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Abstract: Background: The system of self-consistent models is an attempt to develop a tool to assess
the predictive potential of various approaches by considering a group of random distributions of
available data into training and validation sets. Considering many different splits is more informative
than considering a single model. Methods: Models studied here build up for solubility of fullerenes
C60 and C70 in different organic solvents using so-called quasi-SMILES, which contain traditional
simplified molecular input-line entry systems (SMILES) incorporated with codes that reflect the
presence of C60 and C70. In addition, the fragments of local symmetry (FLS) in quasi-SMILES are
applied to improve the solubility’s predictive potential (expressed via mole fraction at 298’K) models.
Results: Several versions of the Monte Carlo procedure are studied. The use of the fragments of local
symmetry along with a special vector of the ideality of correlation improves the predictive potential
of the models. The average value of the determination coefficient on the validation sets is equal to
0.9255 ± 0.0163. Conclusions: The comparison of different manners of the Monte Carlo optimization
of the correlation weights has shown that the best predictive potential was observed for models
where both fragments of local symmetry and the vector of the ideality of correlation were applied.

Keywords: nano-QSPR; fullerene; solubility; validation; system of self-consistent models; Monte
Carlo method; CORAL software

1. Introduction

Like the world of real material movements, in which all events that are visible and
tangible to us in everyday life, such as wind, rain, and the movement of clouds, take
place, there is a world of probabilistic actions, accidents, and tendencies that influence
each other. However, these are not visible and not tangible to us. Perhaps quantitative
structure-property/activity relationships (QSPR/QSAR) allow one to look into this world
of accidents and trends that affect each other.

There is no mysticism here, but the phenomena occurring in such a space are not
always described ideally and reliably. In other words, encountering situations that defy
logic is possible. For example, the quality of calculations (models) can be affected by the
collection of substances, which are available in the database, as well as priorities and criteria
selected in the software used for QSPR/QSAR simulation.

However, in any case, it remains an indisputable axiom that models of random events
are knowledge only when they are understandable and allow the possibility of verification
by establishing and confirming their reproducibility.

Traditional QSPR were initially based on molecular structure [1–3] and later became
involved in an extended set of descriptors that included information not only on molecular
architecture but also on the magnitudes of various physicochemical properties [4]. This
would be a good fit for nano-QSPR, if not for the lack of a clear relationship between the
molecular structure and the pleasant/useful/dangerous nano-physicochemical properties
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of the respective nanomaterials [5–11]. It cannot be said that the molecular architecture does
not affect the physicochemical properties of nano-substances in any way, but this influence
is very sophisticated for nano-substances. That is, if, for small organic molecules, the
modifications of the geometry/topology arrangement of a pair of atoms necessarily change
the physicochemical parameters, then for fullerenes, and even more so, for multilayer
nanotubes, changes in the arrangement of a pair of substituent atoms are very difficult
to establish and/or measure experimentally. Naturally, simple homologous series, which
formed the basis of the first QSPR experiments of organic compounds [1–3] for nano-
substances, are extremely rare due to the high cost and weak motivation for experimental
work designed to provide the corresponding numerical data on the physicochemical
parameters of homologous series of fullerenes.

How do we obtain information on all promised abilities to apply nanomaterials? How
do we select and use the unique potentials of nanomaterials? Hints, hypotheses, and
intuition must be transformed into knowledge.

Can a model be knowledge?
Knowledge is a tool. It is preferable if knowledge is convenient for use in solving

practical problems. Consequently, a model can be a way to reach knowledge when all
excess is removed from the model and only the necessary remains. Nothing is surprising in
that a brief instruction may be more useful than an excessively detailed one. That is why
most researchers profess the principle that “to understand is to simplify”.

Taking into account the absence of large databases on various nanomaterials and the
availability of sufficiently large arrays of experimental data on the interaction of individual
nanomaterials with different organic substances (for example, with solvents [12]), one
should look for the possibility of constructing models of the behaviour of nanomaterials in
interaction with “traditional” organic substances.

In the case of the QSPR study of solubility C60- and C70-fullerenes [12], the traditional
paradigm of QSPR/QSAR simulation is represented as

S = F (M) (1)

This is maybe extended as

S = F (M, Fullerene) (2)

where S = solubility, F = mathematical function, and M = molecular structure.
The transition from the model expressed by Equation (1) to the model expressed by

Equation (2) is essentially a transition from traditional QSPR to nano-QSPR.
It should be noted that the model expressed by Equation (2) must (as well as the

model expressed by Equation (1)) comply with the requirements for the QSPR formulated
as well-known OECD principles [13]:

1. A defined endpoint (including experimental protocol);
2. An unambiguous algorithm;
3. A defined domain of applicability;
4. Appropriate measures of goodness-of-fit, robustness, and predictive power;
5. A mechanistic interpretation, when it is possible.

One can use these principles for nano-QSPR expressed by Equation (2). Can the OECD
principles be improved? Latent attempts to do this can be seen in many studies [14–21].

The approach considered here is that each object (solvent = SMILES, fullerene = [C60]
or [C70]) is represented by a character string. The program divides the symbols into special
groups, for which the so-called correlation weights (some coefficients) are found. The
descriptor for each object is the sum of the correlation weights. The Monte Carlo method
is used to find such correlation weights that provide the maximum value of the objective
function. This optimization is carried out on the basis of partitioning the available data
into special subsets: an active training set (its task is to develop a model), a passive training
set (its task is to check the objectivity of the current model), a calibration set (its task is to
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detect the start of the overtraining), and the validation set to assess the predictive potential
of the final model.

2. Results

The three schemes for constructing models of the solubility of fullerenes C60 and C70
in organic solvents were evaluated.

First Scheme

The models were constructed using new components of the model, which are named
correlation weights of fragments of local symmetry (FLS). However, the Monte Carlo
optimization of the extended set of quasi-SMILES codes was planned without using the cor-
relation idealization vector, which has two components: the index of ideality of correlation
(IIC) and the correlation intensity index (CII).

Second Scheme

The models were constructed via the Monte Carlo optimization of the set of quasi-
SMILES codes, without correlation weights of FLS, using the above-mentioned vector of
the ideality of correlation.

Third Scheme

The models were built using the Monte Carlo optimization of an extended list of the
correlation weights, including FLS, along with using the vector of the ideality of correlation.

Figure 1 contains the graphical representation of the simulation processes observed
for the three schemes in the case of split 1. One can see that the third scheme seems to have
the most perspective.
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Figure 1. The histories of the Monte Carlo optimization using different target functions.

In addition, one can see that the practically reasoned optimal descriptor for the first
scheme is DCW(3,5). In contrast, the preferable optimal descriptor for the second and third
schemes is DCW(3,15).

According to the principle “QSAR/QSPR is a random event”, it is necessary to study
the statistical quality of models observed under different distributions in the training set
(here, the set is structured into three components: active training, passive training, and
calibration sets). Table 1 contains the results of applying the first scheme on splits 1–10.

One can see the determination coefficients for the active training, passive training, and
calibration sets as a rule equivalent or even a little larger than the determination coefficient
of the validation set. However, in the case of continued optimization, the determination
coefficients for the active and passive training samples will increase. In contrast, for the
external control sample, the determination coefficient will decrease (Figure 1).
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Table 1. The statistical characteristics of the models were built without using IIC and CII but using
correlation weights of FLS (first scheme). The average determination coefficient of the validation sets
for the observed ten models follows 0.7742 ± 0.0713.

Split Set * n R2 CCC IIC CII Q2 RMSE MAE F

1 A 52 0.8276 0.9056 0.7797 0.9089 0.8119 0.716 0.586 240

P 53 0.7569 0.8687 0.8561 0.8812 0.7362 0.630 0.492 159

C 51 0.7428 0.8020 0.4311 0.8367 0.7231 0.859 0.667 142

V 50 0.7406 - - - - 0.794 - -

2 A 51 0.7236 0.8396 0.8179 0.8495 0.6967 0.879 0.718 128

P 51 0.7216 0.8153 0.6959 0.8431 0.6794 0.790 0.621 127

C 51 0.8579 0.9084 0.9109 0.9175 0.8395 0.575 0.437 296

V 53 0.8348 - - - - 0.618 - -

3 A 52 0.8036 0.8911 0.8301 0.8830 0.7845 0.654 0.498 205

P 50 0.6151 0.7085 0.7008 0.7917 0.5817 0.983 0.800 77

C 52 0.8910 0.9250 0.4079 0.9232 0.8839 0.460 0.334 409

V 52 0.8762 - - - - 0.458 - -

4 A 50 0.7992 0.8884 0.7615 0.8647 0.7820 0.715 0.504 191

P 53 0.7990 0.8811 0.7767 0.8669 0.7838 0.724 0.557 203

C 50 0.8139 0.8192 0.4604 0.8856 0.7945 0.734 0.547 210

V 53 0.8328 - - - - 0.645 - -

5 A 50 0.7798 0.8762 0.8151 0.8745 0.7592 0.715 0.575 170

P 52 0.7798 0.8478 0.5541 0.8771 0.7549 0.889 0.686 177

C 52 0.8522 0.8985 0.9073 0.9087 0.8405 0.524 0.381 288

V 52 0.8411 - - - - 0.585 - -

6 A 50 0.8871 0.9402 0.8694 0.9299 0.8761 0.517 0.403 377

P 50 0.8862 0.9293 0.6925 0.9328 0.8760 0.614 0.503 374

C 53 0.6340 0.6938 0.7221 0.8138 0.5901 1.04 0.770 88

V 53 0.6686 - - - - 1.182 - -

7 A 50 0.8230 0.9029 0.8374 0.8807 0.8022 0.657 0.480 223

P 53 0.8076 0.8959 0.8748 0.8847 0.7896 0.678 0.530 214

C 50 0.8283 0.8610 0.7257 0.8999 0.8110 0.684 0.544 232

V 53 0.6583 - - - - 0.760 - -

8 A 51 0.7471 0.8553 0.6557 0.8584 0.7253 0.799 0.594 145

P 52 0.7199 0.8250 0.7774 0.8430 0.6965 0.836 0.613 129

C 51 0.8100 0.8941 0.8478 0.8945 0.7947 0.497 0.416 209

V 52 0.7854 - - - - 0.583 - -

9 A 50 0.8187 0.9003 0.7109 0.8917 0.8003 0.717 0.541 217

P 53 0.8068 0.8897 0.8728 0.8839 0.7897 0.730 0.589 213

C 53 0.6486 0.7302 0.7753 0.7840 0.6130 0.917 0.678 94

V 50 0.7649 - - - - 0.832 - -

10 A 53 0.7235 0.8396 0.7039 0.8572 0.6981 0.875 0.708 133

P 51 0.6071 0.7545 0.5784 0.7947 0.5760 0.841 0.629 76

C 51 0.7786 0.8462 0.6447 0.8545 0.7643 0.628 0.486 172

V 51 0.7690 - - - - 0.658 - -

* A, P, C, and V denote active training, passive training, calibration, and validation sets, respectively.

The second scheme (Table 2) is characterized by a significant decrease in the statistical
quality for the active and passive training sets, accompanied by a noticeable increase in the
coefficient of determination for the validation set. This confirms the observed influence of
IIC and CII described in the literature [18]; IIC and CII improve the statistical quality of the
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QSPR/QSAR models for the validation set, but to the detriment of the statistical quality of
the model for the training set.

Table 2. The statistical characteristics of the models were obtained using IIC and CII without
correlation weights of fragments of local symmetry (second scheme). The average determination
coefficient of the validation sets for the observed ten models follows 0.8832 ± 0.0273.

Split Set * n R2 CCC IIC CII Q2 RMSE MAE F

1 A 52 0.6643 0.7983 0.6986 0.8428 0.6323 0.984 0.822 99

P 53 0.5997 0.7187 0.6328 0.7861 0.5688 0.958 0.805 76

C 51 0.9023 0.9498 0.9496 0.9437 0.8942 0.365 0.293 453

V 50 0.9075 - - - - 0.342 - -

2 A 51 0.6622 0.7968 0.7825 0.8162 0.6314 0.972 0.824 96

P 51 0.5412 0.6758 0.3856 0.8273 0.4867 1.09 0.932 58

C 51 0.9128 0.9445 0.9548 0.9498 0.8974 0.435 0.327 513

V 53 0.9185 - - - - 0.416 - -

3 A 52 0.6182 0.7641 0.7863 0.8035 0.5877 0.912 0.748 81

P 50 0.4222 0.5886 0.5358 0.7507 0.3527 1.17 0.997 35

C 52 0.9144 0.9398 0.9544 0.9451 0.9080 0.357 0.285 534

V 52 0.8822 - - - - 0.399 - -

4 A 50 0.5512 0.7107 0.6853 0.7685 0.4975 1.07 0.830 59

P 53 0.6112 0.6850 0.6404 0.7733 0.5791 1.04 0.879 80

C 50 0.7550 0.8602 0.8688 0.8762 0.7195 0.521 0.384 148

V 53 0.8491 - - - - 0.411 - -

5 A 50 0.5951 0.7462 0.7714 0.8024 0.5615 0.970 0.809 71

P 52 0.5972 0.7572 0.6266 0.7966 0.5627 1.02 0.817 74

C 52 0.8523 0.9209 0.9202 0.9277 0.8311 0.395 0.320 288

V 52 0.8816 - - - - 0.404 - -

6 A 50 0.3899 0.5611 0.4522 0.7307 0.3218 1.20 0.966 31

P 50 0.6585 0.6472 0.6957 0.8256 0.6253 1.14 0.987 93

C 53 0.7680 0.8347 0.8512 0.8634 0.6777 0.491 0.392 169

V 53 0.8654 - - - - 0.387 - -

7 A 50 0.6543 0.7910 0.6890 0.8271 0.6215 0.918 0.759 91

P 53 0.5105 0.7100 0.6265 0.7749 0.4656 1.11 0.916 53

C 50 0.8562 0.9250 0.9244 0.9157 0.8442 0.418 0.326 286

V 53 0.8619 - - - - 0.389 - -

8 A 51 0.6199 0.7654 0.7571 0.8057 0.5836 0.980 0.788 80

P 52 0.5475 0.6955 0.6491 0.7697 0.5116 1.05 0.843 60

C 51 0.8821 0.9381 0.9370 0.9386 0.8693 0.353 0.288 367

V 52 0.8455 - - - - 0.441 - -

9 A 50 0.5886 0.7410 0.5556 0.7920 0.5543 1.08 0.927 69

P 53 0.5540 0.7425 0.7153 0.7762 0.5145 1.05 0.871 63

C 53 0.8186 0.9038 0.9041 0.9014 0.8035 0.418 0.333 230

V 50 0.8894 - - - - 0.370 - -

10 A 53 0.6650 0.7988 0.6252 0.8247 0.6322 0.963 0.768 101

P 51 0.4433 0.6448 0.6243 0.7746 0.4035 0.995 0.807 39

C 51 0.8538 0.9129 0.9237 0.9243 0.8407 0.463 0.363 286

V 51 0.9306 - - - - 0.368 - -

* A, P, C, and V denote active training, passive training, calibration, and validation sets, respectively.
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The statistical quality, as well as the general logic of the models obtained using the
third scheme (Table 3) are very similar, but not identical, concerning the results obtained
using the second scheme.

Table 3. The statistical characteristics of the models were obtained using IIC, CII, and correlation
weights of FLS (third scheme). The average determination coefficient of the validation sets for the
observed ten models follows 0.9170 ± 0.0117.

Split Set * n R2 CCC IIC CII Q2 RMSE MAE F

1 A 52 0.5733 0.7288 0.7571 0.8361 0.5278 1.13 0.934 67

P 53 0.4732 0.6379 0.4299 0.7750 0.4355 1.01 0.803 46

C 51 0.9179 0.9456 0.9579 0.9566 0.9096 0.355 0.283 548

V 50 0.9365 - - - - 0.306 - -

2 A 51 0.7079 0.8289 0.7479 0.8333 0.6823 0.904 0.743 119

P 51 0.5492 0.6832 0.3766 0.8277 0.4973 1.07 0.895 60

C 51 0.8844 0.9319 0.9402 0.9490 0.8711 0.472 0.387 375

V 53 0.9115 - - - - 0.447 - -

3 A 52 0.8214 0.9020 0.7769 0.8947 0.8040 0.624 0.492 230

P 50 0.5127 0.6948 0.6822 0.7602 0.4599 1.08 0.887 51

C 52 0.9139 0.9460 0.9555 0.9456 0.9069 0.393 0.320 531

V 52 0.9108 - - - - 0.408 - -

4 A 50 0.7237 0.8397 0.8507 0.8341 0.6961 0.838 0.632 126

P 53 0.7083 0.8106 0.6961 0.8228 0.6859 0.887 0.684 124

C 50 0.8863 0.8999 0.9380 0.9355 0.8765 0.498 0.401 374

V 53 0.9056 - - - - 0.360 - -

5 A 50 0.6889 0.8158 0.8300 0.8392 0.6589 0.850 0.719 106

P 52 0.7014 0.8092 0.6337 0.8391 0.6740 0.981 0.823 117

C 52 0.9383 0.9623 0.9681 0.9623 0.9316 0.298 0.228 761

V 52 0.9322 - - - - 0.360 - -

6 A 50 0.5614 0.7191 0.7492 0.8023 0.5244 1.02 0.850 61

P 50 0.7684 0.7680 0.8519 0.8535 0.7503 0.955 0.828 159

C 53 0.8415 0.9132 0.9165 0.8969 0.8292 0.416 0.337 271

V 53 0.9160 - - - - 0.318 - -

7 A 50 0.7424 0.8522 0.7954 0.8554 0.7181 0.792 0.644 138

P 53 0.6792 0.8182 0.7000 0.8529 0.6447 0.882 0.725 108

C 50 0.8920 0.9362 0.9425 0.9259 0.8840 0.410 0.327 397

V 53 0.9072 - - - - 0.357 - -

8 A 51 0.6460 0.7849 0.7144 0.8109 0.6122 0.945 0.755 89

P 52 0.6078 0.7413 0.7690 0.7930 0.5763 0.984 0.811 77

C 51 0.8807 0.9369 0.9368 0.9400 0.8644 0.371 0.291 362

V 52 0.9041 - - - - 0.324 - -

9 A 50 0.7199 0.8372 0.6144 0.8507 0.6955 0.891 0.709 123

P 53 0.6734 0.8159 0.5683 0.8307 0.6442 0.902 0.748 105

C 53 0.8874 0.9304 0.9406 0.9293 0.8794 0.385 0.320 402

V 50 0.9337 - - - - 0.396 - -

10 A 53 0.7013 0.8244 0.7477 0.8629 0.6707 0.909 0.749 120

P 51 0.4248 0.6333 0.4521 0.7334 0.3807 1.07 0.836 36

C 51 0.8766 0.9237 0.9342 0.9362 0.8653 0.429 0.345 348

V 51 0.9122 - - - - 0.403 - -

* A, P, C, and V denote active training, passive training, calibration, and validation sets, respectively.
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Figure 2 contains the graphical representations of the models observed in the cases of
applying second and third schemes for split 1.
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Figure 2 shows an example of the models obtained using the second and third schemes
for split 1. It should be noted that despite the statistical quality of the model for the active
and passive training sets being low, these sets contain two latent correlations (Figure 2).
Apparently, this is the effect of exposure to the vector of the ideality of correlation. Ana-
logical pairs of correlations were observed in computer experiments described in the
literature [20,21]. Figure 2 indicates that latent correlations on active and passive training
sets are statistically more significant than total correlations on these sets.
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It is under these circumstances that the problem arises regarding how to distinguish
between the two approaches (second and third schemes). Which approach is more efficient,
more precise, and more reliable?

Figure 1 shows some improvement in the statistical quality of the model for the
case of the third scheme compared with the results observed in the case of the second
scheme. However, it is related to split 1. Will this conclusion/hypothesis be true for splits
2, 3, . . ., 10?

2.1. System of Self-Consistent Models Observed for the Second Scheme

Table 4 contains the test results of the predictive potential of models with external
validation sets that did not involve quasi-SMILES in constructing the tested models.

Table 4. System of self-consistent models built without the correlation weights of FLS.

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 x∗ ∆x*

m1 * N*
v 12 17 21 19 19 19 23 21 22 19.2 3.1

R2
* 0.8818 0.8608 0.9199 0.9561 0.9642 0.8657 0.8844 0.9447 0.9145 0.9102 0.0369

m2 N*
v 12 16 22 23 20 23 20 21 18 19.4 3.4

R2
* 0.9473 0.9024 0.9474 0.9656 0.8744 0.8915 0.9470 0.9494 0.9414 0.9296 0.0298

m3 N*
v 17 16 19 17 16 20 19 20 19 18.1 1.5

R2
* 0.8358 0.8952 0.8289 0.8508 0.9573 0.8919 0.9064 0.9349 0.9239 0.8917 0.0424

m4 N*
v 21 22 19 27 21 21 22 22 25 22.2 2.3

R2
* 0.7574 0.8989 0.7975 0.8782 0.8856 0.7983 0.8812 0.8742 0.8730 0.8493 0.0478

m5 N*
v 19 23 17 27 18 20 19 17 16 19.6 3.3

R2
* 0.8055 0.9305 0.9025 0.9158 0.9459 0.9295 0.9191 0.9483 0.9617 0.9176 0.0432

m6 N*
v 19 20 16 21 18 23 23 28 22 21.1 3.3

R2
* 0.8914 0.7225 0.8831 0.7803 0.8665 0.8635 0.9043 0.8815 0.9276 0.8577 0.0264

m7 N*
v 19 23 20 21 20 23 20 26 24 21.8 2.2

R2
* 0.8910 0.8761 0.8585 0.8896 0.9050 0.9094 0.9390 0.9108 0.9194 0.8999 0.0226

m8 N*
v 23 20 19 22 19 23 20 24 18 20.9 2.0

R2
* 0.8662 0.9003 0.9158 0.9358 0.8875 0.9022 0.8981 0.9171 0.9099 0.9037 0.0186

m9 N*
v 21 21 20 22 17 28 26 24 24 22.6 3.1

R2
* 0.8469 0.9132 0.8995 0.8551 0.9176 0.9000 0.8932 0.9033 0.9015 0.8923 0.0232

m10 N*
v 22 18 19 25 16 22 24 18 24 20.9 3.0

R2
* 0.9130 0.9226 0.9457 0.9273 0.9454 0.9498 0.9159 0.9614 0.9481 0.9366 0.0162

* m1–m10 denote the models from 1 to 10; s1–s10 denote the splits from 1 to 10; x∗ is the average value of n* or
R2v*; ∆x∗ is the dispersion value of n* or R2v*.

It can be seen that the results of applying the models to different test sets after removing
the quasi-SMILES participating in the construction of the corresponding models are far
from being the same. However, in all cases, there is a good predictive potential. The average
value of determination coefficients for external validation sets is R2

v = 0.8989 ± 0.0267.

2.2. System of Self-Consistent Models Observed for the Third Scheme

Table 5 contains the test results of the predictive potential of models with external
validation sets that did not involve quasi-SMILES in the construction of the tested models.
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Table 5. System of self-consistent models built using the correlation weights of FLS.

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 x∗ ∆x*

m1 * N*
v 12 17 21 19 19 19 23 21 22 19.2 3.1

R2
* 0.9481 0.9025 0.9381 0.9539 0.9619 0.9384 0.9491 0.9483 0.9291 0.9410 0.0163

m2 N*
v 12 16 22 23 20 23 20 21 18 19.4 3.4

R2
* 0.9176 0.9380 0.9414 0.9520 0.8814 0.8853 0.9482 0.9635 0.9168 0.9271 0.0273

m3 N*
v 17 16 19 17 16 20 19 20 19 18.1 1.5

R2
* 0.8514 0.9264 0.9147 0.9196 0.9461 0.8722 0.9098 0.9123 0.9587 0.9123 0.0314

m4 N*
v 21 22 19 27 21 21 22 22 25 22.2 2.3

R2
* 0.8856 0.9089 0.9185 0.9190 0.8723 0.8395 0.9201 0.9369 0.9325 0.9037 0.0300

m5 N*
v 19 23 17 27 18 20 19 17 16 19.6 3.3

R2
* 0.9386 0.9539 0.9325 0.9397 0.9144 0.9501 0.9501 0.9492 0.9654 0.9438 0.0138

m6 N*
v 19 20 16 21 18 23 23 28 22 21.1 3.3

R2
* 0.9619 0.8626 0.9248 0.9009 0.9391 0.9051 0.9227 0.9227 0.9349 0.9194 0.0264

m7 N*
v 19 23 20 21 20 23 20 26 24 21.8 2.2

R2
* 0.8412 0.9526 0.8420 0.8539 0.9322 0.9185 0.9390 0.8842 0.9074 0.8968 0.0406

m8 N*
v 23 20 19 22 19 23 20 24 18 20.9 2.0

R2
* 0.9117 0.9259 0.9402 0.9468 0.9780 0.9530 0.9364 0.9731 0.9457 0.9456 0.0198

m9 N*
v 21 21 20 22 17 28 26 24 24 22.6 3.1

R2
* 0.9250 0.9553 0.9367 0.9450 0.9522 0.9290 0.9136 0.9467 0.9463 0.9389 0.0131

m10 N*
v 22 18 19 25 16 22 24 18 24 20.9 3.0

R2
* 0.9136 0.9302 0.9430 0.9418 0.9288 0.8891 0.9137 0.9544 0.9201 0.9261 0.0185

* m1–m10 denote the models from 1 to 10; s1–s10 denote the splits from 1 to 10; x∗ is the average value of n* or
R2v*; ∆x∗ is the dispersion value of n* or R2v*.

It can be seen again that the results of applying the models to different test sets after
removing the quasi-SMILES from the construction of the corresponding models are far from
being the same. However, in all cases, there is a good predictive potential. The average
value of determination coefficients for external validation sets is R2

v = 0.9255 ± 0.0163.

2.3. The Comparison of Second and Third Schemes

The predictive potential of models built using the third scheme is better than that of
models built using the second scheme. The dispersion in the determination coefficient
values for the third scheme is less than one compared to models obtained using the
second scheme.

Figure 3 shows the difference in the predictive potential of models obtained using the
second and third schemes. One can see the preferable predictive potential for the second
scheme for splits #2, #7, and #10. However, all other splits demonstrate the advantage of
using the third scheme.

2.4. What Do QSAR/QSPR and Nano-QSAR/QSPR Have in Common?

First, QSAR/QSPR and nano-QSAR/QSPR are random events.
Second, the predictive potential in both cases can change markedly depending on the

distribution of available data into training and validation sets.
Third, both QSAR/QSPR and nano-QSAR/QSPR cannot replace a natural experiment

in measuring the values of various “usual” and nano-endpoints.
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3. Discussion

The principle “QSAR/QSPR is a random event” is confirmed in the results obtained in
this study: completely homogeneous distributions in the training and control subsystems,
for the same approach of the simulation of solubility fullerenes in organic solvents, provide
different values for the statistical characteristics of the models (Tables 1–3).

For the proposed approach, which provides a certain “mathematical expectation” for
the models obtained using the second and third schemes, it becomes possible to compare the
average values, based on which it is possible to put forward a fairly reasonable hypothesis
that the third scheme provides the best models compared to the models obtained using the
second scheme. It is appropriate to note that the reliable criteria for the quality of models
are not only the average values of the coefficients of determination but also their variances,
which was observed in previous studies where systems of self-consistent models were
used [20,21].

The FLS described here may not be a universal tool for developing arbitrary models,
but it is only a technique that has proven successful for this task (i.e., for developing a
model for the solubility of fullerenes in organic solvents). However, the vector of the
ideality of correlations (or maybe the IIC and the CII, separately) perhaps can be recognized
as useful and versatile tools for testing, and maybe even for improving, the predictive
potential of traditional QSAR/QSPR and nano-QSAR/QSPR.

In this study, a quite simple version of quasi-SMILES has been applied to develop
the models. However, one can easily extend the list of codes for quasi-SMILES to express
more detailed and complex experimental conditions. In other words, one can hope that the
quasi-SMILES serve as a language of communication between “classic” experimentalists
who study nanomaterials and developers of nano-QSAR/QSPR models. A certain trend
towards recognizing this language and even some experience in the practical use of this
language have already been outlined [22].

4. Materials and Methods
4.1. Data

The experimental solubility values of C60 and C70 fullerenes in diverse solvents were
reported in mole fraction determined at 298 K [12]. Table 6 contains the list of pairs of
duplicates observed in [12]. Of each pair of duplicates, only one was left for further analysis.
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After this removal, 206 quasi-SMILES representing various pairs of fullerenes (C60 or C70)
and solvents were used for further computational experiments.

Table 6. The list of duplicated quasi-SMILES observed in [12].

CAS of Solvent Quasi-SMILES Mole Fraction Comment

493-01-6 C1CCC2CCCCC2C1[C60] −3.300 Deleted

493-02-7 C1CCC2CCCCC2C1[C60] −3.500 Involved

6876-23-9 CC1CCCCC1C[C60] −4.600 Deleted

2207-01-4 CC1CCCCC1C[C60] −4.600 Involved

74-97-5 C(Cl)Br[C60] −4.200 Deleted

74-97-5 C(Cl)Br[C60] −4.200 Involved

540-49-8 C(=CBr)Br[C60] −3.700 Deleted

540-49-8 C(=CBr)Br[C60] −3.670 Involved

2586-62-1 CC1=C(C2=CC=CC=C2C=C1)Br[C60] −2.100 Deleted

2586-62-1 CC1=C(C2=CC=CC=C2C=C1)Br[C60] −2.130 Involved

112-71-0 CCCCCCCCCCCCCCBr[C60] −2.590 Deleted

112-89-0 CCCCCCCCCCCCCCBr[C60] −2.530 Involved

To this end, these quasi-SMILES were randomly distributed into the following subsets:
(i) active training set (25%); (ii) passive training set (25%); (iii) calibration set (25%); and
(iv) validation set (25%). Ten splits obtained corresponding to the above proportions are
presented here. Table 7 contains the measures of identity for ten such splits examined in
this study.

Table 7. The percentage of identity for random splits examined in this study.

1 2 3 4 5 6 7 8 9 10

1 100 33.0 38.5 41.2 37.3 33.3 45.1 50.5 41.2 47.6

2 31.1 100 29.1 45.5 41.6 35.6 27.7 39.2 39.6 46.2

3 39.2 30.5 100 37.3 29.4 45.1 31.4 31.1 37.3 41.9

4 40.8 41.5 36.2 100 42.0 36.0 36.0 43.6 36.0 46.6

5 35.3 43.8 32.7 51.4 100 32.0 38.0 53.5 38.0 42.7

6 40.8 37.7 30.5 39.6 34.3 100 40.0 35.6 40.0 42.7

7 44.7 43.4 38.1 39.6 38.1 43.4 100 37.6 40.0 44.7

8 51.0 38.1 36.5 41.9 36.5 43.8 38.1 100 31.7 46.2

9 52.0 40.8 39.2 42.7 33.3 54.4 50.5 47.1 100 35.0

10 43.6 34.6 36.9 48.1 31.1 42.3 46.2 35.0 47.5 100

If i > j, then the matrix element [i, j] refers to the percentage of identity for the active training sets; if i < j, then the
matrix element [i, j] refers to the percentage of identity for the validation sets (external sets). The i and j indicate
the numbering of the 10 splits examined.

Each of the above sets has a defined task. The active training set is used to build
the model. Molecular features extracted from quasi-SMILES of the active training set
are involved in the process of Monte Carlo optimization aimed to provide correlation
weights for the above features, which provide the maximal target function value, which
is calculated using descriptors (it is calculated as the sum of the correlation weights of
all the components of quasi-SMILES) and endpoint values on the active training set. The
task of the passive training set is to certify if the model obtained for the active training set
is satisfactory for quasi-SMILES, which were not involved in the active training set. The
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calibration set should detect the start of the overtraining (overfitting). The optimization
must stop if overtraining starts. After stopping the optimization procedure, the validation
set is used to assess the predictive potential of the obtained model.

4.2. Optimal Descriptor

The model of fullerene solubility in organic solvents studied here is as follows:

logS = C0 + C1 × DCW(T, N) (3)

where DCW(T,N) is the optimal descriptor.
The optimal descriptor is the basis for calculating the model value of the solubility

of fullerenes in organic solvents from the correlation weights of quasi-SMILES codes
representing the “fullerene-solvent” systems. The quasi-SMILES reflect the presence of
nano-features by two codes, indicated as [C60] and [C70], which indicate the fullerene C60
and C70, respectively. From the traditional SMILES representing the solvent, data on the
atomic composition of the solvent (denoted as S) and interatomic bonds (denoted as SS) are
extracted. It should be noted that atoms indicate SMILES-atoms, which is one symbol (e.g.,
‘C’, ‘N’, ‘=’) or a group of symbols that cannot be considered separately (e.g., ‘Cl’, %11). In
this study, the so-called fragments of local symmetry (FLS) are additionally used. Three
types of FLS are considered as follows: (i) XYX; (ii) XYYX; and (iii) XYZYX, where X and Y
are arbitrary symbols, but X is not equal to Y. FLS are characteristics of the SMILES/quasi-
SMILES strings. Generally, they are not reflections of molecular features that are somehow
correlated with traditional symmetry. Nevertheless, as SMILES or quasi-SMILES features,
they can be useful participants in the described optimization procedure since they improve
the predictive potential of the models obtained using the approach considered here.

The above-listed features extracted from quasi-SMILES have so-called correlation
weights (CW) obtained via the Monte Carlo optimization. Thus, the optimal descriptor is
calculated as follows:

DCW(T, N) = ∑ CW(S) + ∑ CW(SS) + CW(XYX) + CW(XYYX) + CW(XYXYX) (4)

where T is the threshold, i.e., an integer to separate codes into two categories. If a code has
a frequency in the active training set less than T, it is considered rare and removed from
the simulating process. If the code has a frequency in the active training set larger than T, it
is considered active and involved in the simulating process. N is the number of epochs of
the Monte Carlo optimization.

4.3. The Monte Carlo Optimization

The correlation weights necessary to calculate the optimal descriptors DCW(T,N) are
calculated using the Monte Carlo optimization based on special target functions.

Equation (4) needs the numerical data on the above correlation weights. The Monte
Carlo optimization is a tool to calculate these correlation weights. Here, two target functions
for the Monte Carlo optimization are examined:

TF0 = rAT + rPT − |rAT − rPT | × 0.1 (5)

TF1 = TF0 + (I IC + CII)× 0.3 (6)

The rAT and rPT are correlation coefficients between the observed and predicted
endpoints for the active and passive training sets, respectively; IIC is the index of ideality
of correlation [14,15]; and CII is the correlation intensity index [14,15].

Figure 1 shows the history of the optimization process for various options for the
optimal descriptor and the objective function. A comparison of the results presented
in Figure 1 indicates that the most promising option for obtaining the best predictive
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potential is the option where IIC, CII, and FLS are used (third Scheme). Table 8 contains the
correlation weights for quasi-SMILES codes for the model (split 1).

Table 8. Correlation weights of the codes of quasi-SMILES used to build the model of solubility of
fullerene C60 and C70 in organic solvents (split 1, third Scheme).

Code CW (Code)
Frequency of

Code in Active
Training Set

Frequency of Code
in Passive

Training Set

Frequency of
Code in

Calibration Set
Statistical

Defect of Code
Code Is

Involved in
Simulation

#........... 0.0 3 1 0 1.0000 FALSE

(...(....... −0.4129 6 4 6 0.0053 TRUE

(........... −0.1268 30 34 28 0.0020 TRUE

1...(....... 0.1602 10 17 10 0.0069 TRUE

1........... −0.3386 17 29 18 0.0069 TRUE

2...(....... 0.0 1 0 0 1.0000 FALSE

2........... −0.1768 5 3 2 0.0114 TRUE

2...1....... 0.0 1 0 0 1.0000 FALSE

3........... 0.0 1 0 0 1.0000 FALSE

3...2....... 0.0 1 0 0 1.0000 FALSE

=...(....... −0.3789 13 14 7 0.0075 TRUE

=........... 0.4685 20 30 17 0.0069 TRUE

=...1....... 0.0963 12 22 13 0.0078 TRUE

=...2....... 0.0538 5 2 1 0.0191 TRUE

=...3....... 0.0 1 0 0 1.0000 FALSE

C...#....... 0.0 3 1 0 1.0000 FALSE

C...(....... −0.4347 28 33 26 0.0026 TRUE

C........... 0.1797 50 52 50 0.0003 TRUE

C...1....... −0.4957 17 29 18 0.0069 TRUE

C...2....... 0.3629 5 3 2 0.0114 TRUE

C...3....... 0.0 1 0 0 1.0000 FALSE

C...=....... −0.3702 15 24 16 0.0060 TRUE

C...C....... 0.1677 40 43 43 0.0012 TRUE

F...(....... 0.0 1 0 2 1.0000 FALSE

F........... 0.0 1 0 2 1.0000 FALSE

Br..(....... 0.0 2 6 7 1.0000 FALSE

Br.......... −0.4858 8 7 9 0.0037 TRUE

Br..C....... −0.4007 6 1 4 0.0175 TRUE

I...(....... 0.0 2 3 0 1.0000 FALSE

I........... 0.0 3 6 0 1.0000 FALSE

I...C....... 0.0 1 4 0 1.0000 FALSE

Cl..(....... 0.4380 8 10 10 0.0030 TRUE

Cl.......... −0.0828 9 11 10 0.0023 TRUE

Cl..1....... 0.0 1 0 0 1.0000 FALSE

Cl..2....... 0.0 0 1 0 1.0000 FALSE

Cl..C....... 0.0 3 1 2 1.0000 FALSE

N...#....... 0.0 2 1 0 1.0000 FALSE

N...(....... 0.0 0 2 0 1.0000 FALSE

N........... 0.0 3 7 2 1.0000 FALSE

N...1....... 0.0 0 1 0 1.0000 FALSE

N...2....... 0.0 0 0 1 1.0000 FALSE
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Table 8. Cont.

Code CW (Code)
Frequency of

Code in Active
Training Set

Frequency of Code
in Passive

Training Set

Frequency of
Code in

Calibration Set
Statistical

Defect of Code
Code Is

Involved in
Simulation

N...=....... 0.0 0 2 1 1.0000 FALSE

N...C....... 0.0 1 5 1 1.0000 FALSE

O...(....... −0.1669 9 4 5 0.0108 TRUE

O........... 0.2254 16 13 14 0.0029 TRUE

O...1....... 0.0 0 2 0 1.0000 FALSE

O...=....... 0.3200 7 6 3 0.0095 TRUE

O...C....... 0.4474 8 5 9 0.0075 TRUE

S...(....... 0.0 0 3 0 1.0000 FALSE

S........... 0.0 0 5 0 1.0000 FALSE

S...1....... 0.0 0 1 0 1.0000 FALSE

S...=....... 0.0 0 2 0 1.0000 FALSE

S...C....... 0.0 0 2 0 1.0000 FALSE

[C60]....... −0.3578 45 49 39 0.0024 TRUE

[C70]....... −0.1348 7 4 12 0.0139 TRUE

[CH2]....... 0.0 0 2 1 1.0000 FALSE

[CH]........ 0.0 1 0 1 1.0000 FALSE

[Ge]........ 0.0 0 1 0 1.0000 FALSE

[N+]........ 0.0 3 0 1 1.0000 FALSE

[O-]........ 0.0 3 0 1 1.0000 FALSE

[Si]........ 0.0 0 0 1 1.0000 FALSE

[Sn]........ 0.0 2 0 0 1.0000 FALSE

[xyx0]...... 0.3834 15 13 13 0.0021 TRUE

[xyx1]...... 0.2474 18 14 19 0.0043 TRUE

[xyx2]...... −0.4400 6 8 6 0.0036 TRUE

[xyx3]...... −0.1233 5 8 10 0.0087 TRUE

[xyx4]...... 0.0 2 6 1 1.0000 FALSE

[xyx5]...... 0.0 2 2 1 1.0000 FALSE

[xyx6]...... 0.0 3 1 1 1.0000 FALSE

[xyx7]...... 0.0 1 0 0 1.0000 FALSE

[xyx9]...... 0.0 0 1 0 1.0000 FALSE

[xyyx0]..... 0.2019 44 34 40 0.0035 TRUE

[xyyx1]..... 0.0 3 11 5 1.0000 FALSE

[xyyx2]..... 0.0 2 8 6 1.0000 FALSE

[xyyx3]..... 0.0 2 0 0 1.0000 FALSE

[xyyx4]..... 0.0 1 0 0 1.0000 FALSE

[xyzyx0].... −0.4334 45 44 47 0.0013 TRUE

[xyzyx1].... −0.1116 5 8 4 0.0085 TRUE

[xyzyx2].... 0.0 2 0 0 1.0000 FALSE

[xyzyx3].... 0.0 0 1 0 1.0000 FALSE

Table 9 contains quasi-SMILES, split into active (A) and passive (P) training sets,
calibration (C), and validation (V) sets, and the experimental and calculated values of
fullerene C60 and C70 solubility in an organic solvent. Table 10 shows an example of the
DCW(3,15) calculation.
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Table 9. Quasi-SMILES encode a set of solutions of fullerene C60 and C70 in organic solvents along
with the values of the optimal descriptor, experimental (Expr), and calculated (Calc) values of molar
fraction and applicability domain (AD). The case of split 1 (third scheme). The regression formula is
as follows: logS = −7.608 + 0.4426 × DCW(3,15).

Set CAS * Quasi-SMILES DCW(3,15) Expr Calc
The Statistical

Defect of
Quasi-SMILES

AD

P 109-66-0 CCCCC[C60] 3.6226 −6.1000 −6.0050 0.0174 YES

V 110-54-3 CCCCCC[C60] 4.0950 −5.1000 −5.7958 0.0189 YES

C 111-65-9 CCCCCCCC[C60] 5.0400 −5.2000 −5.3776 0.0217 YES

P 26635-64-3 CC(C)CC(C)(C)C[C60] 5.3953 −5.2000 −5.2203 1.0549 YES

V 124-18-5 CCCCCCCCCC[C60] 5.9849 −4.7000 −4.9594 0.0246 YES

A 112-40-3 CCCCCCCCCCCC[C60] 6.9298 −3.5000 −4.5411 0.0275 YES

V 493-02-7 C1CCC2CCCCC2C1[C60] 9.3895 −3.5000 −3.4524 0.1283 YES

A 137-43-9 C1CCC(C1)CBr[C60] 9.4279 −4.2000 −3.4354 0.0891 YES

V 542-18-7 C1CCC(CC1)Cl[C60] 7.5453 −4.1000 −4.2687 0.0717 YES

C 108-85-0 C1CCC(CC1)Br[C60] 8.2381 −3.4000 −3.9620 1.0701 YES

P 626-62-0 C1CCC(CC1)I[C60] 8.3333 −2.8000 −3.9199 2.0664 YES

P 5401-62-7 C1CCC(C(C1)Br)Br[C60] 9.9420 −2.6000 −3.2079 4.0855 No

C 110-83-8 C1CCC=CC1[C60] 7.5129 −3.8000 −4.2830 0.0692 YES

C 108-87-2 CC1CCCCC1[C60] 7.0015 −4.5000 −4.5094 0.0536 YES

P 75-09-2 C(Cl)Cl[C60] 4.5883 −4.6000 −5.5775 0.0320 YES

A 56-23-5 C(Cl)(Cl)(Cl)Cl[C60] 5.8391 −4.4000 −5.0239 0.0672 YES

V 74-95-3 C(Br)Br[C60] 6.9622 −4.5000 −4.5268 3.0236 YES

P 75-25-2 C(Br)(Br)Br[C60] 8.1953 −3.2000 −3.9810 5.0366 No

A 74-88-4 CI[C60] 4.5584 −4.2000 −5.5908 2.0096 YES

C 74-96-4 CCBr[C60] 6.2277 −5.2000 −4.8519 0.0323 YES

P 75-03-6 CCI[C60] 5.0308 −4.5000 −5.3816 2.0110 YES

P 79-34-5 C(C(Cl)Cl)(Cl)Cl[C60] 7.6012 −3.1000 −4.2439 0.0718 YES

A 107-06-2 C(CCl)Cl[C60] 5.0251 −5.0000 −5.3842 1.0318 YES

C 71-55-6 CC(Cl)(Cl)Cl[C60] 5.6861 −4.7000 −5.0916 0.0510 YES

A 540-54-5 C[CH]CCl[C60] 3.4486 −5.6000 −6.0820 2.0155 YES

P 107-08-4 CCCI[C60] 5.5033 −4.6000 −5.1725 2.0124 YES

A 75-29-6 CC(C)Cl[C60] 4.7185 −5.9000 −5.5199 0.0298 YES

C 75-26-3 CC(C)Br[C60] 4.9687 −5.4000 −5.4091 1.0289 YES

A 75-30-9 CC(C)I[C60] 5.0639 −4.8000 −5.3670 2.0252 YES

C 78-87-5 CC(CCl)Cl[C60] 5.4975 −4.9000 −5.1751 1.0333 YES

C 142-28-9 C([CH]CCl)Cl[C60] 6.3111 −4.8000 −4.8149 2.0297 YES

V 78-75-1 CC(CBr)Br[C60] 8.0234 −4.3000 −4.0570 2.0476 YES

P 627-31-6 C(CI)CI[C60] 7.0158 −3.4000 −4.5030 5.0240 No

C 96-11-7 C(C(CBr)Br)Br[C60] 10.5461 −2.9000 −2.9405 4.0637 No

A 96-18-4 C(C(CCl)Cl)Cl[C60] 7.4126 −4.0000 −4.3274 1.0541 YES

V 513-36-0 CC(C)CCl[C60] 5.1553 −5.4000 −5.3266 1.0297 YES

P 513-38-2 CC(C)CI[C60] 5.8766 −4.3000 −5.0073 2.0274 YES
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V 507-19-7 CC(C)(C)Br[C60] 4.8092 −5.0000 −5.4797 1.0437 YES

C 127-18-4 C(=C(Cl)Cl)(Cl)Cl[C60] 8.1332 −3.8000 −4.0085 0.0852 YES

P 513−37-1 CC(=CCl)C[C60] 5.5615 −4.5000 −5.1467 1.0486 YES

V 71-43-2 C1=CC=CC=C1[C60] 8.1013 −4.0000 −4.0226 1.0973 YES

P 95-47-6 CC1=CC=CC=C1[CH2][C60] 9.0053 −2.9000 −3.6224 2.0987 YES

V 108-38-3 CC1=CC(=CC=C1)C[C60] 9.2607 −3.3000 −3.5094 1.1166 YES

C 526-73-8 CC1=C(C(=CC=C1)C)C[C60] 9.9717 −3.1000 −3.1947 2.1265 YES

A 95-63-6 CC1=CC(=C(C=C1)C)C[C60] 9.1010 −2.5000 −3.5801 1.1372 YES

P 108-67-8 CC1=CC(=CC(=C1)C)C[C60] 9.4917 −3.5000 −3.4071 0.1388 YES

A 527-53-7 CC1=CC(=C(C(=C1)C)C)C[C60] 10.1268 −2.4000 −3.1260 2.1422 YES

P 119-64-2 C1CCC2=CC=CC=C2C1[C60] 10.1800 −2.5000 −3.1025 2.1722 YES

C 103-65-1 CCCC1=CC=CC=C1[C60] 9.5187 −3.5000 −3.3952 1.1016 YES

A 98-82-8 CCC1=CC=CC=C1C(C)C[C60] 10.8426 −3.6000 −2.8092 2.1187 YES

V 104-51-8 CCCCC1=CC=CC=C1[C60] 9.9911 −3.4000 −3.1861 1.1030 YES

V 98-06-6 CC(C)(C)C1=CC=CC=C1[C60] 9.2698 −3.7000 −3.5054 2.1248 YES

C 462-06-6 C1=CC=C(C=C1)F[C60] 8.4784 −4.1000 −3.8557 3.1246 YES

P 108-90-7 C1=CC=C(C=C1)Cl[C60] 8.8771 −3.0000 −3.6792 1.1299 YES

V 108-86-1 C1=CC=C(C=C1)Br[C60] 9.5699 −3.3000 −3.3726 2.1283 YES

P 95-50-1 C1=CC=C(C(=C1)Cl)Cl[C60] 10.8547 −2.4000 −2.8039 1.1392 YES

P 108-36-1 C1=CC(=CC(=C1)Br)Br[C60] 12.6461 −2.6000 −2.0109 3.1299 YES

C 694-80-4 C1=CC=C(C(=C1)Cl)Br[C60] 11.5475 −2.4000 −2.4972 2.1375 YES

P 108-37-2 C1=CC(=CC(=C1)Br)Cl[C60] 11.9533 −3.0000 −2.3176 2.1315 YES

V 120-82-1 C1=CC(=C(C=C1Cl)Cl)Cl[C60] 12.1777 −2.8000 −2.2183 1.1482 YES

V 100-42-5 C=CC1=CC=CC=C1[C60] 9.2708 −3.2000 −3.5049 1.1230 YES

V 98-95-3 C1=CC=C(C=C1)[N+](=O)[O-][C60] 7.4812 −3.9000 −4.2970 3.1715 No

P 100-47-0 C1=CC=C(C=C1)CCN[C60] 9.3119 −4.2000 −3.4867 5.1274 No

P 100-66-3 COC1=CC=CC=C1[C60] 7.7096 −3.1000 −4.1959 1.1205 YES

C 100-52-7 C1=CC=C(C=C1)C=O[C60] 7.9172 −4.2000 −4.1041 1.1527 YES

P 103-71-9 C1=CC=C(C=C1)N=C=O[C60] 9.3125 −3.4000 −3.4865 5.1544 No

A 99-08-1 CC1=CC(=CC=C1)[N+](=O)[O-][C60] 8.0163 −3.4000 −4.0602 3.1614 YES

P 108-98-5 C1=CC=C(C=C1)S[C60] 8.0975 −3.0000 −4.0243 3.1246 YES

C 100-39-0 C1=CC=C(C=C1)CBr[C60] 11.2321 −3.1000 −2.6368 1.1487 YES

A 30583-33-6 CC1=CC(=C(C=C1Cl)Cl)Cl[C60] 12.6502 −3.0000 −2.0091 1.1496 YES

A 90-12-0 CC1=CC=CC2=CC=CC=C12[C60] 10.7555 −2.2000 −2.8478 2.1924 YES

A 28804-88-8 CC1=CC2=C(C=C1)C=C(C=C2)C[C60] 11.3352 −2.1000 −2.5912 3.2245 No

A 605-02−7 C1=CC=C(C=C1)C2=CC=CC3=CC=CC
=C32[C60] 15.1824 −1.9000 −0.8883 8.2616 No
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A 64-17-5 CCO[C60] 2.7640 −7.1000 −6.3850 0.0214 YES

C 71-36-3 CCCCO[C60] 3.7089 −5.9000 −5.9667 0.0242 YES

C 71-41-0 CCCCCO[C60] 4.1814 −5.3000 −5.7576 0.0257 YES

P 67-64-1 CC(=O)C[C60] 2.7551 −7.0000 −6.3889 0.0603 YES

P 68-12-2 CN(C)C=O[C60] 3.8967 −5.3000 −5.8836 3.0493 YES

P 110-01-0 C1CCSC1[C60] 5.9939 −5.4000 −4.9554 3.0474 YES

V 110-02-1 C1=CSC=C1[C60] 6.5278 −4.4000 −4.7191 3.0862 YES

P 554-14-3 CC1=CC=CS1[C60] 7.3816 −3.0000 −4.3412 4.0719 No

P 872-50-4 CN1CCCC1=O[C60] 7.3505 −3.9000 −4.3549 3.0688 YES

P 110-86-1 C1=CC=NC=C1[C60] 8.9043 −4.0000 −3.6671 4.0906 No

C 91-22-5 C1=CC=C2C(=C1)C=CC=N2[C60] 11.6924 −2.9000 −2.4331 4.1982 No

V 62-53-3 C1=CC=C(C=C1)N[C60] 9.0161 −3.9000 −3.6177 3.1246 YES

C 100-61-8 CNC1=CC=CC=C1[C60] 9.2792 −3.8000 −3.5012 4.1027 No

V 121-69-7 CN(C)C1=CC=CC=C1[C60] 10.3144 −3.2000 −3.0430 4.1147 No

C 4904-61-4 C1CC=CCCC=CCCC=C1[C60] 10.8090 −2.7000 −2.8241 1.1096 YES

A 629-59-4 CCCCCCCCCCCCCC[C60] 7.8747 −4.3000 −4.1229 0.0303 YES

A 110-82-7 C1CCCCC1[C60] 6.5290 −5.3000 −4.7185 0.0521 YES

C 591-49-1 CC1=CCCCC1[C60] 8.1394 −3.8000 −4.0057 0.0653 YES

A 2207-01-4 CC1CCCCC1C[C60] 7.7404 −4.6000 −4.1823 0.0651 YES

C 1678-91-7 CCC1CCCCC1[C60] 7.4740 −4.3000 −4.3003 0.0550 YES

V 67-66-3 C(Cl)(Cl)Cl[C60] 5.2137 −4.8000 −5.3007 0.0496 YES

V 106-93-4 C(CBr)Br[C60] 7.5510 −4.2000 −4.2662 2.0461 YES

A 106-94-5 CCCBr[C60] 6.7002 −5.2000 −4.6427 0.0337 YES

C 109-64-8 C(CBr)CBr[C60] 9.2132 −4.2000 −3.5304 1.0665 YES

A 78-77-3 CC(C)CBr[C60] 7.0735 −4.9000 −4.4775 0.0486 YES

C 507-20-0 CC(C)([CH2])Cl[C60] 2.9118 −5.7000 −6.3196 1.0451 YES

A 558-17-8 CC(C)(C)I[C60] 4.9044 −4.4000 −5.4376 2.0400 YES

A 79-01-6 C(=C(Cl)Cl)Cl[C60] 7.5078 −3.8000 −4.2853 0.0676 YES

C 108-88-3 CC1=CC=CC=C1[C60] 8.5737 −3.4000 −3.8135 1.0987 YES

A 106-42-3 CC1=CC=C(C=C1)C[C60] 8.4511 −3.3000 −3.8678 2.1202 YES

P 488-23-3 CC1=C(C(=C(C=C1)C)C)C[C60] 10.2939 −2.9000 −3.0521 2.1422 YES

V 100-41-4 CCC1=CC=CC=C1[C60] 9.0462 −3.4000 −3.6043 1.1002 YES

V 135-98-8 CCC(C)C1=CC=CC=C1[C60] 9.9017 −3.6000 −3.2257 2.1115 YES

V 591-50-4 C1=CC=C(C=C1)I[C60] 9.6651 −3.5000 −3.3304 3.1246 YES

P 541-73-1 C1=CC(=CC(=C1)Cl)Cl[C60] 11.3457 −3.4000 −2.5865 0.1361 YES

V 583-53-9 C1=CC=C(C(=C1)Br)Br[C60] 12.1551 −2.6000 −2.2283 4.1329 No

C 88-72-2 CC1=CC=CC=C1[N+](=O)[O-][C60] 8.3836 −3.4000 −3.8976 3.1473 YES

V 100-44-7 C1=CC=C(C=C1)CCl[C60] 9.3139 −3.4000 −3.4859 2.1297 YES
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P 90-13-1 C1=CC=C2C(=C1)C=CC=C2Cl[C60] 11.5646 −2.0000 −2.4897 3.2094 No

P 71-23-8 CCCO[C60] 3.2365 -6.4000 −6.1758 0.0228 YES

V 111-27-3 CCCCCCO[C60] 4.6538 −5.1000 −5.5485 0.0271 YES

V 111-87-5 CCCCCCCCO[C60] 5.5988 −5.0000 −5.1303 0.0300 YES

A 107-13-1 C=CCCN[C60] 4.2477 −6.4000 −5.7282 4.0323 No

P 111-96-6 COCCOCCOC[C60] 2.2569 −5.2000 −6.6094 2.0611 YES

C 111-84-2 CCCCCCCCC[C60] 5.5124 −4.9200 −5.1685 0.0232 YES

C 79-00-5 C(C(Cl)Cl)Cl[C60] 6.9758 −4.7800 −4.5208 0.0542 YES

A 109-65-9 CCCCBr[C60] 7.1726 −3.7400 −4.4336 0.0351 YES

P 629-04-9 CCCCCCCBr[C60] 8.5900 −3.3000 −3.8063 0.0394 YES

A 111-83-1 CCCCCCCCBr[C60] 9.0625 −3.0900 −3.5971 0.0408 YES

V 112-89-0 CCCCCCCCCCCCCCBr[C60] 11.8972 −2.5300 −2.3424 0.0494 YES

A 67-56-1 CO[C60] 2.2916 −8.8700 −6.5941 0.0199 YES

A 143-08-8 CCCCCCCCCO[C60] 6.0712 −4.2900 −4.9211 0.0314 YES

C 112-30-1 CCCCCCCCCCO[C60] 6.5437 −4.1500 −4.7120 0.0328 YES

V 112-42-5 CCCCCCCCCCCO[C60] 7.0161 −3.9900 −4.5029 0.0343 YES

P 67-63-0 CC(C)O[C60] 2.5223 −6.6500 −6.4920 0.0390 YES

C 78-92-2 CCC(C)O[C60] 2.9947 −6.3400 −6.2828 0.0404 YES

V 6032-29-7 CCCC(C)O[C60] 3.4672 −5.5700 −6.0737 0.0418 YES

A 584-02-1 CCC(CC)O[C60] 3.4672 −5.3600 −6.0737 0.0418 YES

A 504-63-2 C(CO)CO[C60] 1.9748 −7.0500 −6.7343 0.0556 YES

C 110-63-4 C(CCO)CO[C60] 2.4473 −6.5700 −6.5252 0.0571 YES

V 111-29-5 C(CCO)CCO[C60] 2.9197 −6.1900 −6.3161 0.0585 YES

A 102-04-5 C1=CC=C(C=C1)CC(=O)CC2=CC=CC
=C2[C60] 12.8645 −3.4000 −1.9143 2.2878 YES

P 104-92-7 COC1=CC=C(C=C1)Br[C60] 9.1904 −2.5400 −3.5405 3.1377 YES

A 2398-37-0 COC1=CC(=CC=C1)Br[C60] 10.0001 −2.5500 −3.1821 2.1341 YES

P 573-98-8 CC1=C(C2=CC=CC=C2C=C1)C[C60] 11.4939 −2.1200 −2.5209 2.2303 YES

A 75-05-8 CCCN[C60] 4.3075 −7.5400 −5.7018 4.0110 No

V 109-99-9 C1CCOC1[C60] 5.4793 −5.1700 −5.1831 0.0652 YES

V 108-75-8 CC1=CC(=NC(=C1)C)C[C60] 10.1468 −2.8000 −3.1172 3.1314 YES

C 64-19-7 CC(=O)O[C60] 1.5955 −6.2700 −6.9022 0.0712 YES

V 79-09-4 CCC(=O)O[C60] 2.0679 −5.7900 −6.6931 0.0726 YES

V 107-92-6 CCCC(=O)O[C60] 2.5404 −5.7400 −6.4840 0.0740 YES

P 109-52-4 CCCCC(=O)O[C60] 3.0128 −5.0500 −6.2748 0.0754 YES

A 142-62-1 CCCCCC(=O)O[C60] 3.4853 −4.5000 −6.0657 0.0769 YES

A 111-14-8 CCCCCCC(=O)O[C60] 3.9577 −4.2600 −5.8566 0.0783 YES

V 124-07-2 CCCCCCCC(=O)O[C60] 4.4302 −4.9800 −5.6475 0.0797 YES
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P 112-05-0 CCCCCCCCC(=O)O[C60] 4.9026 −4.4100 −5.4384 0.0812 YES

A 76-13-1 C(C(F)(Cl)Cl)(F)(F)Cl[C60] 7.6642 −5.7700 −4.2161 9.0770 No

V 540-49-8 C(=CBr)Br[C60] 9.2824 −3.6700 −3.4998 2.0618 YES

C 1649-08-7 C(C(F)(F)Cl)Cl[C60] 6.9149 −5.3800 −4.5477 6.0501 No

P 123-91-1 C1COCCO1[C60] 5.3115 −5.3100 −5.2574 2.0652 YES

P 95-48-7 CC1=CC=CC=C1O[C60] 8.0059 −5.5400 −4.0648 2.1016 YES

P 287-92-3 C1CCCC1[C60] 6.0566 −6.5200 −4.9276 0.0507 YES

P 75-11-6 C(I)I[C60] 6.2755 −4.8200 −4.8307 5.0183 No

A 79-24-3 CC[N+](=O)[O-][C60] 4.1130 −6.7000 −5.7879 2.0553 YES

P 74-97-5 C(Cl)Br[C60] 5.2811 −4.2000 −5.2709 1.0304 YES

P 109-73-9 CCCCN[C60] 5.3981 −3.3000 −5.2191 2.0139 YES

V 583-57-3 C[C@@H]1CCCC[C@H]1C[C60] 6.7955 −4.6000 −4.6006 0.0623 YES

A 106-96-7 CCCCBr[C60] 4.9448 −4.6400 −5.4197 3.0347 YES

V 10026-04-7 [Si](Cl)(Cl)(Cl)Cl[C60] 6.5498 −4.8200 −4.7093 1.0622 YES

P 10038-98-9 Cl[Ge](Cl)(Cl)Cl[C60] 6.9654 −4.1000 −4.5254 1.0499 YES

A 7646-78-8 Cl[Sn](Cl)(Cl)Cl[C60] 7.2152 −3.7000 −4.4148 1.0499 YES

V 13465-77-5 [Si]([Si](Cl)(Cl)Cl)(Cl)(Cl)Cl[C60] 7.9273 −4.0500 −4.0996 2.0975 YES

C 7789-66-4 [Si](Br)(Br)(Br)Br[C60] 9.0656 −3.8900 −3.5958 8.0467 No

A 7789-67-5 Br[Sn](Br)(Br)Br[C60] 9.8161 −4.5200 −3.2636 7.0374 No

C 107-83-5 CCCC(C)C[C60] 4.7527 −5.4900 −5.5047 0.0354 YES

C 96-14−0 CCC(C)CC[C60] 4.7527 −5.3500 −5.5047 0.0354 YES

V 142-82-5 CCCCCCC[C60] 4.5675 −5.0100 −5.5867 0.0203 YES

A 75-52-5 C[N+](=O)[O-][C60] 3.6406 −4.8200 −5.9970 2.0538 YES

P 75-15-0 C(=S)=S[C60] 5.5718 −3.1800 −5.1422 5.0450 No

A 110-89-4 C1CCNCC1[C60] 7.5213 −2.1400 −4.2793 3.0488 YES

P 123-75-1 C1CCNC1[C60] 7.0489 −2.2700 −4.4884 3.0474 YES

C 2586-62-1 CC1=C(C2=CC=CC=C2C=C1)Br[C60] 12.5551 −2.1300 −2.0512 3.2311 No

A 109-66-0 CCCCC[C70] 3.6495 −6.5720 −5.9930 0.0289 YES

C 110-54-3 CCCCCC[C70] 4.1220 −5.6830 −5.7839 0.0304 YES

C 142-82-5 CCCCCCC[C70] 4.5944 −5.0830 −5.5748 0.0318 YES

C 111-65-9 CCCCCCCC[C70] 5.0669 −5.0950 −5.3657 0.0332 YES

V 124-18-5 CCCCCCCCCC[C70] 6.0118 −4.9130 −4.9474 0.0361 YES

C 112-40-3 CCCCCCCCCCCC[C70] 6.9567 −4.5780 −4.5292 0.0390 YES

V 110-82-7 C1CCCCC1[C70] 6.5560 −4.9870 −4.7066 0.0636 YES

A 67-64-1 CC(=O)C[C70] 2.7820 −6.7700 −6.3770 0.0717 YES

C 67-63-0 CC(C)O[C70] 2.5492 −6.6990 −6.4800 0.0505 YES

C 56-23-5 C(Cl)(Cl)(Cl)Cl[C70] 5.8660 −4.8570 −5.0120 0.0787 YES

P 106-42-3 CC1=CC=C(C=C1)C[C70] 8.4780 −3.2360 −3.8558 2.1317 YES
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A 108-67-8 CC1=CC(=CC(=C1)C)C[C70] 9.5187 −3.6130 −3.3952 0.1503 YES

V 108-88-3 CC1=CC=CC=C1[C70] 8.6007 −3.7500 −3.8015 1.1102 YES

V 71-43-2 C1=CC=CC=C1[C70] 8.1282 −3.8590 −4.0107 1.1088 YES

P 75-15-0 C(=S)=S[C70] 5.5987 −3.1510 −5.1303 5.0565 No

V 75-09-2 C(Cl)Cl[C70] 4.6152 −5.2150 −5.5656 0.0435 YES

P 95-50-1 C1=CC=C(C(=C1)Cl)Cl[C70] 10.8816 −2.3160 −2.7919 1.1507 YES

P 95-47-6 CC1=CC=CC=C1[CH2][C70] 9.0323 −2.6500 −3.6105 2.1102 YES

C 541-73-1 C1=CC(=CC(=C1)Cl)Cl[C70] 11.3726 −2.5950 −2.5746 0.1476 YES

A 119-64-2 C1CCC2=CC=CC=C2C1[C70] 10.2069 −2.6970 −3.0906 2.1837 YES

A 67-56-1 CO[C70] 2.3185 −8.7420 −6.5822 0.0314 YES

A 64-17-5 CCO[C70] 2.7910 −7.2720 −6.3730 0.0329 YES

C 71-23-8 CCCO[C70] 3.2634 −6.4570 −6.1639 0.0343 YES

C 71-36-3 CCCCO[C70] 3.7359 −6.0230 −5.9548 0.0357 YES

A 71-41-0 CCCCCO[C70] 4.2083 −6.4350 −5.7457 0.0372 YES

V 111-27-3 CCCCCCO[C70] 4.6808 −5.2740 −5.5366 0.0386 YES

C 111-87-5 CCCCCCCCO[C70] 5.6257 −5.0500 −5.1183 0.0415 YES

V 111-70-6 CCCCCCCO[C70] 5.1532 −5.0040 −5.3275 0.0400 YES

C 143-08-8 CCCCCCCCCO[C70] 6.0981 −4.3590 −4.9092 0.0429 YES

V 112-30-1 CCCCCCCCCCO[C70] 6.5706 −4.1520 −4.7001 0.0443 YES

C 112-42-5 CCCCCCCCCCCO[C70] 7.0431 −4.2160 −4.4910 0.0458 YES

* CAS is related to the corresponding solvent; A, P, C, and V denote active training, passive training, calibration,
and validation sets, respectively.

Table 10. Quasi-SMILES CCCCC[C60] is the code of the solution for fullerene C60 in pentane.

Code of
Quasi-SMILES CW (Code) Frequency of Code in

Active Training Set
Frequency of Code in
Passive Training Set

Frequency of Code in
Calibration Set

[C60]....... 0.4203 45 49 39

C........... 0.3047 50 52 50

C........... 0.3047 50 52 50

C........... 0.3047 50 52 50

C........... 0.3047 50 52 50

C........... 0.3047 50 52 50

C...C....... 0.1677 40 43 43

C...C....... 0.1677 40 43 43

C...C....... 0.1677 40 43 43

C...C....... 0.1677 40 43 43

[xyx1]...... 0.2474 18 14 19

[xyyx0]..... 0.2019 44 34 40

[xyzyx0].... 0.5584 45 44 47

∑ 3.6226
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4.4. The Applicability Domain

The applicability domain is considered in many studies devoted to QSPR/QSAR
analysis [16]. The main question is, “Can the resulting model be applied to a given/interest
substance?”. However, the counter-question is also logical. Is it not better to determine for
which substances the model being developed is intended before developing it [17]? Can
the model’s applicability domain change if one changes the distribution of available data
into training and validation sets?

It should be noted that for the approach studied here, the applicability domain for
different splits slightly changes.

The applicability domain for the described CORAL models are defined via the so-
called statistical defects of codes used in quasi-SMILES. These defects are calculated
as follows:

dk =
|P(S k)−P′(S k)|
N(Sk) + N′(Sk)

+
|P(S k)−P′′(S k)|
N(Sk) + N′′(Sk)

+
|P′(S k)−P′′(S k)|
N′(Sk) + N′′(Sk)

(7)

where P(Sk), P′(Sk), and P′′(Sk) are the probability of Sk in the active training set, passive
training set, and calibration set, respectively; N(Sk), N′(Sk), and N′′(Sk) are the frequencies
of Sk in the active training set, passive training set, and calibration set, respectively. The
statistical defects of quasi-SMILES (Dj) are calculated as follows:

Dj = ∑NA
k=1 dk (8)

where NA is the number of non-blocked codes in quasi-SMILES.
A quasi-SMILES falls in the applicability domain, if

Dj < 2∗
−
D (9)

where
−
D is the average statistical defect for the active training set.

4.5. Mechanistic Interpretation

With the numerical data on the correlation weights of codes applied in quasi-SMILES,
which was observed in several runs of the Monte Carlo optimization, one can extract three
categories of these codes:

i. Codes that have a positive value of the correlation weight in all runs. These are
promoters of endpoint increase;

ii. Codes with a negative correlation weight value in all runs. These are promoters of
endpoint decrease;

iii. Codes with negative and positive correlation weight values in different optimization
runs. These codes have unclear roles (one cannot classify these features as promoters
of increase or decrease for endpoint).

4.6. System of Self-Consistent Models

The reliability of an approach can be assessed by the so-called system of self-consistent
models [18,19]. The main idea of such a system is to test the performance of an approach on
many random splits of the available data into training and validation subsets. This task can
be represented by a matrix of determination coefficients related to applying the model built
using split 1 to the validation set observed for split 2. Suppose some quasi-SMILES, which
are allocated to the validation set of split 2, are present in the training or the calibration sets
of split 1 at the same time. In that case, they may improve the statistical quality of model 1
for the split 2 validation set.
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R2
1,1 R2

1,2 . . .
R2

2,1 R2
2,2 . . .

R2
10,1

R2
10,2

...
...

R2
10,1 R2

10,2 . . .

...
R2

10,10

(10)

In order for the assessment of the statistical quality of model 1 for the validation set of
split 2 to be adequate, it is necessary to remove the abovementioned quasi-SMILES from
consideration. It can be expressed as the following:

R2
1,1 R*2

1,2 . . .
R*2

2,1 R2
2,2 . . .

R*2
10,1

R*2
10,2

...
...

R*2
10,1 R*2

10,2 . . .

...
R2

10,10

(11)

Figure 4 indicates the essence of asterisks in the matrix (11). It is clear that the principles
for selecting quasi-SMILES in the validation set of split 2 to assess the predictive potential
of model 1 can be clearly translated for the arbitrary pairs of the i-th model vs. the j-th split
(i 6= j).
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Figure 4. For the demonstration scheme of the assessment of a model: let 100 quasi-SMILES be used
and distributed into active training (A1), passive training (P1), and calibration (C1) sets, which are
used to build model 1. The subset of the validation set of split 2, denoted as V2*, is used to assess
the predictive potential of model 1. One can see that, instead of 26 quasi-SMILES (Nv2), only 6 are
involved in assessing.
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4.7. Comparison with Other Models

The strange influence of IIC and CII on the simulation process via improving the
statistical quality of the model for the calibration sets leads to the temptation to compare
different models in terms of their quality for the external validation set. Table 11 contains
the comparisons of models for the solubility of fullerenes in various solvents.

Table 11. The comparison of different approaches for simulation of solubility of fullerenes in different
solvents.

Approach Set n R2 References

MLR * Training set 92 0.861 [23]

Validation set 30 0.903

PLS Training set 80 0.674 [24]

Validation set 28 0.692

SVM Training set 92 0.871 [25]

Validation set 30 0.940

DTB Training set 145 0.970 [12]

Validation set 36 0.964

Monte Carlo Training set 55 0.947 [26]

Validation set 35 0.915

DFT Training set 44 0.73 [27]

Validation set 15 0.74

Quantum-mechanical descriptors Training set 44 0.76 [28]

Validation set 15 0.70

CODESSA software Training set 21 0.745 [29]

Validation set 6 0.801

Self-consistent models Training set ≈100 ≈0.73 In this study

Validation set 19-22 0.84–0.94
* MLR = multiple linear regression; PLS = partial least square regression; SVM = support vector machine;
DTB = decision tree boost; DFT = density functional theory.

5. Conclusions

A model observed for a single distribution of the available data into a training and
a validation set can be either too good or too bad. It is preferable to consider a set of
models built on sufficiently diverse distributions of the available data in the training and
validation sets to obtain reliable information about the suitability of the chosen approach.
The two-component vector of the ideality of correlation based on the use of the IIC and CII
for the Monte Carlo optimization improves the predictive potential of the model. However,
the paradoxical effect of the mentioned vector is to reduce the determination coefficient
values for the active and passive training sets. However, if the main aim of the simulation is
to obtain a satisfactory prediction for the external validation set, then the effect of the vector
of the ideality of correlation which leads to improving the statistical quality of a model for
the external validation set, even in the detriment the training set, the result rather useful
rather than adverse. Using the proposed fragments of local symmetry (FLS) significantly
improves the predictive potential of the solubility model of fullerenes C60 and C70 in
organic solvents. It would be wrong to claim that FLS is related to traditional classical
symmetry. However, it is clear that FLS contains some information that can improve
the statistical quality and possibly the interpretability of the models. QSPR and nano-
QSPR are random events since the appearance of new experimental data may challenge
the already created models. Therefore, each model should be considered useful only
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temporarily and should be prepared for the need for radical alteration. The quasi-SMILES
technique offers the possibility of the fast modification of models taking into account new
conditions/circumstances.
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