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Abstract: Rechargeable zinc–air batteries (RZABs) are basically dependent on both affordable and
long-lasting bifunctional electrocatalysts. A non-precious metal catalyst, a FeNi nanoalloy catalyst
(FeNi@NC) with an extremely low metal consumption (0.06 mmol), has been successfully synthesized.
It shows a high half-wave potential of 0.845 V vs. RHE for ORR and a low overpotential of 318 mV for
OER at 10 mA cm−2, favoring a maximum power density of 116 mW cm−2 for the constructed RZABs.
The voltage plateau is reserved even after 167 h of cell operation. The synergistic effect between the
nano-sized FeNi alloy and nitrogen-doped carbon with abundant N sites mainly contributes to the
electrocatalytic activity. This research can provide some useful guidelines for the development of
economic and efficient bifunctional catalysts for RZABs.

Keywords: rechargeable Zn–air batteries; iron–nickel alloy; nitrogen-doped carbon

1. Introduction

The rising consumption of fossil fuels results in increasing greenhouse gas emissions,
highlighting the significance of applying sustainable energy conversion and storage tech-
nologies to save energy and protect the environment [1]. Rechargeable zinc–air batteries
(RZABs) have stimulated enthusiasm for their high theoretical energy density and low cost.
However, such RZABs rely on well-designed catalyzing electrodes that promote oxygen
reduction reactions (ORR), oxygen evolution reactions (OER), and diffusion processes.
However, the sluggish kinetics of these two processes make it challenging to construct
high-performance RZABs. Most current catalysts for RZABs are based on precious metals
like platinum and ruthenium, and thus the high cost and restricted reserves prevent them
from being widely adopted [2,3]. Therefore, it is necessary to develop dual-functional
catalysts with high stability and efficiency.

Transition metal catalysts are viewed as potential candidates for high-performance
ORR or OER [4–9]. Iron-based electrocatalysts in particular are among the best options
for ORR because of their low cost and superior catalytic activity [10,11], while nickel-
based materials have shown excellent catalytic activity for OER [12]. Therefore, a plausible
solution for effective bifunctional oxygen electrocatalysts is to make use of the synergy
between nickel and iron [7,13–16].

Combining transition metals with doped carbon is a successful method for enhanc-
ing bifunctional OER/ORR electrocatalysts, and the most frequently employed doping
elements are N, B, F, P, and S. Since N has a higher electronegativity than carbon (C), it
is often thought to be the most efficient doping element when used to increase the cat-
alytic activity of ORR and OER compared to other elements [17]. The catalytic activity of
ORR/OER is improved when carbon materials are doped with N because the positive
charge around the carbon atom lowers the energy barrier for oxygen adsorption, making
oxygen chemisorption and electron transfer easier [18–20].
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Another simple strategy is to load alloy particles into porous structures. For example,
Sun et al. [7] used a simple, template-free method to prepare a novel, non-precious metal-
based bifunctional catalyst (FexNiyN@C/NC) with a porous structure that exposes more
active sites and facilitates transport. Zou et al. [5] synthesized alloy catalysts anchored
on nitrogen-doped, porous carbon nanosheets by a self-growth strategy (FeCo/NUCSs).
Due to the unique structure, the FeCo/NUCS material shows an efficient charge transfer
process (4e−), reaction kinetics, and catalytic stability of ORR/OER, resulting in an excellent
charge/discharge cycle stability (102 h) in RZABs.

Here, we outline an easy method for creating a N-doped carbon supported FeNi alloy
as a bifunctional catalyst. The process includes uniformly binding the metal ions with
α-D-glucose, and create M-Nx for catalyzing activity. The optimized catalyst sample shows
a high half-wave potential of 0.845 V vs. RHE for ORR and a low overpotential of 318 mV
for OER at 10 mA cm−2, favoring a maximum power density of 116 mW cm−2 for the
constructed RZABs.

2. Experimental
2.1. Synthesis of g-C3N4

The urea (8 g) is pyrolyzed in a porcelain boat for 4 h at a heating rate of 5 ◦C/min.
The resulting g-C3N4 powder is the final product.

2.2. Synthesis of the Electrocatalysts

The synthesis process of FeNi@NC is illustrated in Figure 1. To prepare FeNi@NC,
a mixture of Ni(NO3)2·6H2O (0.036 mmol), Fe(NO3)3·9H2O (0.024 mmol), 120 mg α-D-
glucose, and 1 g g-C3N4 was added to deionized water and sonicated for 4 h. The resulting
mixture was then stirred for 12 h and dried. The dried mixture was forged for 1 h at
900 ◦C under an Ar atmosphere using a heating rate of 5 ◦C/min. The synthesis process
for Ni@NC and Fe@NC is identical to that of FeNi@NC.
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Figure 1. Synthetic steps of FeNi@NC.

The chemicals, characterizations, electrochemical experiments, and Zn–air battery test
were summarized in Supporting Information (SI).

3. Results and Discussion
3.1. Preparation and Physicochemical Characterizations

The pyrolysis pathway of FeNi@NC is depicted in Figure 1, where g-C3N4 serves as the
nitrogen source and α-D-glucose acts as a chelating agent and carbon source [21]. N-doped
carbon nanosheets (NC) are created when α-D-glucose undergoes carbonization at 900 ◦C.
At the same time, metal salts comprising Ni2+ and Fe3+ are changed into FeNi nanoparticles,
which are then implanted in the NC carriers. Transmission electron microscopy (TEM)
and scanning electron microscopy (SEM) were used to analyze the electrocatalyst’s shape
and structure. The nanosheets are extremely thin, folded, and have a homogeneous
distribution of metal particles on their surface, as shown in Figure 2a, demonstrating a
good structural connection.
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Figure 2. (a) SEM and (b) TEM images of FeNi@NC. (c) HRTEM images of FeNi@NC.

The anchoring effect of g-C3N4 [21], which can successfully prevent metal agglomera-
tion at high temperatures, increase the reactive sites, and improve the catalytic activity, is
responsible for the uniform distribution of the numerous spherical nanoparticles with a
diameter of about 20 nm that are present on the folded nanosheets (Figure 2b). From the
high-resolution TEM (HR-TEM, Figure 2c), lattice stripes in the (111) face of the FeNi alloy
can be observed with a face spacing of 0.20 nm, and the region with a lattice spacing of
0.32 nm is associated with the (002) face of graphitic carbon, indicating that the nanoparti-
cles are encapsulated by a carbon layer, and this shell–core structure of the graphitic carbon
encapsulated NiFe alloy can effectively prevent the internal alloy from external harsh
alkaline environment from corrosion, thus improving the stability of the electrocatalyst,
while it effectively facilitates the electron transport [22,23]. The nanosheets, which have
superior electron transfer capabilities during electrochemical processes compared to other
carbon carriers like one-dimensional carbon fibers, have more channels and a larger specific
surface area, which can speed up electron/reactant transport in various directions and
expose abundant active sites, favoring catalytic activity [24].

X-ray diffraction (XRD) was used to examine the catalyst’s binding mode. The physical
phase of this catalyst is the FeNi alloy phase (JPCDS No. 47-1417), as shown in Figure 3a.
The diffraction peaks appearing at 2θ = 43.49◦, 50.67◦, and 74.54◦ point to the (111), (200),
and (220) crystal planes of the FeNi alloy structure, further proving the FeNi alloy’s
synthesis as shown in Figure 2.
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X-ray photoelectron spectroscopy (XPS) was used to examine the surface makeup and
chemical phases of the FeNi@NC catalyst. The obtained spectra showed that C (80.81 at%),
N (10.29 at%), O (7.08 at%), Fe (0.96 at%), and Ni (0.86 at%) were present. Three differ-
ent types of bonds were visible in the C 1s XPS spectra (Figure 3b): C-C (284.8 eV), C-N
(285.6 eV), and C-O (289.8 eV) [4,23]. The high-resolution N1s XPS peaks for pyridine, pyr-
role, and graphitic nitrogen appear in Figure 3c with energies of 398.4, 400.8, and 403.7 eV,
respectively. While the N atoms in the graphitic nitrogen are doped within the graphitic
carbon plane, it is thought that the pyridine nitrogen, which is present at the edge of the
graphitic carbon, functions as an active site for the oxygen reduction reaction (ORR) [25].
The high-resolution XPS Fe 2p and Ni 2p peaks, as shown in Figure 3d,e, revealed the chem-
ical phases of Fe0 (710.3 eV and 720.0 eV) and Ni0 (855.0 and 872.5 eV), further verifying
the existence of the NiFe alloy [26,27]. Notably, Fe and Ni atoms’ ionic states show that
Fe-Nx (714.4 and 724.9 eV) and Ni-Nx (858.5 and 876.8 eV) species have formed [27].

The degree of graphitization and the material’s ordered/disordered structure can
be determined using Raman spectroscopy [28]. A common indication of the level of
graphitization in sp2 carbon materials is the intensity ratio of the D (1334 cm−1) to G
(1594 cm−1) band (ID/IG). As shown in Figure 3f, the ratio of ID/IG for FeNi@NC (0.83) is
between that of FeNi-800 (1.19) and that of FeNi-1000 (0.85), indicating that FeNi@NC has
an intermediate degree of graphitization with some disorder phase, providing necessary
defects for catalytic sites [29].

N2 adsorption–desorption isotherms were used to assess the porosity of the FeNi@NC
material. A example Type IV isotherm with a particular surface area of 386.73 m2g−1 was
created using the BET approach, as shown in Figure S1. The high gas flow created by the
breakdown of g-C3N4 during pyrolysis is what causes the huge specific surface area and
micropores/mesopores [30,31]. This characteristic enhances the electrocatalytic activity
by allowing the catalyst to expose several active sites and exploit the pore structure to
transport O2 and electrolytes to the active sites [32,33].

3.2. Electrocatalytic Activities of FeNi@NC Catalysts for ORR

LSV polarisation curves were performed under standard conditions utilizing an
oxygen-saturated 0.1 M KOH electrolyte, a rotating disc electrode (RDE) at 1600 rpm,
and a scan rate of 5 mV s−1 to assess the electrocatalytic efficacy of FeNi@NC for ORR.
LSV tests were also carried out for NC, Ni@NC, Fe@NC, and Pt/C catalysts under the
identical conditions to give a parallel comparison. FeNi@NC catalysts were discovered to
have an acquired half-wave potential (E1/2) of 0.845 V, which is comparable to commercial
Pt/C catalysts (E1/2 = 0.83 V). Moreover, it is also higher than that of NC (E1/2 = 0.77 V)
and Ni@NC (E1/2 = 0.78 V). Obviously, FeNi@NC electrocatalyst possessed the highest
ORR activity. This activity is ascribed to a synergistic interaction between a FeNi alloy and
N-doped carbon, which significantly boosts catalytic activity. Additionally, the FeNi@NC
final diffusion current density was 6.42 mA cm−2 (Figure 4a), demonstrating higher elec-
trocatalytic activity. Due to a lack of Fe and Ni synergy, Ni@NC catalysts only show
modest increases in activity [34,35]. At lower potentials, a catalyst with a smaller
Tafel slope will be able to achieve a faster charge transfer across the catalytic inter-
face [36], FeNi@NC was also shown to have a smaller Tafel slope (80 mV dec−1) than
Pt/C (89 mV dec−1) (Figure 4b). By examining LSV curves produced at various RDE
rotation speeds (400–1600 rpm), the kinetics and routes of FeNi@NC in the ORR process
were evaluated. The findings demonstrated that the FeNi@NC catalyst’s ORR process was
kinetically controlled, with the limiting diffusion current density increasing as electrode
rotation speed increased (Figure 4c), as a result of the O2 diffusion distance becoming
shorter at faster speeds [37,38]. It was determined that the electron transfer number(n)
is a crucial indicator of the catalyst’s ORR activity. Using the K-L equation, it has been
calculated that the electron transfer number(n) of FeNi@NC was close to 4.0 (Figure 4d),
suggesting a four-electron reaction pathway for ORR [39,40].
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3.3. OER Performance on FeNi@NC Catalyst

FeNi@NC’s OER catalytic activity was thoroughly evaluated. FeNi@NC’s OER cat-
alytic activity was carefully evaluated. The overpotential of the FeNi@NC catalyst is shown
in Figure 4e at a current density of 10 mA cm−2 (360 mV vs. RHE), much lower than
that of Ni@NC (490 mV vs. RHE) and Fe@NC (460 mV vs. RHE), and comparable to the
noble metal, RuO2 (370 mV vs. RHE), demonstrating the superior catalytic performance of
bimetallic catalysts. This is explained by the creation of Fe–Ni atomic bonds, which cause
the charge on Fe and Ni atoms to be redistributed, boosting electrical conductivity and
enhancing adsorption strength [41]. As the N-C species alone exhibit low OER activity,
FeNi@NC’s high OER electrocatalytic activity may also be a result of the contribution of
FeNi alloy nanoparticles and the synergistic effect of Fe-Nx/Ni-Nx sites [42,43]. The Tafel
slope analysis shown in Figure 4f suggests that the kinetic performance of FeNi@NC is
close to that of the noble metal RuO2 and comparable to Ni@NC and Fe@NC [44–47].

The findings of this work show that when compared to Ni@NC and Fe@NC, FeNi@NC
demonstrates superior bifunctional catalytic activity. Table S1 shows this is comparable to
other bifunctional ORR/OER catalysts. This activity is ascribed to a synergistic interaction
between a FeNi alloy and N-doped carbon, which significantly boosts catalytic activity.
Additionally, the distinctive, slightly curled, and mutually supported nanosheet structure
of FeNi@NC produces a sizable specific surface area, exposing a greater quantity of active
sites and greatly facilitating mass/charge transfer at the interface.

3.4. Application of FeNi@NC in RZABs

The potential use of the synthesized FeNi@NC bifunctional electrocatalyst on ZABs
was further assessed due to its excellent catalytic activity. As shown in Figure 5a, RZABs
were first put together. These RZABs included polished Zn sheets acting as negative
electrodes, air acting as positive electrode, and septa. The electrolytes were 6.0 M KOH and
0.2 M Zn(CH3COO)2 solutions. Zn(CH3COO)2 was added to enable the negative electrode’s
reversible response during repeated charging. The charge/discharge polarization curves
of the FeNi@NC-supported cell are shown in Figure 5b, compared to that of a reference
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catalyst containing Pt/C + RuO2 (1.22 V at 50 mA cm−2). The former displayed a reduced
charge/discharge voltage gap (1.04 V at 50 mA cm−2), demonstrating the constructed
cells’ superior charge/discharge capacity. In comparison to Pt/C + RuO2, the RZABs
display much greater open circuit voltage (Voc) and maximum power density. In particular,
the maximum power density of FeNi@NC-based RZABs is 116 mW cm−2 (Figure 5c),
which is higher than the maximum power density of Pt/C + RuO2 (63 mW cm−2). This
is because the Voc of FeNi@NC-based RZABs is 1.45 V, which is higher than the Voc of
Pt/C + RuO2 (1.41 V).
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Figure 5. (a) Structure of assembled Zn–air batteries. (b) Discharge and charge polarization curves.
(c) Polarization curves and power density curves. (d) Open circuit voltage curve. (e) Charge and
discharge voltage cycling curves at a current density of 10 mA cm−2. (f) Enlarged cycle voltage
profiles of ZABs with the FeNi@NC cathode.

The data from this evaluation of the RZABs ‘ charge/discharge performance and cycle
stability utilizing the discharging–charging curves is shown in Figure 5e. The FeNi@NC-
based RZABs clearly outperform Pt/C + RuO2-based cells, which showed a noticeable
decline in energy conversion efficiency after only 25 h of charge and discharge, as shown
by the constant voltage plateau and high energy conversion efficiency after 167 h of charge
and discharge at a current density of 10 mA cm−2. Precious metals may tarnish and
disappear as a result of charging and discharging [48]. Due to the graphene shell’s capacity
to effectively stop the alloy from corroding in alkaline circumstances, FeNi@NC has high
cycling stability [49]. FeNi@NC-based RZABs have both excellent cycling stability and high
maximum power density, which is better than most FeNi-containing RZABs (as shown
in Table 1).

Table 1. Comparison of the catalytic characters of the built Zn–air battery with other previous
non-noble, metal-based counterparts.

Catalysts Mass Loading
(mg cm–2)

Open Circuit
Potential (V)

Power Density
(mW cm–2) Durability (h) References

FeNi@NC 1.0 1.45 116 30 min/cycle for 232 cycles; 116 h This work
FeNi-NC / / 80.8 23 h [50]

Fe-enriched-FeNi3/NC 1.0 1.43 89 10 min/cycle for 100 cycles; 16.7 h [51]
FeNi/NC 1.0 / 80.5 / [52]
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Table 1. Cont.

Catalysts Mass Loading
(mg cm–2)

Open Circuit
Potential (V)

Power Density
(mW cm–2) Durability (h) References

NiCoFe@N-CNFs 1.0 1.32 147 20 min/cycle for 120 cycles; 40 h [53]
Fe0.5Ni0.5@N-GR 2.0 1.482 85 20 min/cycle for 120 cycles; 40 h [54]

NiFe/N-CNT 1.5 1.48 300.7 300 cycles; 100 h [55]
FeNi-N/C-1000 4.0 1.445 102 95 h [56]

FeNi@N-CNT/NCSs 1.0 1.49 103 2 h/cycle for 30 cycles; 60 h [57]
NiFe/NCNF/CC / / 140.1 700 cycles [58]

NiFe@NCNT / 1.48 360.1 5 min/cycle for 2400 cycles; 200 h [59]
1.5FeNi@

NCNT / 1.44 114 100 cycles [60]

4. Conclusions

In summary, we created a straightforward, synthetic procedure to create FeNi@NC
as a bifunctional catalyst for RZABs. The optimized FeNi@NC has shown an E1/2 of
0.845 V and an overpotential of 360 mV at 10 mA cm−2. With a high open circuit voltage
of 1.45 V and a power density of 116 mW cm−2, FeNi@NC stands out for the outstanding
performance in RZABs. With FeNi nanoalloys serving as the primary catalytic active center,
the nitrogen-doped carbon carrier interacts with the FeNi nanoalloys and further enhance
the catalytic activity. This research can serve as a useful guide for the development of
low-cost, highly effective, and stable bifunctional catalysts.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/inorganics11070300/s1, Figure S1: N2 sorption isotherms of
FeNi@NC, Table S1: Comparison of the ORR/OER catalytic data of the FeNi@NC with other Previ-
ously published FeNi-based catalysts. References [61,62] are cited in the supplementary materials.
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