes ΦHL indeed a covalent VB CSF. However, the change in the characteristics is
hidden by the mathematical form of the geminal, which is the same for all interatomic
distances. However, this constancy of the mathematical form of the geminal is often
wrongly interpreted: In the valence bond (VB) view. . . , the electrons are viewed to interact so
strongly that there is negligible probability of finding two electrons in the same orbital. The wave
function is thus considered to be dominated by purely covalent contributions in which each electron
is spin-paired to another electron [47]. Equating the mathematical form of a geminal with a
certain physical interpretation is simply wrong.

If orthogonal AOs 1sA and 1sB are used, the CSFs Φo
HL and Φo

ion are also orthogonal to
each other for all interatomic distances, and the electronic character of the wave functions
never changes: Φo

HL is always neutral and Φo
ion is always ionic. Consequently, Φo

HL alone
cannot describe a bonded molecule because the ionic contribution is completely missing.
A correct description of the ground state always needs a linear combination of Φo

HL and
Φo

ion. This was demonstrated by McWeeny [48] and discussed by Pilar [49]. Mathematically,
the situation is clear: the description of the electronic ground state of H2 needs CI wave
functions, either a linear combination of MO CSFs, or a linear combination of VB CSFs
made with either orthogonal or non-orthogonal AOs. The three sets of CSFs are different
bases for the same two-dimensional state space, two bases are orthogonal and the third
one is non-orthogonal. The advantage of the orthogonal VB basis is that the squared CI
coefficients have indeed the properties of probabilities and thus are a measure of the ionic
character of the state; when non-orthogonal AOs are used, weights of the VB CSFs can only
be approximately calculated, for example with the Chirgwin–Coulson formula [50].

The use of orthogonal AOs in VB calculations is not a trivial task, after all, the or-
thogonality of two basis functions or AOs depends on the molecular geometry. Atomic
basis functions or AOs located at the position of atoms in a molecule are in general not
orthogonal, but they can be orthogonalized with, e.g., Löwdin’s symmetric orthogonal-
ization method, and then used in a VB calculation. Alternatively, one can calculate the
electronic state of a molecule with a conventional CI wave function using MO CSFs and
then localize the MOs by an orthogonal transformation. I developed a method where
delocalized MOs obtained with CASSCF are localized at predefined fragments with the
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help of an orthogonal transformation giving orthogonal fragment MOs (FMO). The ad-
vantage of this procedure is that the orthogonal transformation in the MO space causes an
orthogonal transformation in the CSF space, leaving the CASSCF wave function invariant.
Most transformed MOs will be delocalized FMOs but some FMOs resemble atom-centered
AOs or hybrid orbitals (HO); these FMOs are called orthogonal AOs (OAO). OAOs in-
clude the deformation of the atomic electron distribution due to polarization caused by
the molecular environment; in this respect, they are very similar to orthogonalized quasi
AOs introduced by Ruedenberg et al. [51,52]. The CASSCF wave function constructed
from orthogonal FMOs instead of orthogonal MOs is a linear combination of OVB CSFs
with doubly occupied non-active FMOs and active OAOs. The VB-like character of the
transformed CSFSCF wave functions is due to the active OAOs. This OVB method [53,54]
was used to study the symmetry allowed and forbidden reactions [55]. In this paper, the
method is used to analyse the ground state of the C2 molecule, which has 1Σ+

g symmetry.
From two carbon atoms in their 3Pg ground states, one can derive three molecular states
with geradeparity, two are 1Σ+

g states and one is a 1∆g state; from the carbon atoms in the 5Su

state one can derive another 1Σ+
g state. In D∞h symmetry, Σ and ∆ states are automatically

orthogonal to each other, but because actual calculations can only be conducted in the
largest Abelian subgroup D2h, in which Σ+

g and one component of the ∆g state are in the
same irreducible representation Ag, they can mix. The OVB method used in this paper is a
tool to analyse CASSCF wave functions; the OVB CSFs are created by the GUGA algorithm
implemented in GAMESS, and there is no hand selection of CSFs. Degenerate CSFs are
identified using the weights and energies as criteria, and normalized linear combinations
are used in the following analysis. Totally symmetric linear combinations of OVB CSFs
are labelled LC. Monitoring the weights of the LCs along the whole reaction coordinate
allows one to distinguish between neutral and ionic LCs; one can obsevre whether and
where certain spin couplings are important, and one can also observe how strongly the
electron distribution of atoms in the molecule deviates from the isotropic distribution in
the free atoms. In highly symmetric systems such as homonuclear diatomic molecules, the
anisotropy is represented by a large number of LCs of different characteristics; most of
them are ionic. Moreover, one can compare the electron distribution of excited states with
that of the ground state using the same means.

The lowest three of the four 1 Ag states of C2 are studied in this paper. To observe how
CASSCF wave functions are composed that describe the dissociation of single, double and
triple bonds, the molecules ethane, ethene and N2 are also studied.

3. Étude: The Description of Single, Double and Triple Bonds

A wave function derived from a closed shell electron configuration is in most cases a
single Slater determinant, e.g., the electron configuration σ2 with a bonding σ MO leads
immediately to the MO CSF |σσ|; similarly, when doubly degenerate bonding π MOs
are fully occupied, the MO CSF |πxπxπyπy| corresponds to the electron configuration π4.
If the π MOs are not fully occupied, e.g., when the electron configuration is σ2π2, two
MO CSFs are possible; |σσπxπx| and |σσπyπy| and a wave function that has rotational
symmetry must be a linear combination of them, and is either |σσπxπx|+ |σσπyπy| or
|σσπxπx| − |σσπyπy|.

These wave functions are not able to describe dissociation because all MOs are bonding
MOs; for a correct description of dissociation, all bonding and the corresponding antibond-
ing MOs must be included into the set of active MOs. The CAS problem is defined by
giving the number of active MOs and active electrons, and the order of the active orbitals.
Non-active MOs are not explicitly mentioned.

The 2s AO and the 2p AOs located at atom A will be labelled sA and xA, yA, zA,
respectively; analogously, the AOs are on atom B. For HOs, no separate symbol is used; they
are labelled by their respective dominant AO. For all molecules discussed, the molecular
axis will be the z-axis, and σ MOs will be made by HOs; if the HO has a dominantly
s-character, the σ MO will be labelled σs. A σp is made with HOs dominated by the 2pz AO.
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3.1. The Dissociation of the C–C Single Bond in Ethane

The equilibrium C–C distance of ethane is about 1.55 Å; Figure 1 also shows that the
orthogonal transformation of the MOs leaves the total energy indeed invariant.

The lowest level wave function that correctly describes the dissociation of the σ single
bond in ethane is a CAS(2,2) wave function, with σp and the antibonding σ∗p MO as active
MOs and two active electrons. Two frozen core MOs and six MOs describing the CH bonds
are doubly occupied, and they are not mentioned in the following.

Ethane: Potential energy curves
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Figure 1. The potential energy curves for ethane calculated with MO CASSCF and the OVB method.

The weight curves of the MO CSFs, see Figure 2, demonstrate that the |σ2
p | CSF is, at

short distances, a good description of the ethane ground state, but at long distances only a
linear combination of |σ2

p | and |σ∗p 2| can describe the dissociation into two methyl fragments.
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Figure 2. Energies (left) and weights (right) of the two MO CSFs of ethane.

Localization of the 10 MOs onto the two methyl fragments yields two equivalent
sets of FMOs, each having one frozen core MO describing the 1s AO, three delocalized
FMOs describing the three CH bonds, and one localized FMO having the character of an
sp-type HO. The eight non-active FMOs, denoted 1A, 2A, 3A, 4A and 1B, 2B, 3B, 4B, will not
be mentioned. With the two 2pz-dominated hybride OAOs, zA and zB, one can make CSFs,
which have the form of the Heitler–London VB wave function, Φo

HL = |(zAzB − zAzB)|,
and the ionic CSF Φo

ion = |(zAzA + zBzB)|.
ΦHL describes the singlet coupling of the doublet states of the methyl groups; each

methyl group has one unpaired electron that is ready for bonding and, thus, conforms to
the beliefs in chemistry that unpaired electrons are necessary for creating the Lewis electron
pair representing a covalent single bond.

The energy curves of Φo
HL and Φo

ion are completely repulsive, see Figure 3; since
McWeeny’s early OVB calculations on H2, this is a well known feature of OVB CSFs. The
weight curves demonstrate that the neutral CSF Φo

HL dominates the geometries at long C–C
distances but the ionic CSF Φo

ion becomes important at shorter distances when polarization
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and interference cause a deviation from the electron distribution of the unperturbed frag-
ments. The ionic CSF Φo

ion thus describes a shift of the charge distribution in the covalent
bond. When the C–C distance goes to zero, the weights of both OVB CSFs become equal.
Around the equilibrium geometry, the weight of the neutral CSF Φo

HL is larger than that
of the ionic CSF Φo

ion. A comparison of the weight curves of MO CSFs and OVB CSFs
demonstrate antagonistic behaviour: at long distances, where a single OVB CSF correctly
describes the dissociated system, a linear combination of |σ2| and |σ∗2| is necessary to
do this; at short distances, where |σ2| is a good approximation to the ground state wave
function, a linear combination of Φo

HL and Φo
ion is necessary to obtain a qualitative correct

ground state wave function. This behaviour is found for all dissociation reactions.
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Figure 3. Energies (left) and weights (right) of the two OVB CSFs for ethane.

3.2. The Dissociation of the C–C Double Bond in Ethene

The smallest possible wave function that can describe the dissociation of the dou-
ble bond is the CAS(4,4) wave function with the four active MOs σ, π, σ∗, and π∗; the
corresponding electron configuration is σ2π2. The HOs used to make the σ MO have a
dominantly z-character, so they are labelled zA and zB, and the π MOs are made with
x-OAOs. Figure 4 shows again that the orthogonal transformation of MOs to FMOs leaves
the total energy invariant; the equilibrium C=C distance is about 1.35 Å.

Ethene: Potential energy curve
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Figure 4. The potential energy curves for ethene calculated with MO CASSCF and the OVB method.

The CI space for CAS(4,4) singlet wave functions comprises 20 CSFs, in the D2h
symmetry, only eight CSFs are totally symmetric. The order of the four active OAOs in all
CSFs is zAxAzBxB. The following notation is used: aabb means that one α electron occupies
the z OAO and one occupies the x OAO on atom A, and β electrons occupy the OAOs on
atom B. a2b0 means: the z OAO of atom A is singly occupied by an α and the x OAO is
doubly occupied; the z OAO of atom B is singly occupied by a β. The OVB CSF a2b0 does
not have D2h symmetry, but the positive linear combination with a0b2 does.

The 8 totally symmetric linear combinations of OVB CSFs are shown in Table 1.
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Table 1. The totally symmetric linear combinations of singlet OVB CSFs for ethene.

LC CSFs

LC1 = |aabb|
LC2 = |abba|
LC3 = |2020|
LC4 = |0202|
LC5 = |2002|+ |0220|
LC6 = |2a0b|+ |0a2b|
LC7 = |a2b0|+ |a0b2|
LC8 = |2200|+ |0022|

Carbene is a diradical, and two electrons occupy two carbon-centered, “nearly-
degenerate” lone pair HOs, giving rise to a three singlet and one triplet state [56]. Salem
and Rowland classified the two states with singly occupied lone pair orbitals as diradical,
and the two states with doubly occupied lone pair orbitals as zwitterionic. According to
our notation, the z OAO represents the sp HO of methylene, and the x OAO represents the
p HO. Using this notation, the four lowest methylene states at the equilibrium geometry,
with increasing energy, are 3(zx), z2, 1(zx), and x2.

LC1 to LC5 are neutral, LC6 and LC7 are singly ionic, and LC8 is a doubly ionic LC.
LC1 describes the two methylenes in their triplet ground states, coupled to a singlet. The
two electrons in the z OAOs form the σ bond, the two electrons in the x OAOs form the π
bond, and LC1 is nothing but the Heitler–London portion of the σ and the π bonds. Since
the methylenes are in high spin states, the unpaired electrons are “ready for bonding”.In
the dissociated molecular system, LC1 describes two noninteracting methylenes in their
respective electronic ground states; at all other geometries, the methylenes are no longer in
a methylene eigenstates, because interacting subsystems of a system are never in pure states
but always in mixed states [57,58]. In these cases, LC1 describes two “local triplet states”,
that is, “local high-spin states”, coupled to a singlet. This is, what the Heitler–London CSF
represents. That “local low-spins states” are rather unimportant for bonding shows LC2,
where each methylene is in the singlet diradical state, which is considerably higher than the
triplet diradical state. Moreover, the spins are not unpaired and therefore not “ready for
bonding” although the same AOs are singly occupied as in the case of LC1. LC3 describes
two methylenes both with doubly occupied z OAOs, and LC4 describes two methylenes
with doubly occupied x OAO; in both CSFs, the active electrons are singlet coupled and
therefore not “ready for bonding”, the contributions of these CSFs to the ground state
wave function are accordingly very small. The singly ionic LC6 describes the shift of one
electron in the σ bond, and the π MO is doubly occupied; the singly ionic LC7 describes the
shift in the π bond with doubly occupied σ MO. These two singly ionic LCs are necessary
to describe polarization in the σ and the π orbital, respectively. Without them, covalent
bonding cannot be correctly described. The neutral LC5 describes local angular correlation:
If atom A is in the low lying zwitterionic methylene state, atom B is in the high lying
zwitterionic state. This is the fourth LC that contributes significantly to the ground state of
ethene. LC8 describes dianion/dication pairs.

Figure 5 shows energies and weights of the four large LCs, which are LCs having a
weight larger than 0.1 somewhere along the reaction coordinate. All other LCs are small
LCs. LC1 has the lowest energy along the whole reaction coordinate; this demonstrates
the importance of the coupling local high-spin states to a global low spin state. Although
the ionic LCs LC6 and LC7 have nearly identical energies, their weights are very different.
The weight of LC6 reaches a value of 0.1 at a C–C distance of 2.7 Å, but that of LC7 only
at 1.8 Å. LC5 becomes important only when the two carbon atoms are rather close; the
weight is larger than 0.1 only at C–C distances shorter than the equilibrium distance. Note
that LC6 and LC7 have higher energies than LC5 but their weights are much larger. LC6
and LC7 demonstrate the importance of the charge shift for covalent bonding, and LC5
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demonstrates that angular correlation becomes important in multiple bonds as soon as the
interacting atoms come close. It is noteworthy that, at the equilibrium distance, the weight
of the neutral LC1 is 0.32, which is only slightly larger than the weight of the ionic LC6
(0.29), whereas LC7 has a weight of only 0.17; nevertheless, the sum of the weights of the
ionic LCs is much larger than the sum of the two neutral ones. At C–C distances longer
than 3.5 Å, the weight of LC1 is 1.; between 3.5 and 2.7 Å the weight of LC1 decreases and
that of LC6 increases, but the sum of both LCs is still close to 1. Then, LC7 and LC5 become
gradually more important, but the sum of all four large LCs nevertheless decreases down to
0.85 at a C–C distance of 1.0 Å. At the same time, the weight of the four small LCs increases
to 0.15, see Figure 6; nevertheless, at the equilibrium distance, the sum of their weights is
only 0.11.

Ethene: Energies of large CSFs
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Figure 5. Energies (left) and weights (right) of the large LCs for ethene.

Ethene: Sum of the weights of largest LCs
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Figure 6. The sum of the weights of the large LCs for ethene.

3.3. The Dissociation of the N–N Triple Bond in the Nitrogen Molecule

The electron configuration of the nitrogen molecule is σ2
pπ4, where σp is the bonding

linear combination of zA and zB; π4 means π2
xπ2

y, πx and πy are bonding linear combina-
tions of the respective OAOs.

Figure 7 shows the potential energy curves obtained with MO CSFs and OVB CSFs;
the equilibrium distance of N2 is 1.1 Å.
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N2: Potential energy curves
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Figure 7. The potential energy curves for N2 calculated with MO CASSCF and the OVB method.

The dissociation reaction in the lowest 1Σ+
g state is correctly described by a CAS(6,6)

wave function with the six valence MOs σp, πx and πy and the corresponding antibonding
MOs; the 2s AOs are always doubly occupied. In D2h, there are 32 totally symmetric singlet
CSFs, 20 of them are not zero. The OVB calculation is conducted in C2v; from the 55 OVB
CSFs only, 21 linear combinations are not zero, and they are shown in Table 2. The order of
the six OAOs in the CSFs is yA, xA, zA, yB, xB, zB. From the 21 LCs, LC1 to LC9 are neutral,
LC10 to LC18 are singly ionic, LC19 and LC20 are doubly ionic, and LC21 is triply ionic.

Table 2. The totally symmetric linear combinations of singlet CSFs for N2.

LC CSFs

LC1 = |aaabbb|
LC2 = |ababab|
LC3 = |baaabb|
LC4 = |baabab|+ |abaabb|
LC5 = |a02b20| − |0a22b0| − |2a00b2|+ |a20b02|
LC6 = |0a20b2|+ |a02b02|
LC7 = |02a02b|+ |20a20b|
LC8 = |20a02b|+ |02a20b|
LC9 = |a20b20|+ |2a02b0|
LC10 = |202002|+ |022002|+ |002022|+ |002202|
LC11 = |2ba0ab| − |b2aa0b| − |b0aa2b|+ |0ba2ab|
LC12 = |2aa0bb| − |a2ab0b| − |a0ab2b|+ |0aa2bb|
LC13 = |220020|+ |220200|+ |200220|+ |020220|
LC14 = |202020|+ |022200|+ |200022|+ |020202|
LC15 = |022020|+ |202200|+ |020022|+ |200202|
LC16 = |aa2bb0|+ |aa0bb2|
LC17 = |ab2ba0|+ |ab0ba2|
LC18 = |002220|+ |220002|
LC19 = |22a00b|+ |00a22b|
LC20 = |2a20b0| − |a22b00| − |a00b22|+ |0a02b2|
LC21 = |222000|+ |000222|

From these LCs only five are large: LC1, LC5, LC12, LC16, and LC20. See left side of
Figure 8.
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N2: Energies of largest LCs
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Figure 8. Energies (left) and weights (right) for N2 of the five large LCs.

The neutral LC1 describes the singlet coupling of the high spin quartet states; it is
the Heitler–London contribution to the triple bond in N2; the neutral LC5 describes the
angular correlation and a spin flip from the local quartet state into the low-spin doublet
state; the singly ionic LCs LC16 and LC20 describe the shift of electrons in the σ and in the
π MOs, respectively. The doubly ionic LC20 describes the simultaneous shift of an electron
in the σ and an electron in the π MOs. LC1, LC16 and LC20 are of major importance for
the description of the triple bond in N2, the two ionic LCs have, as found for the ethene
molecule, nearly identical energies, but the weights are rather different. LC16 becomes
important at an N–N distance of about 2.7 Å, and LC20 at a distance of about 2.2 Å. The
reason for this are the different spatial extensions of the involved AO; the z AOs, which are
aligned along the molecular axis, interfere earlier than the perpendicular x and y AOs, and
therefore the charge shift in the σ bond starts earlier than in the π bonds.

Ten of the remaining 16 LCs are small and six are effectively zero. The weights of all
small LCs, shown in the left side of Figure 9, are effectively zero for N–N distances longer
than 2.5 Å, but, as for the large ionic LCs, most of them contribute significantly at N–N
distances smaller than 2.0 Å. The right side of Figure 9 shows that the sum of the weights
of the ten small LCs (labelled complement in the legend) around the equilibrium distance
is about 30%. All small LCs are important in describing the deviation of the atomic charges
from the spherical symmetry during bonding. LC2, LC3, and LC8 are neutral, LC19 and
LC21 are doubly and triply ionic, respectively, and all others are singly ionic.

N2: Weights of small CSFs
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Figure 9. (Left): Weights of the small LCs for N2. (Right): Sum of the weights of the large and the
small LCs.

4. Bonding in C2

The equilibrium distance in the singlet ground state is close to the grid point
R = 1.25 Å. If one assumes that the electron configuration of C2 is similar to that in
N2, it must be σ2

s σ∗2s π4; the bonding σs and the antibonding σ∗s MOs spanned by the 2s AOs
are doubly occupied and the remaining four valence electrons occupy the two bonding π
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MOs. All four MOs are non-active and the wave function is a single Slater determinant.
This wave function is not able to describe dissociation; the most simple wave function
that can do this is a CAS(4,4) wave function with four active MOs, two bonding and two
antibonding π MOs, and four active π electrons. If one considers that the bonding σp
MO has a lower energy than the bonding π MOs, one obtains a second possible electron
configuration: σ2

s σ∗2s σ2
pπ2. The σp MO is non-active but the doubly degenerate π MOs are

occupied by only two electrons, and thus active MOs. The wave functions corresponding
to this electron configuration are CAS(2,2) wave functions, which cannot describe disso-
ciation, because they contain no antibonding MOs, but CAS(4,6) wave functions with all
six MOs spanned by 2p AOs as active MOs can do it. In Figure 10, one can observe that
the stabilization of the ground state as calculated with both CAS(4,4) and CAS(4,6) are
far too low, and the equilibrium distance obtained with CAS(4,6) is considerably longer
than that obtained with CAS(4,4). The long equilibrium distance stems from the fact that
with CAS(4,6), the ground state is a 1∆g, whereas with CAS(4,4) it is a 1Σ+

g state; however,
the poor stabilization indicates that wave functions without active σs and σ∗s MOs cannot
describe the ground state correctly. The two σs MOs and the four electrons must become
active. Then, one has eight active MOs and eight active electrons; with such a CAS(8,8)
wave function, the lowest singlet state is indeed the ground state of C2, and the stabilization
energy is reliable.

The σs MOs are spanned by hybride AOs that are nearly pure s AOs; thus, the fact that
lobes point inwards in the σs MO and point outwards in the σ∗s MO is no surprise. The fact
that in the second pair of σ MOS it is the other way around is also not surprising. These
MOs are spanned by hybride AOs with a large 2pz contribution. The two bonding and the
two antibonding σ MOs are optimized in two-dimensional subspaces of the space of active
MO; each of the energetic low lying σs MOs specifies a spatial electron distribution, and
the higher lying σz MOs must accomodate accordingly. Therefore, the large lobes of the
hybride AOs in σz are pointing outwards, and in the σ∗z MO they are pointing inwards.

The shape of the ground state PEC, as calculated with the CAS(8,8) wave function,
indicates the avoided crossings that are not found with the two smaller CAS wave functions.
See left side of Figure 10.

C2: Ag ground state (D2h)
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Figure 10. (Left): Potential energy curves of the lowest 1 Ag states for C2 calculated with CAS(4,4),
CAS(4,6), and CAS(8,8) wave functions. (Right): The CAS(8,8) potential energy curves for the three
lowest 1 Ag states.

As mentioned above, the avoided crossings are the result of making all CASSCF
calculations in the D2h symmetry. The totally symmetric CAS(8,8) singlet wave function of
Ag symmetry is a linear combination of 264 CSFs. The ground state wave function is indeed
a mixture of 1Σ+

g and 1∆g states, which results in avoided crossings, as can be observed
for the three lowest singlet states investigated. (Details of the calculations with MO CSFs
can be found in the Supporting Informations.) The PECs of the three Ag states agree very
well with those reported by Boschen et al. [59]. That means that the wave functions for the
states have a different character in certain regions, e.g., the ground state has a Σ+

g character
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around the equilibrium geometry, the second Ag state has a ∆g character, and the third Ag
state has again a Σ+

g character; the second and the third state are energetically very similar
and also the local minima have similar geometries. See the right side of Figure 10.

The ground state has a Σ+
g character for C–C distances shorter than 1.70 Å; there,

the CSF derived from the electron configuration σ2
s σ∗s π2

xπ2
y contributes about 70% to the

wave function, and the CSF derived from σ2
s σ2

pπ2
xπ2

y contributes about 10%. Indeed, at an
interatomic distance of 1.25 Å, it is 71% and 13%, in agreement with the numbers reported
by Hermann and Frenking [33]. Ignoring all CSFs that contribute in total 16% to the wave
function, what bond order has a system with 71% bond order 2 and 13% bond order 4? In
my opinion, what is more important than answering this question is to find out how spins
and charges rearrange on the way from two isolated atoms to the molecule; that is, how
the interaction of the atoms disturbs their electron distributions during the recombination
reaction, or how the electron and spin arrangement in the molecule readjust to that in the
free atoms during dissociation.

OVB Analysis of Bonding in C2

Every atom in a homonuclear diatomic molecule has a C∞v symmetry, but all actual cal-
culations are made in the Abelian subgroup C2v of D2h. With the eight OAOs sA, zA, xA, yA,
sB, zB, xB, yB, 492 singlet OVB CSFs can be made, and only very few OVB CSFs have already
g parity or have rotational symmetry; more often than not, only LCs have it. This means
that a large number of OVB CSFs have zero weight because of symmetry reasons. However,
LCs can also gain zero weight when the molecule’s geometry changes, and the number
of LCs with non-zero weight depends strongly on the geometry; it is nevertheless rather
large. As a consequence, many small LCs can make considerable contributions, and if only
large LCs are considered, the description of the wave functions is not satisfying because the
weights of many large LCs can be rather small at certain geometries. To consider also small
LCs that make, nevertheless, large contributions to the wave functions, one must define LCs
as significant if they have weights larger than 0.01 somewhere along the reaction coordinate.
A total of 128 significant LCs are found to describe the lowest three Ag singlet states along
the whole reaction coordinate; in detail, 51 significant LCs are found to contribute to the
first 1 A1 state (the ground state), 63 LCs to the second state, and 80 LCs to the third singlet
state; only 15 LCs of the significant LCs are large. From these LCs, ten contribute to the
description of the first 1 A1 state, and eight LCs contribute to the second and to the third
state, respectively. Details may be found in the Supporting Information.

Table 3 lists the ten large LCs found for state 1 along the reaction coordinate, in the
left side of Figure 11 the weight curves are shown. Starting at long C–C distances, one
can observe that only two LCs are important, LC05 (≈75%t) and LC06 (≈20%). Both LCs
describe the singlet coupling of two carbon atoms in their respective 3Pg ground states; in
LC06, the electrons are located in the x and the y OAO, thus LC06 describes the formation
of two π bonds. The situation where in each atom one electron occupies the z and the other
either the x OAO or the y OAO is described by LC05. Singlet coupling gives then either
a σp and a πx bond or a σp and a πy bond. The positive linear combination of these two
LCs has Σ+

g symmetry and is represented by LC05; the negative linear combination has ∆g
symmetry and is represented by LC01. Both 2s OAOs are always doubly occupied. At very
long C–C distances, the two carbons atoms are completely interaction-free, and the three
ways of distributing two spins in three p orbitals are equivalent, and the weight of LC05 is
2/3, and that of LC06 is 1/3, but when the atoms approach each other, the interaction along
the molecule axis becomes more favorable so that the weight of LC05 increases. At a C–C
distance of 3.5 Å, the weights of LC05 and LC06 are indeed 74% and 21%, respectively; at
3.0 Å the weights are 78% and 14%, respectively. At these distances, the missing LCs that
describe either the polarization in the direction of the molecular axis or the superposition
of the 2pz orbitals are not represented by large but only by significant LCs.

At C–C distances less than 3.0 Å, linear combinations LC01 to LC04 with a ∆ character
dominate the ground state. LC01 and LC03 describe neutral atomic charge distributions,
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LC02 and LC04 describe cation/anion pairs. LC01 describes a σp and a π bond, it is the
counterpart of LC05 with the different phase. LC01 describes the neutral Heitler–London
component of the C–C σ bond and π bond; LC02 ionic component of the σ bond. The ionic
LC04 describes deformations of the interacting C atoms caused by polarization in the σ
bond due to sp hybridization. Polarization in the σ bond is also described by the neutral
LC03. For C–C distances less than 1.7 Å, the wave function is again dominated by LCs
with the Σ+

g character; the large LCs that are important at long distances contribute very
little, and LC05 is essentially vanished. The LC06 goes to zero rapidly; the wave function
is dominantly a superposition of small LCs that represent the deformation of the electron
distribution of the C atoms due to polarization, interference, angular correlation and so
on. Around the equilibrium geometry the LC07 gains weight; this neutral LC with an Σ+

g
character represents both C atoms in quintet high spin states coupled to a singlet. The
quintet state is the result of the excitation of an electron from the doubly occupied 2s AO
into the 2p subshell together with a spin flip. This LC has between 1.65 Å and 1.0 Å a rather
constant weight of about 10%. Formally, one could say LC07 represents a quadruple bond
which becomes important around the C–C equilibrium distance. LC08 is an ionic LC; it
describes the polarisation of all four formal bonds as described by LC07; LC09 is a neutral
LC that can be best described as an angular correlation in the two π bonds as described by
LC06, whereas LC10 describes the polarization in the σ bond. The sum of weights of the
large LCs decreases dramatically with the C–C distance approaches the equilibrium value,
at the same time, the contribution of the small LCs becomes large. This is shown on the
right side of Figure 11. Only if the criterion for “being large” is reduced to 0.03, the “large”
LCs contribute more than 50% along the whole reaction coordinate, and it is for short C–C
distances where these LCs contribute most.
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Figure 11. (Left): The distribution of the weights of the large LCs for the first A1 singlet state of C2.
(Right): The sum of the large weights and the complement.

Figure 12 shows the increase in the contributions of small LCs with the decreasing
C–C distance. Because there are so many of them, the curves are not labelled.

The second A1 state changes its character three times: starting from short C–C dis-
tances, it changes at 1.2 Å from the Σ+

g to ∆g character, at 1.7 Å from ∆g to Σ+
g and at 3.0 Å

again to the ∆g character. This characterization is due to the eight large LC contributions
that dominate the second A1 singlet state; six of them also contribute to the first A1 state.
See Table 4 and the left side of Figure 13. The dissociated molecule is solely described
by LC01, the molecule with two π bonds has always Σ symmetry. In the region between
1.7 Å and 3.0 Å LC05 and LC06 dominate the wave function; however, as mentioned above,
because of the interaction between the atoms, one σ and one π bond are more stable than
two π bonds and therefore LC05 has a much larger weight than LC06. In this region, the
two singly ionic LCs LC11 and LC12 describe the polarization in the σ bond. The weight
of the LC describing the singlet coupled quintet states is well below 0.1 in the second A1
singlet state. The right side of Figure fig:CAS88St2largeLCs shows that below 1.7 Å the
sum of the weights of the large LCs is much smaller than that of the small LCs.
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State 1: Weights of large OVB LCs
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State 1: Sum of weights of LCs
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Figure 12. (Left): The weights of the significant Σg LCs for the first A1 singlet state of C2. (Right):
The weights of the significant ∆g LCs for the first A1 singlet state.

Table 3. Description of the large LCs in the first A1 singlet state of C2. Col 2: IRREPs in D∞h. Col 3:
Neutral (n) or singly ionic (s) LC. Col 4: AO symbols. Without normalization coefficients.

LC01 ∆g n s2
As2

BzAzB(xAxB − yAyB)
LC02 ∆g s s2

As2
B(z

2
A + z2

B)(xAxB − yAyB)
LC03 ∆g n (s2

AzAsBz2
B − z2

As2
BsAzB)(xAxB − yAyB)

LC04 ∆g s (s2
Az2

AsBzB − s2
Bz2

BsAzA)(xAxB − yAyB)
LC05 Σ+

g n s2
As2

BzAzB(xAxB + yAyB)

LC06 Σ+
g n s2

As2
BxAxByAyB

LC07 Σ+
g n sAsBzAzBxAxByAyB

LC08 ∆g s ((y2
A + y2

B)xAxB − (x2
A + x2

B)yAyB)sAsBzAzB
LC09 ∆g n s2

AzAsB(x2
ByAyB − y2

BxAxB) + s2
BsAzB(y2

AxAxB − x2
AyAyB)

LC10 Σ+
g s (s2

AzAsB − s2
BsAzB)xAxByAyB

Table 5 shows the 8 large LCs describing the third A1 singlet state, the weight curves
are shown in the left side of Figure 14. The third A1 singlet state has an Σ+

g character along
the whole reaction coordinate, the dissociated molecule is, like the first state, described
by LC05 and LC06 but now the ratio of the weights is 1:2. When the atoms approach the
character of the state changes smoothly, the weights of LCs LC05 and LC06 decrease at C–C
distance shorter then 2.5 Å where LC15 becomes more important. At 1.7 Å there is again
a change of the dominant LCs and again at 1.2 Å. The sum of the large weights becomes
nevertheless very small, and the small LCs make the largest contribution. See the right side
of Figure 14.

Table 4. Description of the large LCs in the second A1 singlet state of C2. Col 2: IRREPs in D∞h. Col
3: Neutral (n) or singly ionic (s) LC. Col 4: AO symbols.

LC01 ∆g n s2
As2

BzAzB(xAxB − yAyB)
LC02 ∆g s s2

As2
B(z

2
A + z2

B)(xAxB − yAyB)
LC03 ∆g n (s2

AzAsBz2
B − z2

As2
BsAzB)(xAxB − yAyB)

LC04 ∆g s (s2
Az2

AsBzB − s2
Bz2

BsAzA)(xAxB − yAyB)
LC05 Σ+

g n s2
As2

BzAzB(xAxB + yAyB)

LC06 Σ+
g n s2

As2
BxAxByAyB

LC11 Σ+
g s (s2

Az2
AsBzB − s2

Bz2
BsAzA)(xAxB + yAyB)

LC12 Σ+
g n s2

As2
B(z

2
A + z2

B)(xAxB + yAyB)
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State 2: Weights of large OVB LCs
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Figure 13. (Left): The distribution of the weights of the large LCs for the second A1 singlet state of
C2. (Right): The sum of the large weights and the complement.

Table 5. Description of the large LCs in the third A1 singlet state of C2. Col 2: IRREPs in D∞h. Col 3:
Neutral (n) or singly ionic(s) LC. Col 4: AO symbols.

LC05 Σ+
g n s2

As2
BzAzB(xAxB + yAyB)

LC06 Σ+
g n s2

As2
BxAxByAyB

LC13 Σ+
g n s2

Az2
AsBzB + sAzAs2

Bz2
B)(xAxB + yAyB)

LC14 Σ+
g s s2

Az2
BzAsB + sAzBz2

As2
B)(xAxB + yAyB)

LC15 Σ+
g n (s2

AzAsB + s2
BsAzB)xAyAxByB

LC16 Σ+
g s (s2

Az2
AsBzB − s2

Bz2
BsAzA)(xAxB + yAyB)

LC17 Σ+
g n s2

Az2
BzAsB − sAzBz2

As2
B)(xAxB + yAyB)

LC18 Σ+
g s s2

As2
B(z

2
A + z2

B)(xAxB + yAyB)

State 3: Weights of large OVB LCs
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Figure 14. (Left): The distribution of the weights of the large LCs for the third A1 singlet state of C2.
(Right): The sum of the large weights and the complement.

5. Discussion

The chemical bonding of molecular fragments is accompanied by a reduction of the
total electronic energy when the bonded atoms are near to each other. Thereby, the spatial
region is enlarged in which bonding electrons can reside. Covalent chemical bonding is
of a purely quantum theoretical origin; it is the result of constructive interference when
states of the interacting fragments are superimposed, meaning that the probability for
finding the shared bonding electrons between the interacting fragments is higher than
the sum of the probabilities calculated with the wave functions of the non-interacting
fragments. This can also be interpreted as a charge shift, which causes a deformation of the
fragment’s charge distributions together with classical interactions such as the Coulomb
attraction and repulsion of electrons and nuclei. This was demonstrated to be responsible
for the stabilization of one electron system such as H+

2 , which means that the energetic
stabilization is a 1-electron effect but not a 2-electron effect, as suggested by the important
role of the Lewis electron pair. In many-electron systems, the fermionic character of the
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electrons becomes of the utmost importance for the deformation of charge distributions
due to the tendency of identical fermions to avoid coming spatially close, as expressed by
the PEP, which was expressed by Lévy-Leblond and Balibar in the following way: A system
of fermions can never occupy a configuration of individual states in which two individual states are
identical [60]. This tendency is so important because it is independent of physical properties
such as the electric charge, after all, it holds also for protons and neutrons in nuclei where
nuclear forces act. In chemistry, individual states of electrons are called spinorbitals; they
can be localized AOs but also delocalized MOs. That two identical electrons can never be
found in the same place (Fermi correlation) becomes clear only if eigenstates of the position
or localization operator are considered as individual states. However, this holds only if
the electrons have identical properties, including the spin projection. Mathematically, the
antisymmetry of the state function of a many-fermion system expresses this tendency, and
it ... plays the role of a fictitious, although highly effective, mutual repulsion being exerted within the
system, irrespective of any other actual forces or interactions [. . . ] that might be present [60]. Using
loose language, one speaks of Pauli repulsion, which keeps identical electrons apart, thereby
reducing the Coulomb repulsion. This tendency is not restricted to electrons in an atom or
in a molecule but it is operative also between atoms or molecules when they come close,
for example, in condensed matter or during chemical reactions. The PEP explains the shell
structure of many-electron atoms, but also the origin of certain bond angles in molecules for
which mainly the valence electrons are responsible. Before continuing with the role of the
PEP, there is an important caveat: Electrons in atoms or molecules cannot be individualized;
one says they are indistinguishable, and this means that it is not possible to attribute a
certain individual state to each of them. One can only speak of a configuration of individual
states and say that all electrons together occupy these individual states. Nevertheless,
again using loose language, one says that a certain electron is in a certain state or a certain
electron has certain properties. In the following, I will also use this simple way to speak
about a complex issue. The valence electrons in an atom occupy a spherical shell with a
characteristic radius and thickness; the radius of the spherical shell is approximately equal
to the maximum of the radial density of the valence AOs. For atoms in the second row of
the periodic table, the radial densities of the 2s and the 2p AOs are nearly identical; this is
not true for all higher rows. Thus, 2s electrons and 2p electrons reside in the same spatial
area irrespective of the different orbital energies, and, according to the PEP, the electrons
with identical spin will prefer relative positions with a maximum distance to all others.
Two identical electrons will prefer to be on different sides of the nucleus; this means in
an electron–nucleus–electron angle of 180 degrees, three identical electrons will prefer a
trigonal arrangement with three angles of about 120 degrees, and four identical electrons
will prefer a tetrahedral arrangement [61]. In a noble gas, the valence shell is occupied by
eight electrons, four of which are identical α electrons and four are identical β electrons;
therefore, for both groups of identical electrons, the probability for tetrahedral spatial
arrangements will be the highest of all possible. Coulomb repulsion maximizes the distance
between α and β electrons (Coulomb correlation), giving two interpenetrating tetrahedra
inscribed into a cube. This was called a “cubical atom” by Lewis [3]; that such arrangements
can be found in many-electron atoms was demonstrated by Scemema et al. [62] using
correlated electron structure methods. As soon as the free atom is disturbed, as it is in a
chemical reaction, the electron distribution changes. Starting from the noble gas electron
configuration in, say, the fluoride anion F−, the creation of an F-H single bond by the
interaction with a proton can be observed as the rearrangement of the two tetrahedra when
a proton approaches the F− and attracts electrons in the valence shell. One can assume that
the electron at the corner of one tetrahedron, say of the α electrons, will be attracted and
the tetrahedron will rearrange so that the corner points towards the proton. However, the
proton can attract another electron, but this must be a β electron; the Coulomb repulsion of
the two electrons close to the proton is much smaller than the reluctance of two α electrons
coming close. This causes a reorientation of the two tetrahedra bringing two corners in
approximate coincidence; the two electrons are the bonding electron pair. The other six
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electrons can be thought of forming a regular hexagon with alternating α and β electrons at
the corners. Starting from the O2− dianion, one can add stepwise two protons by which
eventually all four corners of the two tetrahedra are brought into approximate coincidence
giving two bonding and two lone pairs [63]. However, as Scemama et al. demonstrated,
the maximum probability domains of bonding electron pairs that are naively assumed to be
typically placed in the midbond region can only be found with uncorrelated Hartree-Fock
wave functions; as soon as correlated wave functions are used, . . . the bonding pairs separate
along the bonds, and ‘pre-dissociate’ [62].

In addition to rearrangements due to the PEP, energetic aspects must also be consid-
ered. The orbital energy of the 2s AO in the carbon atom is about 9 eV lower than that of
the 2p AOs and therefore the 2s AO is always filled before any 2p AO is occupied; from
boron to fluor the 2s AO is doubly occupied by one α and one β electron. In carbon, the
remaining two valence electrons occupy the triply degenerate 2p AOs with identical spins,
in accordance with Hund’s first rule, giving a 3Pg high-spin ground state. In nitrogen,
the three remaining electrons occupy the 2p AOs with identical spins resulting in a 4Su
high-spin state. Any further electron must occupy an already singly occupied AO; this
is only possible if it has a different spin projection, giving a singlet coupled electron pair.
This is what happens in the oxygen atom, but also in nitrogen when an electron is excited
from the doubly occupied 2s AO. In the carbon atom, however, an electron can be excited
from the doubly occupied 2s AO into the 2p subshell without and with a spin flip. In the
first case, the resulting multiplicity is still a triplet, but in the second case, all four electrons
have an identical spin; this provides a quintet high-spin state, and the electrons prefer
a tetrahedral arrangement. It is noteworthy that the energy of the 5Su state is only 4.2
eV higher than the energy of the 3Pg state [64]; this is roughly half of the difference of
the orbital energies. Although excitation energy must be provided, the repulsion energy
in the high-spin state is considerably reduced, first, because the Coulomb repulsion of
the electrons in the 2s AO, which are not Fermi correlated, is reduced, and moreover the
Coulomb repulsion of four tetrahedrally arranged electrons is minimal in the spherical shell.
Another consequence of the Fermi correlation is a contraction of the orbitals and thus an
increase in the attraction of the electron by the nucleus. All these effects are important when
molecules come close and the Pauli repulsion between them increases. The increase in the
inter-molecular distance reduces it, but if this is not possible, changes from local low-spin
to local high-spin arrangements in the interacting molecules can reduce the Pauli repulsion.
In any case, energy is needed for the excitation, and, moreover, something must trigger the
spin flip. These aspects were already discussed in the studies of the dissociation of ethene,
disilene and silaethene [54,55,58]; the insertion reaction of methylene and silylene into the
hydrogen molecule [54,55]; and the addition of methylene and silylene, respectively, to
ethene, disilene and silaethene, respectively [65].

In the ground state of the dissociated C2 system, both carbon atoms are in their 3Pg
ground states. The coupling of the atoms gives 18 molecular terms, 6 singlets, 6 triplets,
and 6 quintets. Among the singlets are two Σ+

g states and one ∆g state. Only these states
are responsible for the stabilization of the system when the atoms approach; the large
weight of LC05 suggests that the bonding situation is dominated by a σ and a π bond, but
the weight of LC06, which represents two π bonds without a σ bond, shows that even
at long distances the number and kind of bonds is not definite. At short C–C distances,
the weight of LC07 becomes large; this LC describes two singlet coupled atomic quintet
states. The weight of LC07 is larger than those of LC05 and LC06, but ionic LCs or LCs
describing intra-atomic charge shifts contribute together much more to the ground state
wave function than LC07. The attempt to claim that C2 has a quadruple bond around the
equilibrium distance ignores the fact that the occurrence of LC07 at the equilibrium does
not mean that the carbon atom is there in a local quintet state. After all, no interacting
subsystem of a system is in a pure state but only in a mixed state, which allows one only
to say with which probability a certain pure state can be expected. One can obtain this
information from the reduced density matrix for the subsystem considered. Moreover, this
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information will be very different from what many scientists expect; they want to describe
the bonding situation using concepts that are not compatible with electron structures that
must be described by multi-configurational wave functions.

6. Method

All calculations were made with CAS(n,n) wave functions, where n active electrons
are distributed among the same number of active orbitals, the wave functions are linear
combination of configuration state functions (CSF) generated with the GUGA technique.
All calculations were conducted with a local version of GAMESS [66]. For all systems but
ethane, the cc-pVTZ basis set was used, and the ethane system was calculated with the
cc-pVDZ basis. The single bond in ethane is represented by a CAS(2,2) wave function, the
double bond in ethene by a CAS(4,4) wave function, and the triple bond in N2 by a CAS(6,6)
wave function. The electron distribution in C2 is described by a CAS(8,8) wave function. In
all systems, the two lowest MOs (positive and negative linear combination of 1s AOs) are
kept frozen. The potential energy curves were calculated at a grid of equidistant points;
for ethane and ethene, the distances between nearest neighbours are 0.1 Å for N2 and C2,
the distances are 0.05 Å. The geometries of ethene and ethane were optimized for each
frozen C–C distance. The fragments of the four systems are the C and the N atoms for
C2 and N2, and the methyl radical is for ethane and methylene for ethene. The fragment
wave functions were calculated for high spin states using low level methods, e.g., UHF; the
methyl and methylene geometries were taken from the optimized molecular geometries.
For each bond length, the optimized CASSCF MOs are localized on the respective fragments
using an orthogonal Procrustes transformation [53]. Doubly occupied non-active MOs are
transformed into doubly occupied fragment MOs (FMO), which are delocalized in case
of methyl and methylene; active MOs are transformed into FMOs that resemble AOs or
hybrid AOs. The CSFs constructed with these FMOs are dubbed OVB CSFs (orthogonal
valence bonds). Finally, the CI matrix is set up with the OVB CSFs and diagonalized. This
provides the energies and weights for all OVB CSFs.
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