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Abstract: Understanding the local environment of luminescent centers in phosphors serves as a
blueprint for designing the luminescent properties of phosphors. Chemical substitution is a general
strategy for engineering the local structure around luminescent center ions. In this study, we system-
atically investigate the luminescent properties of Ga-substituted Eu-doped CaYAlO4 (CYAGO:Eu)
phosphors and the local structure of the Eu ions. The Ga substitution at the Al sites leads to a
significant enhancement in the electric dipole transition of Eu3+ (5D0→ 7F2). The Judd–Ofelt analysis
reveals that Eu3+ ions are substituted for Ca/Y, and the Ga substitution increases the asymmetricity
of the local structure around the Eu ions because of the different ionic radii and electronegativities of
Al and Ga. In addition, Eu2+ emission is missing regardless of the Ga substitution and post-hydrogen
treatments. The present work provides deeper insight into the role of chemical substitution in
oxide phosphors.
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1. Introduction

Phosphor-converted white-light-emitting diodes (pc-wLEDs), as alternatives to con-
ventional incandescent or fluorescent lamps, have distinct advantages, such as low power
consumption (~80%) and long working lifetime (~25 times) [1–3]. pc-wLEDs have been
leading to changes in the light industry but still require improvements [4,5]. The most
commonly used white LED devices utilize blue LEDs as a first-level light source and yellow
phosphors to achieve white light [6,7]. While this approach is straightforward for obtaining
white light, it has some drawbacks, such as a low color rendering index (CRI < 80) and
high correlated color temperature (CCT > 7000 K) owing to the absence of red color compo-
nents [8–10]. To address these limitations, integrating red, green, and blue phosphors has
been employed to create white-light LEDs. However, this approach also has some issues,
as it requires further consideration of balancing different phosphors, taking different aging
and temperature responses of the phosphors into account. Therefore, single-component
white phosphors have been studied intensively [11–13].

CaYAlO4 (CYAO) has a tetragonal structure (space group: I4/mmm) and is a promis-
ing candidate for luminescent host materials because of its inexpensive raw materials,
good chemical and thermal stability, and low environmental toxicity [14,15]. CYAO is a
typical ABCO4-structured compound, where A is an alkaline-earth cation, B is a trivalent
rare-earth element including yttrium and scandium, and C is a transition metal element,
aluminum, or gallium. These crystals share a structure similar to that of K2NiF4-type
perovskite oxides with layered structures. In the CYAO unit cell, Al3+ ions occupy the
site of octahedral symmetry, whereas Ca2+ and Y3+ ions are randomly distributed in the
sites of C4v symmetry [16,17]. Because CYAO has both 2+ and 3+ cations, it has been
regarded as a possible material for hosting multivalent rare-earth activators with different
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emission wavelengths for single-component white phosphors. Eu doping to the CYAO host
has thus been expected to be a straightforward way to achieve single-component white
phosphors since Eu has 2+ and 3+ oxidation states, which exhibit different emission bands;
the Eu3+ ion is a representative red-emitting activator, whereas the Eu2+ ion has different
emission wavelengths depending on host materials but shorter emission wavelengths than
the Eu3+ ion in general [18,19]. However, obtaining the Eu2+ state in CYAO is difficult,
and it has been suggested to be due to its larger ion radius than Ca2+ and Y3+, which are
compactly surrounded by AlO6 octahedrons. To resolve this, substituting Si4+ for Al3+ has
been suggested to provide a larger space at the Ca/Y sites to accommodate Eu2+ ions [20].
It has also been reported that changing the ratio of Y3+ to Al3+ leads to the activation of
Eu2+ emission [21], whose idea is based on the Eu2+ emission hosted by CaAl2O4 [22,23].
Such composition engineering, including chemical substitution, is a basic approach to
designing the luminescence properties of phosphors via adjusting the local environment
around luminescent centers; thus, it has been studied in a myriad of phosphors [24–28].
However, systematic studies on the local environment changes or luminescence properties
due to chemical substitution in the CYAO host are still lacking; in particular, the effect of
Ga substitution has not been investigated yet. Considering the ionic radius of Al, possible
substitutional elements to manipulate the electrochemical environment around the Eu ions
in the CYAO host are Si or Ga, both of which are the nearest neighbor elements in the
periodic table. Ga substitution is expected to be the counterpart to Si substitution, based
on their ionic radii (Si4+: 0.4 Å and Ga3+: 0.62 Å) and bonding strength (i.e., dissociation
energy; Si–O: ~799 kJ/mol and Ga–O: ~353 kJ/mol). We can thus expect that the study on
the effect of Ga substitution provides an opportunity to re-examine the previous studies on
the effect of Si substitution. As it is representative of the oxides containing multiple cations
with different oxidation states, a better understanding of this material can provide more
insight into designing the luminescence properties of oxide phosphors.

In this study, we systematically investigate the local structure and photoluminescence
properties of Ga-substituted Eu-doped CYAO (CYAGO:Eu) phosphors and compare them
with those of pure CYAO:Eu. Specific X-ray diffraction (XRD) peaks corresponding to the
CYAO phase in the CYAGO:Eu samples shift to a lower angle via Ga substitution due
to its larger ion radius than Al3+ (Ga3+: 0.62 Å and Al3+: 0.535 Å), indicating that Ga is
substituted for Al successfully. Both the intense electric dipole transition of Eu3+ and its
decay time constant follow a single-exponential model, indicating that Eu3+ ions occupy
the Ca/Y sites. The Judd–Ofelt analysis reveals that the asymmetricity of Eu–O bonds
increases with the Ga substitution. The absence of Eu2+ emission in the CYAO cannot be
overcome by the Ga substitution and post-hydrogen treatment. We suggest that the overall
bond dissociation energy correlates with the activation of Eu2+ emission via hydrogen
incorporation in the CYAO host.

2. Results and Discussion

Figure 1 shows the X-ray diffraction (XRD) patterns of the CYAGO:Eu phosphors
synthesized at different temperatures. The XRD patterns of the samples synthesized at 630
and 730 ◦C exhibit mainly the Y2O3 and Ga2O3 crystalline phases, indicating that the CYAO
phase is not formed. A change in the XRD patterns is observed in the sample sintered at
860 ◦C. A new diffraction peak, which is not seen at the lower synthesis temperatures, is
observed near 33.3◦ and corresponds to the (103) peak of the CYAO phase. The CYAO phase
becomes dominant in the samples synthesized at≥950 ◦C. As observed elsewhere, the Y2O3
phase remains as a minor secondary phase. Some of the peaks (marked by the asterisks)
could not be definitively identified—among the possible combinations of the elements
(i.e., Ca, Y, Al, Ga, Eu, and O), we have speculated that the peaks correspond to Ca3Al2O6
and/or monoclinic Y2O3 phases (see Figure S2 in the Supplementary Information for
details). It is notable that some XRD peaks gradually shift to a lower angle with increasing
the synthesis temperature, and the full width at half maximum (FWHM) of the XRD peaks
becomes narrower. Figure 1b shows the enlarged XRD patterns of the CYAGO:Eu samples
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with the CYAO phase. The four peaks located at approximately 33.3◦, 34.7◦, 46.5◦, and
49.9◦ correspond to the (103), (110), (114), and (200) peaks of the CYAO phase, respectively.
The peak positions of the (110) and (200) peaks change remarkably with respect to the
synthesis temperatures, while those of the (103) and (114) peaks do not, which indeed
implies a change in lattice parameters. We calculated the lattice constants of CYAGO:Eu as
shown in Table 1, including the lattice parameters of Eu-doped pure CaYAlO4 (CYAO:Eu)
prepared at a synthesis temperature of 1190 ◦C for comparison. The lattice parameters
of CYAO:Eu are calculated to be a = b = 3.640(2) Å and c = 11.87(9) Å. However, the Ga
substitution leads to an increase in both a and c lattice parameters manifestly. The increase
is attributed to the difference in ionic radius between Ga and Al ions; the ionic radius of
the Ga3+ ion (r = 0.62 Å for 6-coordination) is larger than that of the Al3+ ion (r = 0.54 Å
for 6-coordination) [29]. With increasing the synthesis temperatures, the lattice parameters
gradually increase and become saturated, which indicates that the Ga substitution is
fully completed at the synthesis temperature of >1080 ◦C, but the crystallinity continues
to improve.

To investigate the luminescence properties of the CYAGO:Eu samples correlated
with the structural change, we measured the PL excitation and emission spectra of the
samples synthesized at different temperatures. Figure 2a shows the excitation spectra
of the CYAGO:Eu samples. The excitation spectra were recorded at 622 nm (5D0 → 7F2
transition of Eu3+). The broad excitation band in the range of 225–350 nm is attributed to
the overlapped charge-transfer (CT) states from the 2p orbital of O2− and the 4f orbital of
Eu3+ [20,30,31]. The four excitation bands observed in the range of 350–425 nm correspond
to the 4f -4f transitions of Eu3+ ion: 363 nm (7F0 → 5D4), 381 nm (7F0 → 5G2), 396 nm
(7F0 → 5L6), and 415 nm (7F0 → 5D3) [20,30,31].
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Figure 1. Changes in the crystalline phase of Ga-substituted Eu-doped CaYAlO4 (CYAGO:Eu) sam-
ples prepared at different synthesis temperatures: (a) X-ray diffraction (XRD) patterns for CYAGO:Eu
samples synthesized at different temperatures (from 630 to 1190 ◦C). The bars indicate the expected
XRD peak positions of CaYAlO4, Y2O3, and Ga2O3 (JCPDS No. 81-0742, 41-1105, and 06-0503, re-
spectively). The peaks marked by asterisks could not be definitively identified but are speculated
to correspond to Ca3Al2O6 and/or monoclinic Y2O3 phases. (b) The magnified XRD patterns for
selected diffraction peaks of the CaYAlO4 phase. The dashed lines indicate the diffraction peak
position corresponding to the (103), (110), (114), and (200) planes of the CaYAlO4 phase. The inset
shows the full width at half maximum (FWHM) values for main peaks at 33.3◦ (i.e., (103) peak).
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Table 1. Lattice constants, unit cell volumes, and grain size of Ga-substituted Eu-doped CaYAlO4

(CYAGO:Eu) samples prepared at different synthesis temperatures. The lattice constants of Eu-doped
CaYAlO4 (CYAO:Eu) are included for comparison. The grain sizes were calculated from the full
width at half maximum (FWHM) values of the (103) peaks using Scherrer equation.

Samples Syn. Temp.
(◦C)

a = b
(Å)

c
(Å)

Volume
(Å3)

Grain Size
(nm)

CYAO:Eu 1190 3.640(2) 11.87(9) 157.4(1) 53.86

CYAGO:Eu

950 3.648(2) 11.92(1) 158.6(6) 39.49
1020 3.651(6) 11.90(3) 158.7(1) 44.82
1080 3.654(0) 11.89(8) 158.8(5) 51.82
1160 3.654(8) 11.89(2) 158.8(5) 53.84
1190 3.654(6) 11.89(1) 158.8(1) 56.79
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Figure 2. Photoluminescence (PL) properties of Ga-substituted Eu-doped CaYAlO4 (CYAGO:Eu)
samples synthesized at different temperatures: (a) Photoluminescence excitation (PLE) spectra
monitored at 622 nm. (b) PL emission spectra under 279 nm excitation. The inset is a 2D contour plot
of the emission spectra.

Figure 2b shows the emission spectra of the CYAGO:Eu samples, measured at an
excitation wavelength of 279 nm. For the CYAGO:Eu samples synthesized above 950 ◦C,
seven emission bands are observed at 581 nm, 591 nm, 599 nm, 622 nm, 657 nm, 693 nm, and
702 nm. These emission bands are associated with the transitions of 5D0 → 7F0 (581 nm),
5D0→ 7F1 (591 and 599 nm), 5D0→ 7F2 (622 nm), 5D0→ 7F3 (657 nm), and 5D0→ 7F4 (693
and 703 nm), respectively [20,30,31]. The PL intensities gradually increase with increasing
the synthesis temperature, which is attributed to the improvement in crystallinity and/or
the change in the local environment around Eu ions following Ga substitution. According
to Judd–Ofelt theory [32–34], the 5D0 → 7F1 transition of the Eu3+ ion is a magnetic dipole
transition, which is permitted by the selection rule. Conversely, the 5D0 → 7F2 transition, a
forced electric dipole transition, is only allowed for Eu ions at a lattice site without inversion
symmetry. The emission spectra of the CYAGO:Eu demonstrate that the emission due to
5D0 → 7F2 is more prominent than that from 5D0 → 7F1. Such a dominant electric dipole
transition indicates that the Eu3+ ions occupy the Ca/Y sites rather than the Al sites because
the Al site has an AlO6 octahedral structure with an inversion center [35]. For the samples
synthesized at temperatures below 860 ◦C, the main emission band is observed at 612 nm.
Before the formation of the CaYAlO4 phase, the Eu3+ ions appear to be dominantly hosted
by the Y2O3 phase or Eu2O3 itself under the detection limit of XRD—the Eu3+ 5D0 → 7F2
transition in Y2O3 and Eu2O3 has been observed near 610 nm [36–39].
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Measuring luminescence lifetime provides an insight into the local environment
of a luminescence activator. Figure 3 shows the decay curves of the Eu3+ 5D0 → 7F2
transition (622 nm) of the CYAGO:Eu samples upon the excitation at 279 nm. The decay
curve of the samples synthesized at 950 ◦C is described by a double-exponential decay
model: I(t) = I1exp(−t/τ1) + I2exp(−t/τ2), where I(t) is the emission intensity at time
t; I1 and I2 are two constants; and τ1 and τ2 are decay time constants, respectively (see
Figure S4 in the Supplementary Information for detail). In contrast, the decay behaviors
of the samples synthesized at 1080 and 1190 ◦C follow a single-exponential decay model:
I(t) = I0exp(−t/τ). The result is consistent with the consequence of the lattice parameter
change. The double-exponential luminescence decay suggests the possible presence of
two different luminescent centers of Eu3+ [40,41]. We attribute the double-exponential
decay to an incomplete solid-state reaction; another Eu3+ emission is likely to be hosted by
Y2O3:Eu3+ or Eu2O3. Although the samples synthesized at >950 ◦C contain the Y2O3 phase,
the strong Eu3+ emission is speculated to be mainly governed by the CYAGO:Eu phase.
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Figure 3. Decay curves of Eu3+ 5D0 → 7F2 transition (622 nm) for Ga-substituted Eu-doped CaYAlO4

(CYAGO:Eu) samples synthesized at different temperatures. The decay curves were measured under
the excitation of 279 nm. The red lines are the best fits to each decay curve using a single- (with a
time constant, τ) or double- (with two time constants: τ1 and τ2) exponential decay model. For the
double-exponential decay model, the averaged decay time constants (τavg) were obtained from the
equation, τavg = (I1τ1

2 + I2τ2
2)/(I1τ1 + I2τ2) (see the main text for details).

When Eu3+ ions are embedded in a host matrix with an inversion symmetry, an
electric dipole transition is strictly forbidden by the parity-selection rule. In other words,
the emission from the electric dipole transition (i.e., 5D0 → 7F2) is allowed for Eu3+ ions
with no inversion symmetry. However, the magnetic dipole transition obeys the selection
rule and is thus independent of local symmetry. An asymmetric ratio (R) factor is described
by R = IED/IMD, where IED and IMD are the PL intensity of 5D0 → 7F2 and 5D0 → 7F1
transitions, respectively, thus providing an understanding of the site symmetry of the
crystal field surrounding the Eu3+ ion [42,43]. To investigate the luminescence properties of
the CYAGO:Eu samples, possibly correlated with their local structures, we calculated the R
factors of the CYAGO:Eu samples (Figure 4). The R-factor of the CYAO:Eu sample is also
included for comparison (see Figure S5 in the Supplementary Information for detail). Except
for the sample synthesized at 950 ◦C, the R factors of the CYAGO:Eu samples are found to
be ≈ 2.6, which is higher than that of CYAO:Eu (≈2.4). Several reports have suggested that
particle size and/or morphology affect the luminescent properties of phosphors [44,45], but
we were not able to find a significant difference in both the particle size and morphology of
CYAO:Eu and CYAGO:Eu samples (see Figure S6 in Supplementary Information for the
SEM images). The R factors of CYAGO:Eu and CYAO:Eu indicate that Eu3+ sites become
more asymmetric as a result of Ga substitution. The higher R factor of the CYAGO:Eu
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sample synthesized at 950 ◦C is speculated to be due to the incomplete solid-state reaction
as discussed above.
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To gain further insight into the local environment of Eu3+ ions, we performed theoreti-
cal calculations of optical transition strength parameters Ωλ (λ = 2 and 4) from the emission
spectra. According to Judd–Ofelt theory, [32,34] the 5D0 → 7F1 transition (magnetic dipole)
is independent of the crystal environment. In contrast, the 5D0 → 7FJ (J = 2, 4, and 6)
transition (electric dipole) depends on the Ωλ (λ = 2, 4, and 6) parameter. The Ω2 parameter
depends on the local crystal environment of rare-earth ion sites. The Ω4 and Ω6 are related
to the viscosity and rigidity of a host matrix [46]. The optical transition strength parameters
(Ωλ) can be obtained from the integrated intensity ratio of an electric dipole transition to a
magnetic dipole transition as follows [47,48]:
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where e is the electronic charge (4.803 × 10−10 esu); SMD is the intensity of the 5D0 → 7F1
transition (magnetic dipole); vMD and vJ are the center wavenumbers for the magnetic
dipole transition and the electric dipole transitions (5D0→ 7FJ (J = 2, 4, and 6)), respectively;
n is the index of refraction of the host (here, n = 1.9 [49–51]); and (ΨJ‖UJ‖Ψ′J′)2 is the square
reduction matrix factor for the electric dipole transitions—0.0032 for 5D0 → 7F2, 0.0023 for
5D0 → 7F4, and 0.0002 for 5D0 → 7F6 [52]. The calculated values of Ω2 and Ω4 for different
synthesis temperatures are listed in Table 2. Note that the Ω6 parameter was not considered
here because the 5D0 → 7F6 transition was out of the measured range.

Table 2. Optical transition strength parameters of CYAGO:Eu samples synthesized at different
temperatures. The parameters of CYAO:Eu are included for comparison.

Samples Syn. Temp.
(°C)

Ω2
(10−20 cm2)

Ω4
(10−20 cm2)

CYAO:Eu 1190 3.630 2.512

CYAGO:Eu

950 4.258 2.780
1020 3.847 2.536
1080 3.824 2.580
1160 3.798 2.604
1190 3.806 2.619
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According to Kumar et al., the comparison of Ω2 and Ω4 can be used to estimate the
covalence of the bonds between a Eu3+ ion and a ligand anion, and the symmetry around
Eu3+ ions [53]. For all CYAGO:Eu in this study (Table 2), Ω2 is higher than Ω4 (i.e., Ω2 > Ω4),
which dictates (1) the asymmetricity of the Eu3+ sites and/or (2) the covalency of the Eu–O
bonds [53,54]. From the difference between the parameters (Ω2) of the CYAGO:Eu and
CYAO:Eu samples, we can further discuss the effect of Ga substitution on the local structure
of the Eu ions. The value of Ω2 for the Ga-substituted CYAO:Eu (3.806) is larger than that
for pure CYAO (3.630), and the larger value implies a higher covalency of Eu–O bonds
and/or more distorted Eu3+ sites due to Ga substitution [55,56]. However, Ga substitution
is expected to make Eu–O bonds more ionic. The bonding character of Eu–O would be
modified by the next-neighboring ion being substituted [57], and in the bond structure of
Eu–O–X (X = Al or Ga), the covalency of O–Ga is stronger than O–Al since Ga3+ (1.81) has
a larger electronegativity than Al3+ (1.61) [58]. Hence, fewer electrons are shared in the
Eu–O bond, which leads to a less-covalent Eu–O bond [57,59,60]. We thus conclude that
the increased asymmetricity of the Eu–O bond is responsible for the higher value of Ω2
due to Ga substitution. In other words, substituting Ga3+ for Al3+ further enhances the
asymmetricity around the Eu ions and reduces their covalent nature. Ω4 is not directly
related to the local structure of rare-earth ions and indicates the bulk properties such as
rigidity and viscosity [46,61]. Ga substitution increases the rigidity (or viscosity) of the
CYAO host matrix. Note that the values of Ω2 and Ω4 for the samples synthesized at
950 and 1020 ◦C appear much larger than those of the others—it is due to the incomplete
solid-state reaction and is consistent with the results above.

As aforementioned, CYAO is a possible host material to accommodate multivalent
Eu ions, but we were unable to observe any emission of Eu2+ ions for CYAGO:Eu. It has
been reported that the Eu2+ emission is activated by hydrogen mediation, in which defect
passivation by Si substitution is necessary [31]. Hydrogen can passivate surface dangling
bonds and vacancy defects in oxides, thus stabilizing the CYAO host and activating Eu2+

emission [31]. Interstitial hydrogen can also provide a donor in oxides, which may lead
to the partial conversion of Eu3+ to Eu2+ in the CYAO host. For such hydrogen incorpora-
tion into CYAO, the formation of oxygen vacancies (H2(gas) + O2−

lattice → H2O(gas) +
..
Vo )

needs to be suppressed during the post-hydrogen treatment. Si substitution increases
the overall bonding strength, thus suppressing the formation of oxygen vacancy against
the post-hydrogen treatment, which enables hydrogen incorporation in the CYAO host.
Figure 5 shows the PLE and PL spectra of the CYAGO:Eu sample after the post-hydrogen
treatment. No significant change is seen in either spectra tracking Eu2+ (top) and Eu3+

(bottom) emissions. Owing to the lower bonding dissociation energy of a Ga–O bond
(~353 kJ/mol) than that of an Al–O bond (~511 kJ/mol), the overall bonding strength
thus becomes weaker throughe Ga substitution, which in turn likely hinders the hydrogen
incorporation into the CYAO host in contrast to the Si substitution (see Figure S7 in the
Supplementary Information for details) [31]. The Ga substitution in the CaYAlO4 host
seems less effective in manipulating the luminescence properties of the Eu-doped CaYAlO4,
but the absence of Eu2+ emission after the post-hydrogen treatment demonstrated in this
work further supports the hydrogen-mediated activation of Eu2+ emission via defect passi-
vation. Our experimental approach and analysis presented here can serve as a guide for
compositional variation in phosphors.
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Figure 5. Photoluminescence (PL) and PL excitation (PLE) spectra of a Ga-substituted Eu-doped
CaYAlO4 (CYAGO:Eu) sample after post-hydrogen treatment. (Top) PLE (blue dashed line,
λem = 503 nm) and PL (blue solid line, λexc = 340 nm) spectra. (Bottom) PLE (pink dashed line,
λem = 622 nm) and PL (pink solid line, λexc = 279 nm) spectra. The emission and excitation wave-
lengths for tracking Eu2+ emission (top) were chosen based on the previous reports in which Eu2+

emission has been observed [31]. The post-hydrogen treatment was performed for the CYAGO:Eu
sample synthesized at 1190 ◦C under H2/Ar (2:8) (flow rate: 0.15 L/min) for 3 h at 800 ◦C.

3. Materials and Methods

Sample preparation: Samples with a composition of Ca0.95YAl0.8Ga0.2O4:Eu0.05 (CYAGO:Eu)
were prepared through a conventional solid-state method with stoichiometric amounts of
Al2O3 (extra pure, Hayashi Pure Chemical Ltd., Japan), CaCO3 (99.5%, Junsei Chemical
Co., Ltd., Japan), Y2O3 (99.99%, Sigma Aldrich, USA), Ga2O3 (99.99%, Alfa Aesar, USA),
and Eu2O3 (99.99%, Alfa Aesar, USA). The mixture of the starting materials was subjected
to a planetary ball milling process using zirconium oxide balls. In thermogravimetry and
differential scanning calorimetry (TG/DSC) measurements for a temperature range of
25–1200 ◦C, we were able to observe only a significant weight loss and an endothermic
peak corresponding to the decomposition of CaCO3 at around 740 ◦C (see Figure S1 in the
Supplementary Information for details). Because the synthesis temperature could not be
optimized and specified easily from the TG/DSC curve, the systematic sample preparation
in this study was indeed necessary to confirm that the Ga substitution was achieved
successfully, thereby tracing the local structural change as a result of Ga substitution. In
the synthesis processes, a natural thermal gradient in a tube furnace was employed to
apply different temperatures to each sample in dehydrated air (flow rate: 0.15 L/min).
Such a combinatorial approach excludes unintentional parameter variations, except for the
temperature. Each sample was synthesized at 630 to 1190 ◦C. After the synthesis process,
the obtained powders were ground in an agate mortar with a pestle for 10 min to remove
lumps and ensure homogeneity. In energy-dispersive spectroscopy (EDS) measurements,
any impurity elements were not detected within the resolution limit of the equipment
(Oxford INCA system equipped in JEOL JSM-6700).

Characterizations: X-ray diffraction (XRD) measurements were carried out using an
X’pert-MPD system (Panalytical, Netherlands) with CuKα1 = 1.5406 Å. The diffraction pat-
terns were collected in the 2θ range of 10–90◦ with a step size of 0.013◦. Photoluminescence
(PL) and PL excitation (PLE) measurements were performed using a Photon Technology
International (PTI) spectrophotometer equipped with a 60 W Xe-arc lamp. Luminescence
decay time curves were collected using a Fluorolog-QM (Horiba, Japan) spectrometer with
a 450 W arc xenon lamp.
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4. Conclusions

CaYAlO4 is ostensibly capable of hosting the multivalent state of Eu ions but merely
allows emission attributed to the Eu3+ state. Ga substitution for the Al sites in Eu-doped
CaYAlO4 leads to a local structural change around the Eu ions owing to the larger ionic
radius of Ga3+ compared to Al3+, which is evinced by the Judd–Ofelt analysis of the pho-
toluminescence spectra of Ga-substituted Eu-doped CaYAlO4. Eu2+ emission is absent
in Ga-substituted Eu-doped CaYAlO4 even after post-hydrogen treatment, which indi-
cates that Ga substitution does not facilitate hydrogen incorporation in the CaYAlO4 host.
These results provide a better understanding of the luminescence properties of Eu-doped
CaYAlO4 hosts.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/inorganics11080329/s1, Figure S1: Thermogravimetric
analysis (TGA) and differential scanning calorimetry (DSC) curves of Ga-Substituted Eu-doped
CaYAlO4 (CYAGO:Eu) sample; Figure S2: X-ray diffraction (XRD) patterns of Eu-doped CaYAlO4
(CYAO:Eu) and Ga-substituted Eu-doped CaYAlO4 (CYAGO:Eu) samples synthesized at 1190
◦C; Figure S3: International Commission on Illumination (CIE) chromaticity diagram of the Ga-
substituted Eu-doped CaYAlO4 (CYAGO:Eu) samples synthesized at different temperatures under
277 nm excitation; Table S1: International Commission on Illumination (CIE) chromaticity coordinates
(x, y) of the Ga-substituted Eu-doped CaYAlO4 (CYAGO:Eu) samples synthesized at different tem-
peratures under 277 nm excitation; Figure S4: Decay curve of a Ga-substituted Eu-doped CaYAlO4
(CYAGO:Eu) sample synthesized at 950 ◦C; Figure S5: Photoluminescence (PL) and PL excitation
(PLE) spectra of an Eu-doped CaYAlO4 (CYAO:Eu) sample synthesized at 1190 ◦C; Figure S6: Field
emission scanning electron microscopy (FE-SEM) images of Ga-substituted CaYAlO4:Eu samples;
Figure S7: Photoluminescence (PL) spectra under 365 nm excitation of a Ga-substituted Eu-doped
CaYAlO4 (CYAGO:Eu), pure Eu-doped CaYAlO4 (CYAO:Eu), and Si-substituted Eu-doped CaYAlO4
(CYASO:Eu) samples after post-hydrogen treatment at 800 ◦C. Additional information on the sample
preparation of Si-substituted CaYAlO4:Eu (CYASO:Eu) is included, and References [20,31,62–65] are
cited in the Supplementary Materials.
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