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Abstract: Oxidative stress is the cause of various pathologies and disorders of cellular functions.
Substances that reduce the pathological effect of oxidative stress on homeostasis include organose-
lenium compounds of natural and synthetic origin. Depending on the structure, organoselenium
compounds can exhibit different biological activities, for example, reducing oxidative stress, par-
ticipating in the regulation of signaling systems, influencing the synthesis of cytokines, etc. This
makes them promising products for the development of new means of metabolic correction and
drugs with enzyme-like activity. This study is aimed at developing an effective method for the
synthesis of functional organoselenium compounds and studying their antioxidant effect in vivo
under stress conditions. A one-pot catalyst-free method of transannular addition-functionalization of
cis,cis-1,5-cyclooctadiene with selenium dihalides in the presence of nucleophiles was developed. For
the first time, the antioxidant activity of functionalized 9-selenabicyclo[3.3.1]nonanes was studied
in vivo. Quantitative characteristics of the effect on the level of lipid peroxidation and the activity
of glutathione peroxidase and glutathione reductase under stress conditions were obtained. The
effect of substituents in the selenium-containing scaffold on the biological activity of the compounds
was studied. The water-soluble 9-selenabicyclo[3.3.1]nonane derivatives, containing hydroxyl and
2-hydroxyethoxy groups, which increased the activity of both glutathione peroxidase and glutathione
reductase, were discovered.

Keywords: 1,5-cyclooctadiene; 9-selenabicyclo[3.3.1]nonane; selenium halides; cyclofunctionalization;
glutathione peroxidase; glutathione reductase; oxidative stress

1. Introduction

In modern medicine, attention is increasingly focused on post-therapeutic reactions of
the organism, such as allergies, intoxication, drug hepatitis, etc. Among the biochemical
processes associated with these reactions is oxidative stress, which is developed due to
the increased cell-generated reactive oxygen species (ROS). Peroxide derivatives of unsat-
urated fatty acids in cell membranes are involved in the biosynthesis of prostaglandins
and leukotrienes (mediators of inflammation and allergic reactions). As ROS is accumu-
lated in the macroorganism, many mechanisms mobilize, including enzymes that utilize
peroxide compounds. With insufficient capacity for compensatory resources, activation
of lipid peroxidation (LPO) can destabilize cell membranes with subsequent complica-
tions [1]. Intoxications of various nature activate LPO against the background of inhibition
of cell antioxidant protection as well as the accumulation of immunosuppressive factors
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in the blood (acylhydroperoxides, diene conjugates of fatty acids, MDA, abnormal lipid
metabolites). Disturbances in metabolic status and decreased energy supply to cells elicit
immunodeficiency states [2]. In this case, it is advisable to use metabolic correction agents
that increase antioxidant potential.

Selenium is recognized as an important micronutrient for humans [3–6]. This element
is an important part of glutathione peroxidase, a selenium-containing enzyme whose
biological role is to protect the body from oxidative damage. A number of organoselenium
compounds exhibit high glutathione peroxidase-like activity [3–10] including ebselen, a
well-known selenium heterocycle, which is undergoing evaluation as a therapeutic agent
in clinical trials [11,12].

Natural and synthetic organoselenium compounds can reduce the pathological effect
of oxidative stress on homeostasis [13,14] and prove to be antioxidants [15–17]. Meanwhile,
it becomes clear that an uncontrolled and unreasonable increase in the antioxidant profile
of the organism has a negative effect on the immune system and a number of other body
functions. Note that enhancement of the catalytic activity of organoselenium compounds
is also not a priority, since it leads to lower selectivity and higher toxicity of the studied
compounds. This, together with a decrease in biostability, negatively affects the possibilities
of using organoselenium compounds as bioactive substances for drug design. For the
time being, a standing challenge for medicine remains the development of mild drugs
of metabolic correction for use in vaccination processes, including as hepatoprotectors or
general protectors of immunogenesis organs, antiviral therapy, and diseases associated
with immunodeficiency states.

Important electrophilic reagents, selenium dichloride and dibromide, were recently
introduced in organic synthesis [18–21]. The use of these reagents opened up new possibil-
ities for the synthesis of new classes of organoselenium compounds. Novel approaches,
including transannular selenocyclization, annulation/selenofunctionalization, and selenob-
isfunctionalization, were developed [19–27].

Selenofunctionalization reactions have found useful applications in modern organic
synthesis, allowing the simultaneous introduction of the selenium atom and a functional
group into the double bonds [28]. Seleniranium cations are postulated as intermediates
in these reactions. Recently, we developed one-pot bis-alkoxyselenenylation of alkenes
with selenium dibromide and alcohols [29]. This approach allows to realize one-pot seleno-
bisfunctionalization reactions under mild conditions and to increase yields of the target
products, avoiding the stage of the formation of the intermediate bis(β-halogenorganyl)
selenides [29].

Recently, 2,6-dichloro-9-selenabicyclo[3.3.1]nonane and its sulfur analogue [30] were
involved in nucleophilic substitution reactions to evaluate a relative anchimeric assis-
tance effect [31]. The anchimeric assistance effect of the selenium atom was found to be
considerably higher than that of the sulfur atom [31].

We developed a method for the synthesis of 2,6-dichloro- and 2,6-dibromo-9-
selenabicyclo[3.3.1]nonanes based on selenium dihalides and cis,cis-1,5-cyclooctadiene
(COD) [31,32]. A number of 2,6-bifunctional derivatives were obtained based on 2,6-
dibromo-9-selenabicyclo[3.3.1]nonane [33–36]. It was found that the 2,6-dipyridinium
salt of 9-selenabicyclo[3.3.1]nonane with high glutathione peroxidase-like activity is a
promising drug for metabolic correction during vaccination [35]. The introduction of this
compound into the bodies of experimental animals significantly decreases the development
of pathological reactions under the influence of the tularemia and brucellosis vaccines [35].
This compound potentiates the proliferative activity of immune cells and shows a high
anti-inflammatory effect [36]. It also enhances the immune response against Yersinia pestis,
thereby increasing resistance to the plague pathogen.
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2. Results and Discussion
2.1. Chemistry

This study is aimed at developing an effective method for the synthesis of func-
tional organoselenium compounds and studying their antioxidant effect in vivo under
stress conditions.

Previously, 2,6-dibromo-9-selenabicyclo[3.3.1]nonane (1) was obtained by the reaction
of selenium dibromide with COD in carbon tetrachloride (Scheme 1) [32].
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Scheme 1. Reaction selenium dibromide with cis,cis-1,5-cyclooctadiene.

However, the target product contained some amounts of the isomeric compound
2,5-dibromo-9-selenabicyclo[4.2.1]nonane (2) as an impurity.

In this work, we propose a new one-pot catalyst-free method of transannular addition-
functionalization of COD with selenium dibromide in the presence of nucleophiles. This
approach makes it possible to avoid the stage of isolation of the intermediate dibromo
adduct 1 with the use of highly toxic and carcinogenic CCl4 and to increase the yields of
target 9-selenabicyclo[3.3.1]nonanes. The proposed reaction conditions make it possible
to obtain only 2,6-bifunctional 9-selenabicyclo[3.3.1]nonanes without traces of isomeric
9-selenabicyclo[4.2.1]nonanes and to simplify the preparation of high-purity products.

It was found that carrying out the reaction in more polar solvents (chloroform, methy-
lene chloride, acetonitrile, etc.) decreased the content of compound 2. Also, the latter
can be isomerized into a thermodynamically more stable compound 1 by refluxing the
reaction mixture in chloroform (Scheme 2). It was established that the isomerization of
compound 2 did not lead to the formation of other products except for nonane 1.
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It was shown that the isomeric composition of the substitution products did not
depend on the isomeric ratio of compounds 1 and 2, but was determined by the conditions
of the substitution reaction.

For example, methoxylation of compound 1 in a mixture of carbon tetrachloride
and methanol (20:1) at 0 ◦C delivered a mixture of isomeric 2,6-dimethoxy-9-selenabicyclo
[3.3.1]nonane (3) and 2,5-dimethoxy-9-selenabicyclo[4.2.1]nonane (4) in a 93:7 ratio, whereas
this reaction in methylene chloride-methanol (5:1) proceeded at room temperature, afford-
ing exclusively compound 3. These trends indicate that the nucleophilic substitution
reactions proceed via seleniranium intermediates.

We have recently demonstrated the first examples of selenomethoxylation and
annulation-selenomethoxylation reactions of selenium dihalides with alkenes [22,29]. The
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experimental conditions were found to allow the use of selenium dihalides in the methoxyse-
lenation reaction in the presence of alcohols (methanol, ethanol, isopropanol, mercaptoethanol,
etc.) and not involve alcoholysis of the selenium-halogen bond in selenium dihalides.

A one-pot transannular selenomethoxylation of COD was developed. The target
compound 3 was synthesized in high yield (96%) by a one-pot atom-economic reaction of
selenium dibromide with COD in the presence of methanol under mild conditions at room
temperature (Scheme 3).
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The experimental conditions for the acetoxyselenation reaction of selenium dihalides
with COD were found. The target 2,6-diacetoxy-9-selenabicyclo[3.3.1]nonane (3) was
synthesized in almost quantitative yield (98%) by a one-pot atom-economic reaction of
selenium dibromide with COD in a chloroform-acetic acid (5:1) mixture (Scheme 4).
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Using the reaction of selenium dibromide with COD in chloroform or methylene
chloride in the presence of acetic acid, we showed the possibility of an acetoxyselenation
reaction (Scheme 5). The reaction proceeded regio- and stereoselectively and led to the
formation of 2,6-diacetoxy-9-selenabicyclo[3.3.1]nonane (5).
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The structure of compound 5 was proven by single-crystal X-ray diffraction analysis
(Figure 1). These data indicate that the bis-functionalization reaction proceeds as an anti-
addition to the double bond, giving the product a trans-disposition of the selenium atom
and two functional (acetoxy) groups.
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The one-pot, two-stage synthesis of 2,6-dipyridinium 9-selenabicyclo[3.3.1]nonane
dibromide (6) in quantitative yield was developed based on the addition of selenium
dibromide to COD followed by nucleophilic substitution of intermediate compound 1 with
pyridine (two equivalents) in methylene chloride (Scheme 5).

When the reaction of selenium dibromide with COD was carried out in the presence
of pyridine, mainly halogenated products of double bonds were formed.

In this case, the reaction was realized as a one-pot, two-stage synthesis, with the
addition of selenium dihalide to COD in methylene chloride followed by the addition of
two equivalents of pyridine to a solution of intermediate compound 1 (Scheme 6). The
reaction proceeds in a chemo- and regioselective fashion to produce 2,6-dipyridinium
9-selenabicyclo[3.3.1]nonane dibromide (6) in quantitative yield.
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pared with the control. Selenium is known to play a major role in the antioxidant protec-
tion of plants [38]. In this line, we commenced our study with the determination of the 
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Scheme 6. Hydroxyselenation of COD by SeBr2.

We found that the hydroxyselenation reaction of selenium dichloride and selenium
dibromide with COD can be realized in the system acetonitrile/water/NaHCO3 (Na2CO3,
K2CO3) at room temperature, affording 2,6-dihydroxy-9-selenabicyclo[3.3.1]nonane (7)
in almost quantitative yield (98%). The reaction occurred with high chemo- and regios-
electivity, and the formation of 2,5-dihydroxy-9-selenabicyclo[4.2.1]nonane as a possible
by-product was not observed under these conditions (Scheme 6).

The reaction of selenium dibromide with COD and the excess ethylene glycol in
acetonitrile afforded 2,6-bis(2-hydroxyethoxy)-9-selenabicyclo[3.3.1]nonane (8) in high
yield (Scheme 7).
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Scheme 7. Synthesis of 2,6-bis(2-hydroxyethoxy)-9-selenabicyclo[3.3.1]nonane (8).

When ethylene glycol was used as a solvent for the reaction of selenium dihalides
with COD, the formation of a mixture of oligomeric products was observed.

2.2. Biological Evaluation

In the present work, the effect of functionalized 2,6-disubstituted selenabicyclo nonanes
on the main characteristics of the antioxidant profile—the level of lipid peroxidation (LPO),
glutathione peroxidase (GPx), and glutathione reductase (GR) activities—was examined.
The tested compounds were divided into two groups: hydrophobic compounds 1, 3, and 5,
and water-soluble derivatives 6–8 (Table 1).

Table 1. First group—hydrophobic compounds 1, 3, and 5 with Ph2Se2 as reference. Second group—
hydrophilic water-soluble compounds 6, 7, and 8 with Na2SeO3 as reference.

Compounds Reference Compounds Reference
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Increasing salinity was chosen as a method for causing stress in plant cells. The salinity
was created using NaCl at a concentration of 200 mM [37]. In fact, such a concentration
generates stress since it almost doubles the level of lipid peroxidation as compared with the
control. Selenium is known to play a major role in the antioxidant protection of plants [38].
In this line, we commenced our study with the determination of the diene conjugate content.

In the series of water-soluble derivatives 7 and 8, a significant decrease in lipid per-
oxidation was observed under stress conditions at both low and high concentrations of
compounds (Figure 2). In contrast, derivative 6 at a 1000 µM concentration showed an
increase in lipid peroxidation, thus indicating toxicity. However, the increase in lipid perox-
idation by compound 6 was about twice lower compared with the reference compound
sodium selenite (Figure 1). Taking into account the low lipid peroxidation levels observed
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for compounds 7 and 8, the toxicity of compound 6 may be attributed to the blocking of
ion channels, which is characteristic for pyridinium and ammonium salts.
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Previously, a toxic effect of sulfur analogs of compounds 6 and 7 (2,6-dipyridyl- and
2,6-dihydroxy substituted 9-thiabicyclo[3.3.1]nonanes) was noted when fragmentable oligo-
and polycations derived from 2,6-dichloro-9-thiabicyclo[3.3.1]nonane were studied [39].

For lipophilic derivatives 1, 3, and 5, the level of lipid peroxidation at a 1000 µM
concentration was significantly decreased with respect to the reference substance (Ph2Se2).
Compound 1, despite the highly active bromine atom in the β-position relative to the
selenium atom, did not exhibit high toxicity (Figure 3).
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Glutathione peroxidase is a key enzyme in protecting cells from oxidative damage.
Glutathione peroxidase activity is a direct characteristic of the antioxidant system’s capac-
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ity. We have studied the effect of various concentrations of 9-selenabicyclo[3.3.1]nonane
derivatives on glutathione peroxidase activity under stress conditions.

In the series of water-soluble derivatives 6–8, a multidirectional tendency was found
(Figure 4). The hydroxyethoxy compound 8 at a 10 µM concentration showed a significant
increase in GPx activity, with a tendency to decrease, with the elevation of concentration.
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The pyridine derivative 6 demonstrated a result close to the inorganic source of
selenium, sodium selenite, which is characterized by reduced GPx activity in all the concen-
trations studied, thus contrasting with the previously demonstrated decrease in the lipid
peroxidation level (Figure 4).

In the case of lipophilic derivatives 1, 3, and 5, a noticeable effect on the activity of
GPx was not observed (Figure 5). A gradual lowering of GPx activity with the growth
of the concentration of the acetoxy compound 5 may indicate a weak inhibitory effect.
The increase in GPx activity in the case of bromine derivative 1 may be attributed to the
accumulation of the metabolites, including hydrolysis products such as hydroxy derivative
7, which enhanced the activity of GPx.
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The key parameter of the antioxidant protective potential is the redox status of glu-
tathione, which is significantly biased towards the reduced form under normal conditions.
The oxidation-reduction status of glutathione is supported by a number of enzymes, the
main of which is glutathione reductase (GR). Glutathione reductase is an important compo-
nent of the ROS detoxification system in plants and catalyzes the conversion of oxidized
glutathione (GSSG) to its reduced form (GSH). It is known that selenium affects the activity
of enzymes in the glutathione plant protection system [40]. Following this line, we have
investigated the effect of compounds 1, 3, 5, and 6–8 on the activity of glutathione reductase
(GR) in the present work.

In contrast to the inhibitory effect of compound 6 toward GPx, a significant increase
in GR activity with concentration growth was found. These results may indicate the
promotion of the GSSG reduction reaction. However, this effect of a multiple increase
in GR activity may be a combination of the GPx inhibitory effect of compound 6 and an
increase in cellular antioxidant potential under stress, which can also lead to an increase in
GR activity.

An increase in GR activity by compounds 7 and 8 was observed, but already against the
background of a substantial growth of GPx activity, thus evidencing a drastic augmentation
of the antioxidant profile even at concentrations of 10 µM (Figure 6). A sharp increase in
the antioxidant profile even at 10 µM concentration is noteworthy, taking into account the
significant increase in GPx activity by these compounds.
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Lipophilic derivatives of 9-selenabicyclo[3.3.1]nonane demonstrated a considerable
drop in GR activity, which, together with a slight increase in GPx activity, allows us to con-
sider these compounds as potential medicines for mild metabolic correction. Furthermore,
it is worthwhile to note a significant GR-inhibitory effect of the bromo derivative 1, which
in this case is characterized by a general decrease in lipid peroxidation (Figure 7).
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3. Materials and Methods
3.1. General Information

X-ray diffraction experiments were carried out on a Bruker D8 Venture Photon
100 CMOS diffractometer (Bruker BioSpin GmbH, Rheinstetten, Germany) with Mo-Kα

radiation (λ = 0.71073 Å). X-ray crystallographic data for compound 5 (CCDC 2277477) are
shown in Electronic Supplementary Information. These data can be obtained free of charge
at http://www.ccdc.cam.ac.uk/conts/retrieving.html (accessed on 28 June 2023).

1H (400.1 MHz) and 13C (100.6 MHz) NMR spectra were recorded on a Bruker DPX-
400 spectrometer (Bruker BioSpin GmbH, Rheinstetten, Germany) in 5–10% solution in
CDCl3. 1H and 13C chemical shifts (δ) are reported in parts per million (ppm), relative to the
residual solvent peak of CDCl3 (δ = 7.27 and 77.16 ppm in 1H and 13C-NMR, respectively).

The mass spectra were recorded on a Shimadzu GCMS-QP5050A (Shimadzu Corpo-
ration, Kyoto, Japan) with electron impact (EI) ionization (70 eV). Elemental analysis was
performed on a Thermo Scientific Flash 2000 Elemental Analyzer (Thermo Fisher Scientific
Inc., Milan, Italy).

The organic solvents were dried and distilled according to standard procedures.

3.2. The Synthesis of Compound 3

2,6-Dimethoxy-9-selenabicyclo[3.3.1]nonane (3). A solution of SeBr2 (4.80 g, 20 mmol) in
CH2Cl2 (50 mL) was added dropwise to a solution of 1,5-cyclooctadiene (2.16 g, 20 mmol)
in CH2Cl2 (35 mL) and MeOH (15 mL). The reaction mixture was stirred for 15 h at
room temperature. The solvent was removed on a rotary evaporator, and the residue
was washed with C6H14 (2 mL) at 0 ◦C and dried in vacuum to constant mass. Product
compound 3 (4.8 g, 96% yield) was colorless or light-yellow liquid.

1H NMR (400 MHz, CDCl3) δ 1.78–1.82 (m, 2H, SeCHCH2), 2.00–2.04 (m, 2H, SeCHCH),
2.17–2.19 (m, 2H, OCHCH), 2.60–2.64 (m, 2H, OCHCH), 3.02–3.03 (m, 2H, SeCH), 3.36 (s,
6H, CH3), 3.88–3.92 (m, 2H, MeOCH). 13C NMR (100 MHz, CDCl3) δ 27.87, 28.05, 28.87,
55.86, 81.04. Found: C, 47.96; H, 7.45; Se, 31.93. Calc. for C10H18O2Se: C, 48.20; H, 7.28; Se,
31.68. MS (EI): m/z (%) = 250 (30, M+), 218 (10), 179 (18), 137 (64), 105 (50), 79 (100), 71 (89),
45 (78), 41 (90). IR (film): 1086, 1153, 1186, 2817, 2922, 2977 cm−1.

http://www.ccdc.cam.ac.uk/conts/retrieving.html
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3.3. The Synthesis of Compound 5

2,6-Diacetoxy-9-selenabicyclo[3.3.1]nonane (5). A solution of SeBr2 (4.80 g, 20 mmol) in
CH2Cl2 (30 mL) was added dropwise to a solution of cis,cis-1,5-cyclooctadiene (2.16 g,
20 mmol) in a mixture of CH2Cl2 (20 mL) and AcOH (10 mL). The reaction mixture was
stirred for 16 h at room temperature. Then the mixture was washed with water (3 × 20 mL),
dried with CaCl2, filtrated, and the solvent removed on a rotary evaporator. The residue
was washed with C6H14 (2 mL) and dried in vacuum. Compound 5 (6.0 g, 98% yield) was
obtained as colorless crystals, mp 108–109 ◦C.

1H NMR (400 MHz, CDCl3) δ 1.96–2.05 (m, 10H, SeCHCH2, CH3), 2.28–2.33 (m, 2H,
OCHCH2), 2.62–2.66 (m, 2H, OCHCH2), 2.94–2.96 (m, 2H, SeCH), 5.46–5.48 (m, 2H, OCH).
13C NMR (100 MHz, CDCl3) δ 20.97, 27.37, 27.80, 28.00, 74.07, 169.85. Found: C, 46.98; H,
6.09; Se, 26.11. Calc. for C12H18O4Se: C, 47.22; H, 5.94; Se, 25.87. IR: 2922, 1729, 1364, 1231,
1021, 960, 870 cm−1. MS (EI): m/z (%) = 306.00 (9, M+) 186.00 (18), 123.15 (10), 105.10 (59),
95.10 (11), 93.10 (11), 79.10 (28), 67.10 (10), 43.05 (100), 41.10 (17), 39.10 (10).

3.4. The Synthesis of Compound 6 (Modified Procedure)

2,6-Dipyridinium-9-selenabicyclo[3.3.1]nonane dibromide (6). A solution of SeBr2 (2.4 g,
10 mmol) in methylene chloride (20 mL) was added dropwise to a solution of cis,cis-1,5-
cyclooctadiene (1.08 g, 10 mmol) in methylene chloride (20 mL). The reaction mixture was
stirred for 8 h at room temperature. A solution of pyridine (1 g, 1.25 mmol) in methylene
chloride (5 mL) was added dropwise to the reaction mixture. The reaction mixture was
stirred overnight (16 h) at room temperature. The precipitate was filtered, washed with
cold methylene chloride, and dried in vacuum. Compound 6 (5.05 g, ~100% yield) was
obtained as a beige powder, mp 177–178 ◦C.

1H NMR (400 MHz, D2O) δ 2.49–2.55 (m, 2H, SeCHCH2), 2.69–2.73 (m, 4H, NCHCH2,
SeCHCH2), 3.21–3.33 (m, 2H, NCHCH2), 3.57–3.59 (m, 2H, SeCH), 5.99–6.04 (m, 2H, NCH),
8.24 (t, 4H, m-Hpyr), 8.69 (t, 2H, p-Hpyr), 9.17 (d, 4H, o-Hpyr). 13C NMR (100 MHz, D2O) δ
28.39, 31.01, 32.19, 77.43, 131.52, 145.99, 149.29. Found: C, 43.08; H, 4.58; Br, 31.48; N, 5.73;
Se, 15.76. Calc. for C18H22Br2N2Se: C, 42.80; H, 4.39; Br, 31.64; N, 5.55; Se, 15.63. MS (EI):
m/z (%) = 345.80 (0.36, M+-2Br), 187.05 (14.20), 105.15 (19.59), 91.05 (9.20), 80.00 (17.64),
79.05 (100.00), 78.10 (20.72), 77.05 (10.78), 52.05 (56.84), 51.10 (24.21), 39.05 (19.49). IR: 3404,
3044, 1629, 1488, 1134, 769, 690 cm−1.

3.5. The Synthesis of Compound 7

2,6-Dihydroxy-9-selenabicyclo[3.3.1]nonane (7). A solution of SeBr2 (4.80 g, 20 mmol)
in CH3CN (30 mL) was added dropwise to a mixture of cis,cis-1,5-cyclooctadiene (2.16 g,
20 mmol) in CH3CN (35 mL), H2O (5 mL), and NaHCO3 (3.5 g, 42 mmol). The reaction
mixture was stirred for 14 h at room temperature. The solvent was removed on a rotary
evaporator, and the residue was washed with cold C6H14 (5 mL) and dried in vacuum.
Compound 7 (4.35 g, 98% yield) was obtained as white crystals, mp 249–250 ◦C.

1H NMR (400 MHz, DMSO-D6/CDCl3) δ 1.73–1.81 (m, 2H, SeCHCH2), 1.85–1.92 (m, 2H,
SeCHCH2), 2.04–2.14 (m, 2H, OCHCH2), 2.62–2.70 (m, 4H, OCHCH2, OH), 3.53–3.57 (m, 2H,
SeCH), 4.24–4.27 (m, 2H, OCH). 13C NMR (100 MHz, DMSO-D6/CDCl3) δ 25.91, 29.50, 30.45,
69.43. Found: C, 43.74; H, 6.56; Se, 35.49. Calc. for C8H14O2Se: C, 43.45; H, 6.38; Se, 35.70. MS
(EI): m/z (%) = 222 (52, M+), 205 (5), 178 (20), 149 (15), 133 (17), 123 (27), 95 (58), 79 (69), 71 (49),
67 (41), 57 (31), 55 (58), 41 (100), 39 (51). IR: 873, 982, 1017, 2899, 2932, 3340 cm−1.

3.6. The Synthesis of Compound 8

2,6-Di(2-hydroxyethoxy)-9-selenabicyclo[3.3.1]nonane (8). A solution of SeBr2 (4.80 g,
20 mmol) in CH3CN (30 mL) was added dropwise to a solution of cis,cis-1,5-cyclooctadiene
(2.16 g, 20 mmol) in a mixture of CH3CN (30 mL) and ethylene glycol (10 mL). The
reaction mixture was stirred for 14 h at room temperature. The solvents were removed
in vacuum, and water (10 mL) was added to the residue. The product was extracted
with CH2Cl2 (4 × 20 mL), the combined organic phase was washed with 1M NaHCO3
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solution (3 × 20 mL), dried with CaCl2, and filtered. The solvent was removed on a rotary
evaporator, and the residue was dried in vacuum. Compound 8 (5.27 g, 85% yield) was
obtained as a colorless oil.

1H NMR (400 MHz, D2O) δ 1.84–1.91 (m, 2H, SeCHCH2), 2.11–2.16 (m, 2H, SeCHCH2),
2.27–2.31 (m, 4H, OCHCH2, OH), 2.63–2.67 (m, 2H, OCHCH2), 3.20–3.22 (m, 2H, SeCH),
3.63–3.68 (m, 2H, CH2OCH), 3.70–3.83 (m, 6H, OCH2CH2O), 4.19–4.22 (m, 2H, OCH). 13C
NMR (100 MHz, D2O) δ 30.28, 30.57, 31.18, 63.45, 71.73, 82.96. Found: C, 46.37; H, 7.03; Se,
25.82. Calc. for C12H22O4Se: C, 46.60; H, 7.17; Se, 25.53. IR: 3392, 2919, 1649, 1432, 1362,
1089, 888, 653 cm−1. MS (EI): m/z (%) = 310.10 (15, M+), 186.00 (13), 167.15 (27), 123.05 (15),
105.10 (53), 101.15 (21), 95.10 (20), 91.15 (23), 80.05(29), 79.10 (89), 73.10 (42), 57.05 (53),
45.10 (100), 41.10 (59), 39.10 (30)

3.7. Plant Material

Studies were carried out on oilseed radish seeds (Raphanus sativus L. var. oleiferus
Metzg.) of lines of Irkutsk State Agricultural Academy with laboratory germinability of
80–98% and weighing 1000 seeds 9.5 g. Seeds were germinated on wet filter paper in Petri
dishes at a constant 23 ◦C temperature in the dark for 4 days after wetting with the test
solutions. The number of seeds in one cup was 30 pcs. The experiment was repeated
3 times.

3.8. Evaluation of Germinability and Mass of Seedlings

Germinability was analyzed according to the All-Union State Standard 10-14-86,
“Oilseed Radish Seeds. Varietal and sowing qualities”. These indicators were determined in
accordance with All-Union State Standard 12038-84, “Seeds of agricultural crops. Methods
for determining germinability” [41]. The mass of shoots and roots was determined using
gravimetric analysis.

3.9. Determination of Protein Content

Protein content was determined by the degree of binding to the Coomassie blue dye
(CBB G250 “Sigma”) according to the Bradford method [42].

3.10. Determination of Glutathion Reductase Activity

Glutathione reductase activity (EC 1.6.4.2) was measured according to the method
described by Nigmatullina et al. [43]. The activity of glutathione reductase was determined
by the change in absorption at 340 nm caused by the oxidation of NADPH in 3.5 min
with an interval of 1 s on the spectrophotometer. The enzyme activity was calculated
using the extinction coefficient for NADP+ at a wavelength of 340 nm, which is equal to
6.22 mmol−1cm−1.

3.11. Evaluation of Diene Conjugates

Analysis of the content of the primary products of lipid peroxidation—diene con-
jugates (DC)—was carried out according to the method [44] in our modification. The
measurement was performed on a spectrophotometer at a wavelength of 203 nm. The
obtained optical density (D) was used to calculate the concentration of diene conjugates (re-
calculated per 1 g wet mass) using an extinction coefficient equal to 2.2 × 105 mol−1cm−1.
Salinization was chosen as a stress, which was created with NaCl, a concentration of
200 mmol was taken from literature data [40]. This concentration causes stress since it
significantly increases the level of lipid peroxidation by almost two times compared with
the control.

3.12. Statistics

The results obtained are given as relative values in comparison with the control (taken
as 100%). Electronic supplementary information contains the data, which are presented
as arithmetic mean values and their standard deviations, which were obtained in three
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independent experiments and calculated using Microsoft Excel. The statistical significance
of the differences between the compared mean values was assessed using the Mann–
Whitney U-test.

3.13. X-ray Analysis

Data were collected on a BRUKER D8 VENTURE PHOTON 100 CMOS diffractometer
with MoKα radiation (α = 0.71073 Å) using the ϕ and ω scans technique. Using Olex2 [45],
the structure was solved with the ShelXS [46] structure solution program using Direct
Methods and refined with the XL refinement package using Least Squares minimization.
Data were corrected for absorption effects using the multi-scan method (SADABS). All
non-hydrogen atoms were refined anisotropically using SHELX [46]. The coordinates of
the hydrogen atoms were calculated from geometrical positions.

Crystallographic data for compound 5 and experimental details are given in Tables 1ESM
and S1ESM (Electronic Supplementary Information). These data can be obtained free of charge
from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk.

4. Conclusions

A number of functional selenium-containing compounds were synthesized and iso-
lated. The fundamental possibility of the synthesis of selenium-containing heterocycles via
one-pot selenofunctionalization of dienes by selenium dihalides in the presence of nucle-
ophiles was shown and realized for the first time. The synthesized compounds showed
promising enzyme-like activity. The effect of 9-selenabicyclo[3.3.1]nonanes on the following
major characteristics of the antioxidant profile was first studied: the level of lipid peroxi-
dation, the activity of glutathione peroxidase, and the activity of glutathione reductase. A
significant effect of the nature of the substituent in the polycyclic selenium-containing core
on the biological activity of the compounds was shown. All studied compounds drastically
reduced the level of lipid peroxidation both under normal conditions and under stress at
concentrations of up to 100 µm. Unexpectedly, pyridinium compound 6 and hydrophobic
derivatives 1, 3, and 5 displayed an inhibitory effect towards glutathione reductase activity
with a decrease in LPO levels, while hydroxy and hydroxyethoxy derivatives showed an
increase in the activity of both glutathione peroxidase and glutathione reductase.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/inorganics11070304/s1, 1H and 13C NMR spectra of the obtained
compounds, X-ray crystallographic data including bond lengths, bond angles and torsion angles for
compound 5 (Tables 1ESM and S1ESM), experimental data of evaluation of diene conjugates, glutathione
reductase and glutathione peroxidase activities.
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