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Abstract: This research work highlights the tribomechanical investigations of using a low loading
fraction of two ceramics combinations, Alumina (Al2O3) and Silicon Carbide (SiC) as reinforcement
for Low-density Polyethylene (LDPE) matrix. The hybrid additives with different weight percent-
ages (0.1 + 0.1, 0.25 + 0.25 and 0.5 + 0.5 wt%) were mixed with LDPE matrix and the degree of
homogeneity was controlled using double-screw extruder prior to fabricating the composite samples
via the injection molding machine. The nanoparticles fillers were characterized by field emission
scanning electron microscope (FESEM), EDX and particle size analyzer to check its morphology,
composition and size distribution. Thermogravimetric analyzer (TGA) and melting flow index
(MFI) were performed for the fabricated nanocomposites samples. The mechanical properties of the
nanocomposite were evaluated by performing tensile test, bending test and Shore-D hardness test,
while the tribological performance was investigated using a ball on desk apparatus under different
applied loads and sliding times. Moreover, in order to confirm the load-carrying capability of the
composite, contact stresses was measured via finite element model using ANSYS software. The results
show that the incorporation of low fraction hybrid ceramic nanoparticles can contributed positively
in the tribological and mechanical properties. Based on the experimental results, the maximum
improvement in the tensile strength was 5.38%, and 8.15% for hardness LDPE with 0.5 Al2O3 and
0.5 SiC, while the lowest coefficient of friction was noticed under normal load of 10 N, which was
approximately 12.5% for the same composition. The novel approach of incorporating low fraction
hybrid ceramic nanoparticles as reinforcement for LDPE matrix is investigated, highlighting their
positive contributions to the tribological and mechanical properties of the resulting nanocomposites.

Keywords: tribo-mechanical behavior; LDPE; hybrid nanocomposites; Al2O3-SiC; finite elements

1. Introduction

There has been an increase in interest in using nanostructured oxide fillers as reinforce-
ments for different materials and polymers in recent years. These nanostructured oxide
fillers, such as Al2O3 and SiC, have unique nanoscale characteristics that can improve the
mechanical and tribological performance of the host materials. These fillers’ high surface
area-to-volume ratio and customized surface chemistry enable better interfacial interactions
and load transmission inside the composite matrix [1,2].

Polyolefin-based low-density polyethylene (LDPE) is produced in considerable quanti-
ties for a variety of commercial items, including pipes [3], shielding [4], food packaging [5]
and electrical insulation [6] because of its strength. LDPE can be shaped into a variety of
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applications because of its structural strength and impact resistance, lightweight, high flexi-
bility, low processing cost, moisture resistance and superior mechanical quality. Since LDPE
products do not contain BPA (bisphenol A), their use is expected to increase as consumers
become more aware of the dangers BPA poses to their health. Therefore, market players are
focusing on enhancing LDPE manufacturing processes in order to develop high mechanical
strength LDPE-based products. Recently, many attempts have been made to improve the
mechanical properties of LDPE by blending it with different inorganic/organic nanofillers
such as aluminum oxide (Al2O3) [7,8], zinc oxide (ZnO), titanium oxide (TiO2), clay, silicon
carbide (SiC) and carbon nanotubes (CNT). Adding a small amount of these nanofillers
offered a better performance of LDPE composites in automotive, aerospace, construction
and electronic application by improving physical and mechanical, anticorrosion and flame
retardancy properties [9–12]. Several studies have been conducted in the recent decade
to investigate the role of nanoparticles in tribological polymer nanocomposites [13–16].
According to these studies, the ideal nanoparticle concentration ranges for mechanical and
wear properties are generally low, often ranging from 0.5 to 5 vol-%. [17–19]. Agglomer-
ation is expected to occur after a particular percentage of nanoparticle loading, defining
the maximum loading of addition [20]. Jani et al. [19] successfully improved the sliding
wear behavior of PE-based polymer using a small number of silica and graphene oxide
nanofillers. The addition of 0.5 wt% of vinyl silane-treated fumed silica achieved an 80%
reduction in the specific wear rate compared to neat polymer. Sergey et al. [11] estab-
lished a design to investigate the tribological characteristics of ultrahigh molecular weight
polyethene (UHMWPE)-carbon nanofiber composites. The 0.5 wt.% carbon nanofibers
loading was determined to be the most effective filler under moderate tribological loading
conditions. Noorunnisa et al. [20] revealed that maximum 4 wt.% alumina powder-filled
composites had the best tensile strength and tensile modulus when compared to recycled
LDPE, which improved by 34.88 and 91.57%, respectively.

Adding alumina to LDPE enhances various properties such as thermal, physical and
mechanical properties along with crystallinity changes. Research by Deepak et al. [21]
has found that this reinforcing filler brings about positive effects on the composite matrix.
An increase in the modulus of elasticity, tensile strength and thermal stability have been
observed. Similarly, the introduction of alumina fillers in the composite increased the
packing efficiency that caused a reduction in the amorphous region, improved the interfacial
interaction between LDPE and alumina filler and promoted an increase in the crystallinity
of the polymer.

Ceramic nanoparticles with low porosity provide better mechanical characteristics
such as good compressive strength [22], hardness [23] and low density [24]. SiC and
Al2O3 are popular reinforcing additives in the market due to their demand in the electrical,
electronics, automotive and related industries. They are effective in improving the tensile
strength and hardness of polymers, making them suitable for enhancing material properties.
As a result, they hold a significant volumetric proportion of the global market for reinforcing
additives. [25,26]. Alumina is a commonly used ceramic due to its low cost, easy processing
and diverse applications. However, its low toughness and fracture energy can limit its
use. The addition of SiC has shown improved results in strengthening the polymeric
matrix. [26]. By adding SiC to the matrix, its modulus of elasticity was increased which re-
sulted in increased flexural strength, greater hardness and higher fracture toughness [27,28].
A composite material comprising a thermoplastic polymer and alumina can address the
drawback of low fracture toughness exhibited by ceramics. This approach has the po-
tential to enhance the mechanical properties of the polymeric composite, making them
more resilient to cracking and fracture. The addition of the ceramic nanoparticles, forming
a composite, offers a viable solution to improve the strength and durability of the neat
polymer, expanding their range of applications across a wide variety of industries. The
development of stronger alternatives to LDPE products is crucial for a sustainable future.
Additionally, the use of crosslinking agents or reactive extrusion processes can produce an
improved LDPE product with high mechanical, friction strength and wear rate. Wear rates
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and friction coefficients are usually included in tribology. SiC and Al2O3 NPs exhibit good
mechanical and wear resistance properties. However, there has not been not much research
conducted on the tribological and surface characteristics of LDPE composites reinforced
with Al2O3 and SiC particles.

This work offers a study of LDPE nanocomposite reinforced with Al2O3 and SiC
hybrid nanoparticles and evaluates the mechanical, and tribological characteristics of
developed composites for usage as lightweight engineering products. The selection of
LDPE matrix composites was based on their ability to mitigate toughness and abrasion
strength issues since ceramic materials are brittle.

2. Experimental Procedure
2.1. Materials

In this study, Low Density Polyethylene (LDPE) from TASNEE LD (grade 0725N),
Saudi Arabia with Melt Flow Rate of 0.75 g/10 min was selected as a base polymeric matrix.
Aluminum Oxide Al2O3 powder with particle size less than 150 nm from Sigma–Aldrich
(Burlington, MA, USA) and Silicon Carbide SiC powder with particle size less than 100 nm
from Sigma–Aldrich (Burlington, MA, USA) were used as a hybrid nanofillers.

2.2. Samples Preparation

The premixing of LDPE with the two types of nano-powders of an equal weight
per-centage of (0.1 + 0.1, 0.25 + 0.25 and 0.5 + 0.5 wt%) to represent a total amount of 0.2,
0.5 and 1 wt% from nanofillers hybrid additives were performed at room temperature
using 400 rpm mixer (variable speed mechanical mixer from Cole-Parmer, USA) for 10 min
in order to distribute the hybrid nanopowders around the LDPE pellets homogeneously.
As shown in the Figure 1, the mixtures were then extruded using a twin-screw extruder
(Model LHFD1-130718) by Lab Tech Engineering Company, Limited (Mueang Samut
Prakan District, Thailand) with ten heating zones starting by 160 ◦C and ending by 210 ◦C
at the extruder nozzle. The speed of the screws during the extrusion process was adjusted
to 40 rpm for two extrusion shots in order to obtain a very homogeneous composition
which feed directly the pelletizer section (Model LZ-80) by Lab Tech Engineering Company,
Limited (Mueang Samut Prakan District, Thailand) to get uniform pellets. Last step is
feeding these pellets into the injection molding machine (Model JM138-Ai-SVP/2) by Chen
Hsong (Hong Kong) in order to fabricate the final nanocomposite sets of samples needs for
different characterizations and testing (Figure 2). The barrel temperatures of the injection
nozzle have four different zones of 185, 190, 210 and 225 ◦C at the tip, and inject time of 1.4 s.
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2.3. Characterization and Testing

The characterization of the nanofillers were carried out using field emission scanning
electron microscope FE-SEM, model: JEOL JSM-7600F, Tokyo, Japan, with Oxford EDX
accessory attached to it, while the particle size distribution was analyzed using NKT-N9
laser particle size analyzer. The melting flow index (MFI) was obtained using ST-400A
Melt flow index tester from China according to (ASTM) standard D1238 [29]. The test was
performed at temperature of 230 ◦C and weight of 5 kg.

On LDPE-based composites, thermogravimetric analysis (TGA) was carried out utiliz-
ing a TGA-Q600 machine from TA Instrument, New Castle, DE, USA. The samples were
put in an alumina pan, and thermal analysis was carried out in a nitrogen (N2) environment
from 25 to 600 ◦C at a rate of 10 ◦C/min. Onset temperature, peak degradation temperature
and final degradation temperature of the composite samples were recorded.

A Shore-D hardness test was performed on the fabricated nanocomposite according
to ASTMD2240-15 standard [30] using a durometer. The readings were recorded after one
second from touching the sample surface by the durometer needle. Six to ten measurements
were taken for each sample and the average was calculated.

Bending or Flexural tests were performed according to ASTM D790 standard [31] using
INSTRON testing machine model 3385H, Germany at a crosshead speed of 2 mm/min.
The three-point mechanism was adjusted to 50 mm distance for the support span (L), and
5 samples per each composition were tested.

The tensile test was performed according to ASTM D638-14 standard with type I sam-
ple [32] using tensile testing machine of 150 kN, from INSTRON 3385H, Germany at a
crosshead speed of 2 mm/min. The dimensions of the tensile test specimen are shown in
Figure 3, where l3 = 165, l2 = 115, l1 = 70, L0 = 60, L = 120, r = 75, h = 3, b1 = 12 and b2 = 18 mm.
Five test replicates were performed for each composite to get the average value.

The tribology test was performed using Bruker CETR Tribometer (UNMT-1L) with ball
on desk arrangement. The nanocomposite sample is representing by the rotating desk of
100 rpm rotational speed, while the ball is from chrome steel (E52100, HRC 63) with 10 mm
diameter. The tribology test was performed according to ASTM G99-95 standard [33] under
dry sliding conditions at room temperature. During wear test, 10 N, 30 N and 50 N loads
were applied for time intervals of 5, 10, 15 and 20 min. To evaluate the load-carrying
capacity of LDPE/Al2O3/SiC composites, it is essential to analyze the distribution of
contact stresses and measure the stress on contact during the process. This is necessary to
confirm the load-carrying capability of the materials concerning the applied load via finite
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element model using ANSYS software. By measuring the contact stresses, it is possible to
determine the load-carrying capacity of the composites, thus ensuring their suitability for
specific applications.
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3. Results and Discussion
3.1. Nanostructured Oxide Fillers Characterization

Figure 4a,b show the SEM micrographs of Al2O3 and SiC nanoparticles. As can be
noticed, a spherical shape with a mean particle size ranged between 100–150 nm and
25–100 nm, respectively, is clearly presented, which also confirmed using particle size ana-
lyzer, and the size distribution is presented in Figure 4e,f. The chemical composition of the
nanostructured oxide fillers was investigated using Energy-Dispersive X-ray Spectroscopy
(EDX). The results show that the Al2O3 consists of 37.10 wt.% Aluminum, 56.10 wt.%
Oxygen and 6.8 wt.% Pt. While the SiC consists of 56.89 wt.% Carbon, 35.01 Silicon and
8.1 wt% Platinum. The platinum in the EDS pattern is the result of a platinum coating
applied to the sample prior to imaging. This coating enhances the surface conductivity of
the sample, minimizing the charging impact and allowing for clear SEM pictures with no
charge spots.
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3.2. Nanocomposite Characterization

Based on Figure 5, it appears that the mapping analysis includes elemental analysis to
demonstrate the distribution of each element. This analysis helps determine if the additives
are evenly distributed within the base matrix. The distribution of all elements observed in
the mapping analysis confirms that the additives are indeed evenly distributed within the
base matrix.

Table 1 shows the samples designation codes with the selected compositions in weight
percent. While Figure 6 and Table 1 shows the thermal characteristics of virgin LDPE and
its composites. All of the samples exhibit a single degradation process. The onset and peak
degradation temperature of the composite and pure LDPE were identical. This could be
due to the small additive quantities; however, in the final degradation, temperature for
composite LDPE showed delayed degradation when compared to pure LDPE. The thermal
stability of LDPE is improved by the high proportion of Al2O3 and SiC. These thermal
data show that small additions of additives reduce chain motion and thermal vibration
and prevent the complete thermal deterioration of LDPE by acting as an effective thermal
stabilizer. Other experiments with similar findings indicated no changes in initial degrada-
tion temperature but raised final degradation temperatures of the polymer composite with
minor additions of additives [20,34].
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Table 1. Samples designation codes and TGA results for the LDPE and its composites.

Samples Code
Composition in wt% Temperature (◦C)

LDPE Al2O3 SiC Onset Peak Final

LDPE-0 100% 0% 0% 454.3 474.65 488

LDPE-1 99.8% 0.10% 0.10% 453.7 474.31 499

LDPE-2 99.5% 0.25% 0.25% 453.5 474.57 501

LDPE-3 99.0% 0.50% 0.50% 453.8 474.13 500
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The MFI of the pure LDPE is 9.41 g/10 min at the temperature of 230 ◦C and weight
of 5 kg. The MFI decreases with increasing the hybrid filler materials, as shown in Figure 7.
The decrease in MFI was reported by other researchers for the same composite [25] and
could be attributed to lowering the mobility of the polymer molecule chains in the LDPE
matrix [35]. Since the SiC is relatively harder and costlier than Al2O3, both reinforcements
will result in better wear properties. However, the selection of Al2O3 as reinforcement is
made based on cost-effective selection.
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3.3. Mechanical Testing

In order to evaluate the mechanical properties of the fabricated nanocomposite, a series
of mechanical tests were carried out as per the ASTM standards for each test as follow:

3.3.1. Shore-D Hardness Test

Figure 8 shows the hardness values variation along the different fabricated nanocom-
posites using Shore-D type. The hardness values are slightly increased by increasing the
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hybrid fillers. Although the change in the hardness values are fairly slight even for the
higher amount composite (8.15%), it is in line with the slight increases in the percentage
of hybrid additives. The slight improvement in the hardness can be attributed to the
dislocation movement prevention as a result of imbedding those filler nanoparticles in
the LDPE matrix [36]. The same strengthening mechanism can also contribute to the load
bearing capacity of the nanocomposite, which reflected on the mechanical properties as
clarified in the tensile section.
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3.3.2. Tensile and Flextural Test

Silicon carbide and Alumina added to the LDPE matrix successfully improved tensile
characteristics while decreasing ductility somewhat. The tensile test results are shown in
Figure 9. The figure clearly shows that the composite’s tensile characteristics are improved
over the neat LDPE. The enhancement could be attributed to the improved dispersion of
the hybrid nanofiller in the LDPE because of using more than one extrusion shot which
subsequently leads to better interfacial bonding between the hybrid additives and the
LDPE matrix.
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The study’s findings reveal that the tensile properties of low-density polyethylene
(LDPE) can be significantly improved by incorporating low fractions of aluminum oxide
(Al2O3) and silicon carbide (SiC) additives. In the experiment, the neat LDPE specimens
exhibited an average yield strength of 6.296 MPa and an ultimate tensile strength of
8.248 MPa. However, when the LDPE was reinforced with a combination of 0.5 wt% Al2O3
and 0.5 wt% SiC, the yield strength increased to 7.059 MPa and the ultimate tensile strength
rose to 8.692 MPa as represented in Figure 10. This corresponds to an enhancement of
12.12% and 5.38% in yield strength and ultimate tensile strength, respectively.
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The primary factor responsible for the observed improvement in the mechanical
properties of the LDPE reinforced with hybrid ceramic nanoparticles is the increase in
crystallinity within the polymer matrix. This increase in crystallinity is attributed to
the incorporation of high crystalline additives, such as Al2O3 and SiC, into the polymer
matrix [36]. The presence of these additives promotes the formation of a more ordered and
structured arrangement of polymer chains, which in turn leads to enhanced mechanical
properties, including increased tensile strength and yield strength.

Flexural strength of the composites was calculated and plotted in the graph as shown
in Figure 11. The figure shows that increasing the weight % of the hybrid additives has
little positive effect on the flexural strength. This might be due to the incorporation of
low volume fraction from the hard and stiff alumina/silicon carbide particles in the LDPE
matrix. Those nanoparticles resist the deformation of the nanocomposite resulting a slight
improvement in the flexural strength values. The maximum improvement in the flexural
load was 19.4 % at displacement of 20 mm for LDPE with 0.5 Al2O3 and 0.5 SiC.

Based on the results, LDPE reinforced with SiC/Al2O3 has a higher tensile strength
than base LDPE. Alumina and SiC additives increase brittleness as weight percentages
increase, confirming that elongation decreases with increasing wt% of additives. According
to this study, the trend of UTS and Yield strength increases when the weight % of SiC and
Alumina in the matrix increases. A discrepancy between additives and matrix causes a
high-stress concentration at the particle, and the matrix in that region collapses prematurely
when loaded [37,38]. With a higher volume fraction, there is a substantial tendency for
particle clustering, resulting in a relatively inefficient load transmission mechanism. That is
the reason for using low volume fraction additives.
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3.4. Tribological Performance

In order to explore the impact of incorporating aluminum oxide and silicon carbide
nanoparticles at various weight fractions on the tribological properties of LDPE nanocom-
posites, samples of the nanocomposite were subjected to frictional tests against a stainless-
steel ball. The tests were conducted at a consistent linear speed of 0.4 m/s, while the
applied loads ranged from 10 N to 50 N. After that, the average friction coefficient and wear
mass loss were estimated. Figure 12 depicts the fluctuations in the friction coefficient in
response to the change in the normal load. Notably, the incorporation of aluminum oxide
and silicon carbide nanoparticles reduced the friction coefficient of the LDPE nanocom-
posite samples, as compared to the net LDPE, with various applied loads. The findings
indicate that LDPE0.5 exhibited the lowest coefficient of friction, 0.24, which is 12.5% lower
than the coefficient of friction of net LDPE (0.27) under a normal load of 10 N. The decrease
in the coefficient of friction between LDPE0 and LDPE3 under other normal loads was
approximately 8%.
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Additionally, Figure 12 demonstrates a gradual rise in the coefficient of friction with the
increase in the normal load. This increase in the coefficient of friction can be attributed to the
elevated temperature at the contact area between the surfaces in contact during the friction
test [39]. The temperature rise can alter the contact area between the rubbing surfaces, thus
influencing the adhesion between the tested samples and their counterparts [40].

Figure 13 demonstrates the impact of incorporating aluminum oxide and silicon car-
bide nanoparticles into the LDPE matrix on the wear of the nanocomposite samples during
the friction experiment. The results indicate that raising these nanoparticles’ weight fraction
reduced the nanocomposite samples’ wear. The results prove that the nanocomposite sam-
ples’ wear resistance improved as the weight fraction of aluminum oxide and silicon carbide
nanoparticles increased. This improvement can be attributed to the enhanced mechanical
properties achieved by incorporating these nanoparticles, such as increased strength of
the nanocomposite samples with higher nanoparticle concentrations. Consequently, the
stronger bonding between the aluminum oxide and silicon carbide nanoparticles and LDPE
matrix resulted in an enhanced load-carrying capacity, reducing the nanocomposite sur-
faces’ degradation during the friction test. The same behavior was reported previously by
other researchers [41].
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Additionally, the increased hardness of the LDPE nanocomposite surfaces, resulting
from higher concentrations of aluminum oxide and silicon carbide, contributed to the
improved wear resistance of the nanocomposite, which come in sequence with other
previous work [42]. On the contrary, the weight loss of the nanocomposites increased
with an increase in the normal load. This can be attributed to the rise in temperature
between the rubbing surfaces, which occurs along with the increase in the normal load.
The increased frictional force due to the higher normal load leads to a surface breakdown
of the nanocomposite, resulting in higher weight loss.

The reduction in friction coefficient and wear can be attributed to the improved load-
carrying capacity of the LDPE nanocomposite achieved by incorporating aluminum oxide
and silicon carbide nanoparticles.

Measuring the contact stresses is a method used for identifying the load carrying
capacity of the material. Kuminek et al. [43] sought to develop a numerical model that
relate the contact stresses by the load carrying capacity of a material. They found that as
the contact stresses decrease, the load carrying capacity increases. Based on that many
researchers used this idea in evaluating the load carrying capacity of their developed
materials. Guanchen et al. [44] claimed that the direct contact of the friction pairs happens,
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and the increased interface wear would affect the load carrying capacity of the contact
interface. Consequently, they developed a finite element model to identify the contact
stresses generated on the surface composite structure with micro-grooves. They could
find also that the increase in the strength was accompanied by a decrease in the contact
stresses. From this standpoint, many researchers used the finite element models in eval-
uating the load carrying capacity of the material from the generated stresses during the
friction process [41,45,46]. The evaluation of load-carrying capacity involved measuring
the distribution of contact stress across the surface of the nanocomposite sample during the
friction process [43]. A finite element model for the frictional test was created using ANSYS
software using the explicit dynamics package, as illustrated in Figure 14, to simulate and
analyze the frictional process and estimate the contact stresses.
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The LDPE nanocomposite was modeled as a circular disc with a diameter of 60 mm,
as shown in Figure 14a. The disc was hollowed out to simplify the model, decrease solving
time and focus on measuring the contact stresses, as shown in Figure 14b. The contact
between the ball and the LDPE nanocomposite disc was defined as frictional, allowing for
estimating stresses resulting from the tribological test. The automatic meshing feature of
the software was used to create the mesh for the ball and the disc. The mesh consisted
of hexahedral and tetrahedral elements, dividing the two parts into 263 elements and
1167 nodes. Boundary conditions were applied to the model, with the ball fixed in the X
and Y directions, and a normal force of −50 N was applied to the ball in the Z direction. The
mechanical properties of the nanocomposite were incorporated into the ANSYS software
according to the experimental findings.

The SEM images shown in Figure 15 illustrate the worn surfaces of the different LDPE
composites. The configuration and characteristics of the dispersed phase clusters vary
depending on the extent of polymer adhesion and its interaction with the reinforcement
material. The presence of micro-voids surrounding these clusters suggests that the bond
at the interface was feeble, either between polymer chains or between the polymer and
additives. In Figure 15a, it can be observed that the surface of pure LDPE exhibits numerous
significant delaminated aggregates and some voids, indicating degradation of the surface.
This degradation is responsible for heightened wear, and the presence of aggregates rises
the shear resistance, consequently leading to an increase in the measured friction coefficient.
In this scenario, the principal wear mechanism is delamination. Figure 15b demonstrating
that the incorporation of 0.1 + 0.1 of Al2O3 and SiC into LDPE results in a reduction in the
size of the dispersed phase aggregates. Furthermore, the emergence of microcracks and
pores becomes evident. The prevailing wear mechanism under these circumstances is a
fatigue-delamination mechanism. As the weight fraction of additive materials in LDPE
increases, there is an enhancement in the uniform dispersion of reinforcement within
the LDPE matrix. This improvement also leads to a decrease in the dimensions of both
aggregates and particles, as illustrated in Figure 15c. Elevating the content of Al2O3 and
SiC to 0.5 wt.% resulted in heightened hardness and enhanced bonding strength within the
composites. This increase in interfacial adhesion between the LDPE matrix and the additive
nanoparticles promotes the efficient transfer of stresses, thereby augmenting the surface’s



Inorganics 2023, 11, 354 14 of 18

resistance to wear. As a result, Figure 15d reveals minimal presence of cracks and debris on
the composite surface, contributing to a reduction in both wear and friction coefficient.
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Figure 16 presents the equivalent stress and maximum shear stress distribution on
the surfaces of the LDPE nanocomposite. Figure 17 shows the variation in generated
stresses on the rubbed surfaces of the nanocomposite with changing concentrations of
aluminum oxide and silicon carbide nanoparticles. The results indicate a decrease in both
equivalent stress and maximum shear stress, reducing the friction coefficient of the LDPE
nanocomposite [41]. The finite element results are consistent with the experimental results.
The decrease in the generated stresses with the enhancement in the mechanical properties
led to a reduction in the wear rate.
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4. Conclusions

In this study, two nanostructured oxides, particularly aluminum oxide (Al2O3) and
silicon carbide (SiC) nanoparticles, were employed as low fraction hybrid reinforcements
for the low-density polyethylene (LDPE) matrix. The polymer/ceramic filler mixtures were
homogeneously blended using a twin-screw extruder, and the nanocomposite samples
were successfully fabricated via an injection molding technique. The following conclusions
can be drawn from the research findings:

• Employing two rounds of extrusion shots before injection molding effectively produces
homogeneous nanocomposite samples with well-dispersed low fraction additives.

• Incorporating alumina and silicon carbide nanoparticles into the LDPE matrix leads to
increased tensile strength, yield strength and hardness. The study findings revealed
improvements of 5.38%, 17.4% and 8.15%, respectively, for the LDPE + 0.5%Al2O3 +
0.5%SiC composite.

• The melt flow index (MFI) decreases as the hybrid filler content increases. The maxi-
mum reduction of 11.9% was observed for the LDPE + 0.5%Al2O3 + 0.5%SiC composite.
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This decrease in MFI can be attributed to the reduced mobility of the polymer molecu-
lar chains within the LDPE matrix.

• The lowest coefficient of friction was recorded for the LDPE + 0.5%Al2O3 + 0.5%SiC
composite under a normal load of 10 N, which was approximately 12.5% lower than
that of the neat LDPE, which is because the enhanced mechanical properties achieved
by incorporating these nanoparticles.

• The incorporation of a low fraction of Al2O3/SiC during the fabrication of composites
increased the load-carrying capacity, as evidenced by the finite element analysis results.
Consequently, the enhanced mechanical properties led to reduced stress generation
and a lower wear rate.

• The application of aluminum oxide (Al2O3) and silicon carbide (SiC) nanoparticles as
hybrid reinforcements in low-density polyethylene (LDPE) matrix offers the potential
for lightweight materials with improved mechanical properties and enhanced tribolog-
ical performance. These nanocomposites could find applications in various industries
where strength, hardness and reduced friction are desired, opening up possibilities for
more efficient and durable products.
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