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Abstract: It is essential to remove rhodamine 6G and acid orange 10 dyes from contaminated water be-
cause they can induce cancer and irritate the lungs, skin, mucous, membranes, and eyes. Hence, in the
current work, the Pechini sol–gel method was used for the facile synthesis of ZrO2/CdMn2O4/CdO
as novel nanocomposites at 600 and 800 ◦C. The synthesized nanocomposites were used as novel
adsorbents for the efficient removal of rhodamine 6G and acid orange 10 dyes from aqueous media.
The nanocomposites, which were synthesized at 600 and 800 ◦C, were abbreviated as EK600 and
EK800, respectively. The synthesized nanocomposites were characterized by EDS, XRD, N2 adsorp-
tion/desorption analyzer, and FE-SEM. The patterns of XRD showed that the average crystal size of
the EK600 and EK800 nanocomposites is 68.25 and 85.32 nm, respectively. Additionally, the images
of FE-SEM showed that the surface of the EK600 nanocomposite consists of spherical, polyhedral,
and rod shapes with an average grain size of 99.36 nm. Additionally, the surface of the EK800
nanocomposite consists of polyhedral and spherical shapes with an average grain size of 143.23 nm.
In addition, the BET surface area of the EK600 and EK800 nanocomposites is 46.33 and 38.49 m2/g,
respectively. The optimal conditions to achieve the highest removal of rhodamine 6G and acid orange
10 dyes are pH = 8, contact time = 24 min, and temperature = 298 kelvin. The greatest removal
capacity of the EK600 and EK800 adsorbents towards rhodamine 6G dye is 311.53 and 250.63 mg/g,
respectively. Additionally, the greatest removal capacity of the EK600 and EK800 adsorbents towards
acid orange 10 dye is 335.57 and 270.27 mg/g, respectively. The removal of rhodamine 6G and
acid orange 10 dyes using the EK600 and EK800 adsorbents is spontaneous, exothermic, follows the
Langmuir adsorption isotherm, and fits well with the pseudo-first-order kinetic model.

Keywords: nanostructures; adsorption; rhodamine 6G dye; acid orange 10 dye

1. Introduction

The pollution of the aquatic environment is currently one of the most significant and
critical issues around the globe [1–5]. The discharge of hazardous compounds, such as
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synthetic dyes and heavy metal ions, from industrial effluents is the primary cause of water
contamination [6–9]. Dyes are complex organic substances that were once manufactured
from coal ash but are now manufactured from petroleum. What distinguishes a dye from a
pigment is that pigments are typically insoluble. Today, diverse synthetic dyes are manufac-
tured to satisfy the needs of various industries, such as adhesives, paper and pulp, plastics,
construction glass, ceramics, wax biomedicine, paints, beverages, art supplies, cosmetics,
pharmaceuticals, leather, soap, polymers, and food [10–12]. Despite the availability of
natural colorants, many manufacturers opt for synthetic dyes that pose harmful health
risks. One of the issues with the majority of natural dyes is the need for mordant. Natural
dyes are more expensive and scarce, and their production is more time-consuming and
complicated. With natural dyes, the color palette is more restricted. According to scientists,
organic dyes are carcinogenic and toxic and contribute to anxiety migraines, hyperactivity,
and behavioral disorders [13–15]. It is undesirable to discharge synthetic dyes into aquatic
environments due to the adverse effects they may have on aquatic organisms [16–20]. The
acid orange 10 dye (orange G dye) is one of the most widely used anionic dyes in the
printing and textile industries. It can induce cancer and irritate the lungs, skin, mucous,
membranes, and eyes [21]. The rhodamine 6G dye is one of the most widely used cationic
dyes in the food and textile industries. In addition, consuming water contaminated with
rhodamine has been shown to cause subcutaneous sarcoma, which is highly neurotoxic
and carcinogenic [22]. There have been several studies on dye removal techniques, such as
chemical coagulation, reverse osmosis, nanofiltration, electrochemical treatment, catalysis,
and adsorption [23–34]. However, adsorption is one of the most frequently used methods.
Adsorption is a technique for collecting soluble components of an aqueous solution on
a suitable surface without producing deleterious byproducts [35–37]. Adsorption can be
employed for a wide range of substances, including liquids, gases, and dissolved ions. This
versatility makes it applicable in various fields, such as environmental remediation, gas
separation, water purification, and chemical processing. Many adsorbents, such as zeolites
and activated carbon, have high surface areas with numerous pores and active sites [38–42].
This provides a large contact area for adsorbate molecules, allowing for efficient adsorption.
The materials used as adsorbents are often inexpensive and readily available, making
adsorption a cost-effective method for purification and separation processes. In many cases,
adsorbents can be regenerated and reused multiple times, which can lead to cost savings
and reduced waste generation compared to other separation methods. Compared to some
other separation methods like distillation, adsorption processes can be energy-efficient,
especially at lower temperatures and pressures. There are many adsorbents that have
been used to remove dyes, such as zinc ferrite, chitosan/pyrazole/zinc oxide, cobalt oxide,
carboxymethylcellulose magnetic, zeolites, and benzenesulfonyl hydrazone modified guar
gum [43–48]. Gollakota et al. synthesized aluminophosphate for the removal of rhodamine
6G dye, and its maximum adsorption capacity equaled 208.11 mg/g [49]. Vanamudan et al.
synthesized chitosan-g-(N-vinylpyrrolidone)/montmorillonite composite for the removal
of rhodamine 6G dye, and its maximum adsorption capacity equaled 36.60 mg/g [50].
Annadurai et al. synthesized activated carbon for the removal of rhodamine 6G dye, and
its maximum adsorption capacity equaled 44.70 mg/g [51]. Gollakota et al. synthesized
ZSM-22 zeolite from Taiwanese coal fly ash for the removal of rhodamine 6G dye, and
its maximum adsorption capacity equaled 195.30 mg/g [52]. Zheng et al. synthesized
quaternary ammonium group-rich magnetic nanoparticles for the removal of acid orange
10 dye, and their maximum adsorption capacity equaled 98.70 mg/g [53]. Arulkumar et al.
synthesized activated carbon for the removal of acid orange 10 dye, and its maximum
adsorption capacity equaled 17.60 mg/g [54]. Banerjee et al. synthesized alumina nanopar-
ticles for the removal of acid orange 10 dye, and their maximum adsorption capacity
equaled 93.30 mg/g [55]. Imgharn et al. synthesized polyaniline/Fe-ZSM-5 composite
for the removal of acid orange 10 dye, and its maximum adsorption capacity equaled
217 mg/g [56]. Due to the small crystalline size of nanomaterials and their high surface
area, they are widely used in the removal of several dyes. The pechini sol gel method was
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widely used to synthesize a lot of nanostructures such as Al2O3, PbCrO4, Y2O3/MgO, and
Bi2Ti2O7 [57–60]. High prices of chemicals can limit the scalability and affordability of
these adsorbents, particularly in developing countries or resource-constrained settings. As
a result, researchers and scientists are actively exploring alternatives and low-cost materials
that can serve as effective adsorbents while reducing overall operational expenses. In the
current paper, ZrO2/CdMn2O4/CdO was facilely synthesized for the first time as a novel
nanocomposite for the efficient removal of rhodamine 6G and acid orange 10 dyes from
aqueous solutions. Three key characteristics of synthesized nanocomposites are stability,
small crystal size, and high surface area, which play significant roles in enhancing their
adsorption capabilities. Also, the preparation of ZrO2/CdMn2O4/CdO nanocomposite
offers several advantages, making it a promising choice for water treatment. The combi-
nation of these three components results in a synergistic effect that enhances the overall
performance of the nanocomposite. The incorporation of ZrO2, CdO, and CdMn2O4 in
the nanocomposite provides a larger number of active adsorption sites. This combination
leads to an increased adsorption capacity, allowing for more efficient removal of rhodamine
6G and acid orange 10 dyes from aqueous media. The synergistic effect between these
components enhances the overall adsorption performance of the nanocomposite. The
synthesized nanocomposite was characterized by EDS, XRD, N2 adsorption/desorption
analyzer, and FE-SEM. The effects of dye solution pH, adsorbent/adsorbate contact time,
temperature, and dye concentration on the removal of rhodamine 6G and acid orange
10 dyes were also studied.

2. Experimental Section
2.1. Chemicals

The utilized chemicals were cadmium(II) nitrate tetrahydrate (Cd(NO3)2·4H2O), man-
ganese(II) acetate tetrahydrate (Mn(CH3COO)2·4H2O), sodium hydroxide (NaOH), zir-
conyl chloride octahydrate (ZrOCl2·8H2O), citric acid (C6H8O7), ethylene glycol (C2H6O2),
hydrochloric acid (HCl), rhodamine 6G dye (C28H31N2O3Cl), and acid orange 10 dye
(C16H10N2Na2O7S2). All the aforementioned chemicals were of high purity, purchased
from the Sigma-Aldrich company, and used without any purification.

2.2. Synthesis of Adsorbents

Three solutions of zirconium, cadmium, and manganese ions were freshly prepared
with a molar ratio of Zr/Cd/Mn equal to 1:1:1. The solution of zirconium ions was prepared
via dissolving 12 g of ZrOCl2·8H2O in 80 mL of deionized water. In addition, the solution of
cadmium ions was prepared by dissolving 11.49 g of Cd(NO3)2·4H2O in 80 mL of deionized
water. In addition, the solution of manganese ions was prepared by dissolving 9.13 g of
Mn(CH3COO)2·4H2O in 80 mL of deionized water. Moreover, a solution of citric acid
was prepared by dissolving 21.46 g of citric acid in 100 mL of deionized water. After that,
solutions of zirconium, cadmium, and manganese metal ions were mixed with each other
and stirred at 560 rpm for 10 min. The citric acid solution is then added to the mixed metal
ion solution with continuous stirring at 560 rpm for 10 min. In addition, 12 mL of ethylene
glycol was added with continuous stirring at 560 rpm at 140 ◦C until all the solvent was
evaporated. Finally, the resulting powder is collected, ground, and then calcinated at 600
and 800 ◦C to obtain the mixed metal oxide nanostructures. The products, which were
obtained by calcination at 600 and 800 ◦C, were labeled as EK600 and EK800, respectively.
The practical steps for synthesizing the EK600 and EK800 nanocomposites are shown in
Scheme 1.
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Scheme 1. The practical steps for synthesizing the EK600 and EK800 nanocomposites.

2.3. Characterization of Adsorbents

Patterns of X-ray diffraction (XRD) of EK600 and EK800 nanocomposites were obtained
using a Bruker D8 Advance diffractometer with 0.15 nm CuKα radiation. Surface images
and compositions of EK600 and EK800 samples were obtained using the JSM-IT800 Schottky
field emission scanning electron microscope (FE-SEM) coupled with energy dispersive
X-ray spectroscopy (EDS). A Quantachrome N2 adsorption/desorption analyzer was used
to determine the BET surface area in addition to the pore features of the EK600 and
EK800 samples.

2.4. Removal of Rhodamine 6G and Acid Orange 10 Dyes from Aqueous Solutions

A total of 0.05 g of EK600 or EK800 adsorbent was mixed with 150 mL of a 150 mg/L
aqueous solution of rhodamine 6G or acid orange 10 dyes and then stirred at 550 rpm
for 180 min in order to investigate the effect of solution pH ranging from 2.5 to 8.5. The
adsorbent was then removed from the mixture by centrifuging it at 2550 rpm for 4 min.
After centrifugation, the produced filtrate was analyzed with a Shimadzu 1800 UV–Vis
spectrophotometer at 524 and 485 nm to determine the equilibrium concentration of rho-
damine 6G and acid orange 10 dyes, respectively. Furthermore, the effects of time (in the
range of 4–40 min), temperature (in the range of 298–328 kelvin), and concentration (in the
range of 15–250 mg/L) were also studied.

The % removal of rhodamine 6G or acid orange 10 dyes (% U) and the adsorption
capacity of EK600 and EK800 adsorbents (O, mg/g) were determined by Equations (1)
and (2), respectively.

%U =
Zo − Ze

Zo
× 100 (1)

O = (Zo − Ze)×
V
M

(2)
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Zo and Ze are the original and equilibrium concentrations of rhodamine 6G or acid
orange 10 dyes (mg/L), respectively. Moreover, M and V are the amount of adsorbent (g)
and the solution volume of rhodamine 6G or acid orange 10 dyes (L), respectively. The
practical steps for removing the rhodamine 6G and acid orange 10 dyes using the EK600
and EK800 nanocomposites are shown in Scheme 2.
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3. Results and Discussion
3.1. Synthesis and Characterization of the Synthesized Samples

The Pechini sol–gel method was utilized to produce a ZrO2/CdMn2O4/CdO nanocom-
posite. To achieve this, zirconyl citrate, cadmium citrate, and manganese citrate were
derived from citric acid reacting with zirconyl chloride octahydrate, cadmium(II) nitrate
tetrahydrate, and manganese(II) acetate tetrahydrate. In this process, ethylene glycol plays
a crucial role as a control agent for polymerization and contributes to gel formation by
reacting with citric acid. The resultant three-dimensional gel network serves as a template
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for the final nanocomposite, which is obtained through calcination at 600 and 800 ◦C. To
obtain the desired pure ZrO2/CdMn2O4/CdO nanocomposite, it is necessary to fully de-
compose and eliminate the organic constituents. The temperatures selected for this process,
600 ◦C and 800 ◦C, appear to be appropriate based on the thermogravimetric analysis of
the resulting powder prior to calcination (Figure 1).
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Figure 1. The thermogravimetric analysis of the resulting powder before calcination.

3.1.1. XRD

Figure 2A,B illustrate the XRD patterns of the EK600 and KE800 nanocomposites,
respectively. Also, the results showed that the EK600 and EK800 samples consist of zirco-
nium oxide (ZrO2), cadmium manganese oxide (CdMn2O4), and cadmium oxide (CdO)
nanostructures as elucidated from JCPDS Nos. 00-007-0343, 00-023-0826, and 01-075-0592,
respectively. The peaks at 2θ = 17.52◦, 24.09◦, 24.42◦, 34.34◦, 41.02◦, 45.62◦, 49.21◦, 50.36◦,
57.29◦, 57.91◦, 58.66◦, 59.92◦, 62.02◦, 62.96◦, and 64.11◦ are due to the (100), (011), (110),
(002), (−102), (202), (022), (122), (310), (131), (222), (−131), (213), (−311), and (023) miller
indices of ZrO2, respectively. Also, the peaks at 2θ = 28.45◦, 30.33◦, 31.45◦, 35.58◦, 43.96◦,
44.67◦, 47.95◦, 48.57◦, 53.19◦, 54.14◦, 61.27◦, and 68.09◦ are due to the (112), (200), (103),
(211), (220), (213), (301), (204), (312), (303), (116), and (305) miller indices of CdMn2O4,
respectively. In addition, the peaks at 2θ = 33.12◦, 38.50◦, 55.30◦, 65.90◦, and 69.15◦ are
due to the (111), (200), (220), (311), and (222) miller indices of CdO, respectively. Moreover,
the average crystal size of the EK600 and EK800 nanocomposites is 68.25 and 85.32 nm,
respectively. Hence, the compositions of EK600 and EK800 nanocomposites are the same,
but the average crystallite size is different. This can be seen from the difference in intensity
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of the XRD peaks in the two samples, with no difference in their position. In the Pechini
sol–gel method, the size of the resulting particles can increase with increasing calcination
temperatures due to several underlying processes that take place during the calcination
step. The calcination stage is a crucial stage in which the dried gel precursor is heated to
remove the organic components and promote the formation of the desired crystalline phase.
At elevated temperatures, particles start to undergo sintering, which is the process of grain
boundary migration and coalescence of adjacent particles. Sintering causes the particles
to fuse together, resulting in the growth of larger crystallites and an overall increase in
particle size. Also, during calcination, organic solvents and other volatiles are driven off
as gases from the gel. As these volatiles escape, voids or pores may be formed within the
structure, leading to an increase in particle size. In addition, during calcination, particles
may agglomerate or cluster together due to the increased diffusion and mobility of atoms
at higher temperatures. These agglomerates can contribute to the observed increase in
particle size.

3.1.2. FE-SEM and EDS

Figure 3A,B illustrate the images of FE-SEM for the EK600 and KE800 nanocomposites,
respectively. Also, the results showed that the surface of the EK600 sample consists of
spherical, polyhedral, and rod shapes with an average grain size of 99.36 nm. In addition,
the surface of the EK800 sample consists of polyhedral and spherical shapes with an average
grain size of 143.23 nm. The average crystal sizes of nanocomposites obtained from X-ray
diffraction (XRD) and scanning electron microscopy (SEM) may not be the same due to the
different principles and measurement techniques involved in each method. XRD measures
the crystallite size in the bulk material, considering all crystallographic directions. SEM,
on the other hand, provides information about the surface morphology, which is often
an agglomeration of many particles and hence may not directly correlate to the crystal
size obtained from XRD. Figure 4A,B illustrate the patterns of EDS for the EK600 and
EK800 nanocomposites, respectively. Also, the results showed that the EK600 and EK800
nanocomposites consist of O, Mn, Cd, and Zr, as shown in Table 1. The absence of peaks for
other elements confirms the purity of the synthesized nanocomposites. The mass ratios of
O (oxygen), Mn (manganese), Cd (cadmium), and Zr (zirconium) from energy-dispersive
X-ray spectroscopy (EDS) analysis are not consistent with the expected compositions
of “ZrO2/CdMn2O4/CdO due to sample inhomogeneity and different percentages of
each component inside the nanocomposite. The XRD confirmed that the percentages of
ZrO2, CdMn2O4, and CdO inside the EK600 nanocomposite are 74.30, 24.20, and 1.5%,
respectively. In addition, the XRD confirmed that the percentages of ZrO2, CdMn2O4,
and CdO inside the EK800 nanocomposite are 78.00, 18.50, and 3.5%, respectively. If
the nanocomposite is not homogeneous, different regions within the sample might have
varying elemental compositions. EDS analysis provides local elemental information, and
the results may not reflect the overall average composition of the entire nanocomposite.
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Table 1. EDS analysis of the EK600 and EK800 samples.

Samples % O % Mn % Cd % Zr

EK600 14.68 21.90 25.71 37.71
EK800 13.98 21.64 27.43 36.95

3.1.3. Nitrogen Adsorption/Desorption

Figure 5A,B illustrate the relation between adsorbed volume and relative pressure for
the EK600 and EK800 samples, respectively. In addition, Figure 6A,B illustrate the BJH pore
size distribution of the EK600 and EK800 nanocomposites, respectively. Additionally, the
results showed strongly that the resulting curves follow the IV types, and this confirms their
mesoporous nature. The surface textures, such as BET surface area, total pore volume, and
average pore size, are clarified in Table 2. The BET surface area of the EK600 nanocomposite
is greater than that of the EK800 nanocomposite because of the inverse relationship between
crystal size and surface area.

Table 2. Surface textures of the EK600 and EK800 samples.

Sample BET Surface Area
(m2/g)

Total Pore Volume
(cc/g)

Average Pore Size
(nm)

EK600 46.33 0.2037 8.79
EK800 38.49 0.1398 7.27

3.2. Removal of Rhodamine 6G and Acid Orange 10 Dyes from Aqueous Solutions
3.2.1. Effect of pH

Figure 7A,B represent the effect of solution pH on the % U of rhodamine 6G and acid
orange 10 dyes in addition to the removal capacity of the EK600 and EK800 adsorbents,
respectively. In the case of rhodamine 6G dye, it was found that the % U of rhodamine
6G dye and the removal capacity of the EK600 and EK800 adsorbents increased with
increasing pH from 2.5 to 8.5. At pH 8.5, the % U of rhodamine 6G dye using EK600 and
EK800 adsorbents is 66.53 and 53.85%, respectively. At pH 8.5, the removal capacity of
the EK600 and EK800 adsorbents towards rhodamine 6G dye is 299.40 and 242.34 mg/g,
respectively. The acidic medium produces positive hydrogen ions that surround the surface
of the EK600 and EK800 adsorbents and thus repel the cationic rhodamine 6G dye as
shown in Scheme 3, and thus the % U and adsorption capacity decrease [61]. The basic
medium produces negative hydroxide ions that surround the surface of the EK600 and
EK800 adsorbents and thus attract the cationic rhodamine 6G dye as shown in Scheme 3,
and thus the % U and adsorption capacity increase. Hence, the optimum pH value for
the removal of rhodamine 6G dye is 8.5. In the case of acid orange 10 dye, it was found
that the % U of acid orange 10 dye and the removal capacity of the EK600 and EK800
adsorbents decreased with increasing pH from 2.5 to 8.5. At pH 2.5, the % U of acid orange
10 dye using EK600 and EK800 adsorbents is 73.19 and 57.71%, respectively. At pH 2.5,
the removal capacity of the EK600 and EK800 adsorbents towards acid orange 10 dye is
329.34 and 259.71 mg/g, respectively. The acidic medium produces positive hydrogen
ions that surround the surface of the EK600 and EK800 adsorbents and thus attract the
anionic acid orange 10 dye as shown in Scheme 3, and thus the % U and adsorption capacity
increase. The basic medium produces negative hydroxide ions that surround the surface of
the EK600 and EK800 adsorbents and thus repel the anionic acid orange 10 dye as shown
in Scheme 3, and thus the % U and adsorption capacity decrease [61]. Hence, the optimum
pH value for the removal of acid orange 10 dye is 2.5.
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EK800 adsorbents.

To confirm the adsorption mechanism, FE-SEM analysis was performed for the EK600
sample (as an illustrative example) after the adsorption of rhodamine 6G and acid orange
10 dyes, as shown in Figure 8A,B, respectively. In addition, the FE-SEM analysis of the
EK600 sample is shown in Figure 3A. Figure 8A,B clearly show the disappearance of the
spherical, polyhedral, and rod shapes of the EK600 adsorbent. Additionally, Figure 8A,B
clearly show the aggregation of rhodamine 6G and acid orange 10 dyes on the surface
of EK600 adsorbent, and this indicates that rhodamine 6G and acid orange 10 dyes were
successfully adsorbed on the surface of EK600 adsorbent.

Moreover, the inductively coupled plasma (ICP) elucidated that there is no ion leaching
from the synthesized EK600 and EK800 nanocomposites in the filtrate during the adsorption
processes. Hence, the synthesized nanocomposites are considered safe and can be utilized
in water treatment.

3.2.2. Effect of Contact Time

Figure 9A,B represent the effect of contact time on the % U of rhodamine 6G and acid
orange 10 dyes in addition to the removal capacity of the EK600 and EK800 adsorbents,
respectively. In addition, the results exhibited that the % U of rhodamine 6G and acid orange
10 dyes, in addition to the removal capacity of the EK600 and EK800 adsorbents, increased
when increasing the contact time from 4 to 24 min. In addition, the % U of rhodamine
6G and acid orange 10 dyes, in addition to the removal capacity of the EK600 and EK800
adsorbents, were almost constant when increasing the contact time from 24 to 32 min
as a result of the fullness saturation of active sites. A sudden increase in the adsorption
percentage when increasing the contact time from 20 min to 25 min is due to the activation
of adsorption sites of the adsorbent, which is a mixture of several metal oxides. Adsorption
typically occurs on the surface of the adsorbent material, which contains specific sites
where adsorption can take place. If these adsorption sites are not immediately available for
interaction with the adsorbate, the adsorption rate may initially be slow. However, with
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increasing contact time, these sites may become activated or exposed, leading to a sudden
increase in the adsorption percentage.
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The % U of rhodamine 6G dye by the EK600 and EK800 adsorbents after 24 min
is 67.67 and 53.85%, respectively. Additionally, the removal capacity of the EK600 and
EK800 adsorbents towards rhodamine 6G dye after 24 min is 304.50 and 242.34 mg/g,
respectively. In addition, the % U of acid orange 10 dye by the EK600 and EK800 adsorbents
after 24 min is 73.30 and 57.95%, respectively. Additionally, the removal capacity of the
EK600 and EK800 adsorbents towards acid orange 10 dye after 24 min is 329.85 and
260.76 mg/g, respectively.

The pseudo-first-order (Equation (3)), in addition to the pseudo-second-order
(Equation (4)), kinetic equations [61], were used to examine the linear fitting of the ob-
tained experimental data due to the removal of rhodamine 6G and acid orange 10 dyes by
the EK600 and EK800 adsorbents, as shown in Figure 10A,B, respectively.

log (Oe − Ot) = logOe −
k1

2.303
t (3)

t
Ot

=
1

k2O2
e
+

1
Oe

t (4)

k1 represents the pseudo-first-order rate constant (1/min), Ot represents the amount of
rhodamine 6G or acid orange 10 dye adsorbed at time t (mg/g), k2 represents the pseudo-
second-order rate constant (g/mg.min), and Oe represents the quantity of rhodamine 6G or
acid orange 10 dye adsorbed at equilibrium (mg/g). Table 3 displays the resultant constants
and correlation coefficients (R2). Moreover, the removal of rhodamine 6G and acid orange
10 dyes by the EK600 and EK800 adsorbents follows the pseudo-first order owing to the
following reasons: (1) The R2 values of the pseudo-first order are greater than the R2 values
of pseudo-second order. (2) The calculated Oe values of the pseudo-first order are very
close to the experimental Oe.

Table 3. The obtained kinetic constants for the removal of rhodamine 6G and acid orange 10 dyes by
the EK600 and EK800 adsorbents.

Conditions
Pseudo-First Order Pseudo-Second Order

k1
(1/min)

Oe
(mg/g) R2 k2

(g/mg.min)
Oe

(mg/g) R2

EK600+
Rhodamine 6G 0.1254 313.60 0.9999 0.00022 429.18 0.9955

EK800+
Rhodamine 6G 0.1081 250.93 0.9996 0.00019 371.75 0.9864

EK600+
Acid orange 10 0.1227 342.68 0.9999 0.00018 478.47 0.9927

EK800+
Acid orange 10 0.1024 265.35 0.9999 0.00018 392.16 0.9911

3.2.3. Effect of Temperature

Figure 11A,B represent the effect of temperature on the % U of rhodamine 6G and acid
orange 10 dyes in addition to the removal capacity of the EK600 and EK800 adsorbents,
respectively. Additionally, the results exhibited that the % U of rhodamine 6G and acid
orange 10 dyes, in addition to the removal capacity of the EK600 and EK800 adsorbents,
decreased when increasing the temperature from 298 to 328 kelvin. The % U of rhodamine
6G dye by the EK600 and EK800 adsorbents at 328 kelvin is 50.13 and 37.83%, respectively.
Additionally, the removal capacity of the EK600 and EK800 adsorbents towards rhodamine
6G dye at 328 kelvin is 225.57 and 170.25 mg/g, respectively. In addition, the % U of
acid orange 10 dye by the EK600 and EK800 adsorbents at 328 kelvin is 58.34 and 42.93%,
respectively. Additionally, the removal capacity of the EK600 and EK800 adsorbents
towards acid orange 10 dye at 328 kelvin is 262.53 and 193.17 mg/g, respectively.



Inorganics 2023, 11, 333 19 of 29Inorganics 2023, 11, x FOR PEER REVIEW 23 of 35 
 

 

 
Figure 10. Pseudo-first-order (A) as well as pseudo-second-order (B) plots for the removal of rho-
damine 6G and acid orange 10 dyes by the EK600 and EK800 adsorbents. 

3.2.3. Effect of Temperature 
Figure 11A,B represent the effect of temperature on the % U of rhodamine 6G and 

acid orange 10 dyes in addition to the removal capacity of the EK600 and EK800 adsor-
bents, respectively. Additionally, the results exhibited that the % U of rhodamine 6G and 

Figure 10. Pseudo-first-order (A) as well as pseudo-second-order (B) plots for the removal of rho-
damine 6G and acid orange 10 dyes by the EK600 and EK800 adsorbents.



Inorganics 2023, 11, 333 20 of 29Inorganics 2023, 11, x FOR PEER REVIEW 25 of 35 
 

 

 
Figure 11. The effect of dye solution temperature on the % U of rhodamine 6G and acid orange 10 
dyes (A) in addition to the removal capacity of the EK600 and EK800 adsorbents (B). 

Figure 11. The effect of dye solution temperature on the % U of rhodamine 6G and acid orange
10 dyes (A) in addition to the removal capacity of the EK600 and EK800 adsorbents (B).



Inorganics 2023, 11, 333 21 of 29

The effect of solution temperature on the removal of rhodamine 6G and acid orange
10 dyes by the EK600 and EK800 adsorbents was examined using the thermodynamic con-
stants, for example, ∆G◦ (change in free energy, kJ/mol), ∆H◦ (change in enthalpy, kJ/mol),
and ∆S◦ (change in entropy, kJ/mol kelvin), which were estimated by Equations (5)–(7) [61].

lnKT =
∆S◦

R
− ∆H◦

RT
(5)

∆G◦ = ∆H◦ − T∆S◦ (6)

KT =
Oe

Ze
(7)

R represents the universal gas constant (kJ/mol kelvin), whereas T represents the
absolute temperature (kelvin). KT represents the distribution constant (L/g). In addition,
Figure 12 depicts the linear variation of lnKT against 1/T, from which the thermodynamic
constants can be estimated based on intercept and slope. Table 4 displays the thermody-
namic constants for the removal of rhodamine 6G and acid orange 10 dyes by the EK600 and
EK800 adsorbents. Negative ∆G◦ values indicated that the EK600 and EK800 adsorbents
removed the rhodamine 6G and acid orange 10 dyes spontaneously. In addition, the nega-
tive ∆H◦ values indicated that the EK600 and EK800 adsorbents remove the rhodamine 6G
and acid orange 10 dyes exothermically. Furthermore, the positive ∆S◦ values indicated
that the rhodamine 6G and acid orange 10 dyes were removed by the EK600 and EK800
adsorbents in the direction of increasing system randomization. Moreover, the removal
of rhodamine 6G and acid orange 10 dyes by EK600 and EK800 adsorbents is physical in
nature, as the ∆H◦ values are less than 40 kJ/mol [61].
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Table 4. The thermodynamic constants for the removal of rhodamine 6G and acid orange 10 dyes by
the EK600 and EK800 adsorbents.

Conditions ∆H◦ (kJ/mol) ∆S◦

(kJ/mol kelvin)

∆G◦

(kJ/mol)
298 308 318 328

EK600+
Rhodamine 6G −19.95 0.0514 −35.26 −35.78 −36.29 −36.81

EK800+
Rhodamine 6G −18.07 0.0501 −33.00 −33.50 −34.00 −34.51

EK600+
Acid orange 10 −18.76 0.0453 −32.26 −32.71 −33.16 −33.62

EK800+
Acid orange 10 −16.18 0.0423 −28.79 −29.22 −29.64 −30.06

3.2.4. Effect of Dye Concentration

Figure 13A,B represent the effect of dye concentration on the % U of rhodamine 6G and
acid orange 10 dyes in addition to the removal capacity of the EK600 and EK800 adsorbents,
respectively. Additionally, the results exhibited that the % U of rhodamine 6G and acid
orange 10 dyes decreased with increasing the concentration of dyes from 15 to 250 mg/L.
Also, the removal capacity of the EK600 and EK800 adsorbents improved by increasing the
initial concentration of dyes from 15 to 250 mg/L.

The Langmuir (Equation (8)) and Freundlich (Equation (9)) equilibrium equations [61]
were used to examine the linear fitting of the obtained experimental data due to the removal
of rhodamine 6G and acid orange 10 dyes by the EK600 and EK800 adsorbents, as indicated
in Figure 14A,B, respectively.

Ze

Oe
=

1
k3Omax

+
Ze

Omax
(8)

lnOe = lnk4 +
1
y

lnZe (9)

where 1/y is the heterogeneity constant while k3 is the equilibrium constant of the Lang-
muir equation (L/mg). Also, k4 is the equilibrium constant of the Freundlich equation
(mg/g)(L/mg)1/n, while Omax is the greatest removal capacity of the Langmuir equa-
tion (mg/g). Additionally, Equation (10) can be utilized to determine the Omax from the
Freundlich equilibrium isotherm [61].

Omax = k4

(
Z1/y

o

)
(10)

Table 5 displays the resultant constants and correlation coefficients (R2). In addition,
the removal of rhodamine 6G and acid orange 10 dyes by the EK600 and EK800 adsorbents
follows the Langmuir isotherm because the R2 values of the Langmuir isotherm are higher
than the R2 values of the Freundlich isotherm. Additionally, the greatest removal capacity
of the EK600 and EK800 adsorbents toward rhodamine 6G dye is 311.53 and 250.63 mg/g,
respectively. Moreover, the greatest removal capacity of the EK600 and EK800 adsorbents
towards acid orange 10 dye is 335.57 and 270.27 mg/g, respectively.
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Table 5. The obtained equilibrium constants for the removal of rhodamine 6G and acid orange
10 dyes by the EK600 and EK800 adsorbents.

Langmuir Isotherm Freundlich Isotherm

Conditions Omax
(mg/g)

k3
(L/mg) R2 Omax

(mg/g)
k4

(mg/g)(L/mg)1/n R2

EK600+
Rhodamine 6G 311.53 2.1837 0.9999 386.22 136.07 0.7504

EK800+
Rhodamine 6G 250.63 0.6196 0.9998 283.51 91.37 0.9159

EK600+
Acid orange 10 335.57 1.9477 0.9999 431.32 136.44 0.7905

EK800+
Acid orange 10 270.27 0.4302 0.9995 313.67 85.23 0.9118

Additionally, the removal capacity of the EK600 and EK800 synthesized nanocompos-
ites towards rhodamine 5G and acid orange 10 dyes was superior to that of many other
adsorbents, as shown in Table 6 [49–56].

Table 6. Comparison between the greatest removal capacity of the synthesized nanocomposites and
that of other adsorbents in the literature.

Adsorbent O(mg/g) towards
Rhodamine 6G Dye

O(mg/g) towards
Acid Orange 10 Dye Ref.

Aluminophosphate 208.11 ---- [49]

Chitosan-g-(N-vinylpyrrolidone)/
montmorillonite composite 36.60 ---- [50]

Activated carbon 44.70 ---- [51]

ZSM-22 zeolite 195.30 ---- [52]

Quaternary ammonium group-rich
magnetic nanoparticles ---- 98.70 [53]

Activated carbon ---- 17.60 [54]

Alumina nanoparticles ---- 93.30 [55]

Polyaniline/Fe-ZSM-5 composite ---- 217 [56]

EK600 311.53 335.57 This study

EK800 250.63 268.09 This study

3.2.5. Effect of Desorption and Reusability

The EK600 and EK800 adsorbents were regenerated by subjecting them to a heat treat-
ment at 550 ◦C for 2 hr, which completely removed rhodamine 6G or acid orange 10 dyes
from their surfaces. Subsequently, the regenerated adsorbents were employed for four
consecutive cycles to remove the studied dyes, following the experimental procedure out-
lined earlier. Figure 15 demonstrates that the percentage removal of rhodamine 6G or acid
orange 10 dyes using the synthesized adsorbents remained fairly constant, indicating that
these adsorbents can be reused multiple times without a significant loss in their efficiency.
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4. Conclusions

The Pechini sol–gel method was utilized for the facile synthesis of ZrO2/CdMn2O4/CdO
as novel nanocomposites at 600 and 800 ◦C. The nanocomposites, which were synthesized
at 600 and 800 ◦C, were abbreviated as EK600 and EK800, respectively. Additionally, the
XRD showed that the average crystal size of the EK600 and EK800 nanocomposites is
68.25 and 85.32 nm, respectively. Moreover, the BET surface area of the EK600 and EK800
nanocomposites is 46.33 and 38.49 m2/g, respectively. The greatest removal capacity of
the EK600 and EK800 adsorbents towards acid orange 10 dye is 335.57 and 270.27 mg/g,
respectively. Additionally, the greatest removal capacity of the EK600 and EK800 adsorbents
toward rhodamine 6G dye is 311.53 and 250.63 mg/g, respectively.
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